首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Normal lymphoid tissue development and function depend upon directed cell migration. Providing guideposts for cell movement and positioning within lymphoid tissues, chemokines signal through cell surface receptors that couple to heterotrimeric G proteins, which are in turn subject to regulation by regulator of G protein signaling (RGS) proteins. In this study, we report that germinal center B lymphocytes and thymic epithelial cells strongly express one of the RGS family members, RGS13. Located between Rgs1 and Rgs2, Rgs13 spans 42 kb on mouse chromosome 1. Rgs13 encodes a 157-aa protein that shares 82% amino acid identity with its 159-aa human counterpart. In situ hybridization with sense and antisense probes localized Rgs13 expression to the germinal center regions of mouse spleens and Peyer's patches and to the thymus medulla. Affinity-purified RGS13 Abs detected RGS13-expressing cells in the light zone of the germinal center. RGS13 interacted with both Gialpha and Gqalpha and strongly impaired signaling through G(i)-linked signaling pathways, including signaling through the chemokine receptors CXCR4 and CXCR5. Prolonged CD40 signaling up-regulated RGS13 expression in human tonsil B lymphocytes. These results plus previous studies of RGS1 indicate the germinal center B cells use two RGS proteins, RGS1 and RGS13, to regulate their responsiveness to chemokines.  相似文献   

3.
Control of chondrocyte differentiation is attained, in part, through G-protein signaling, but the functions of the RGS family of genes, well known to control G-protein signaling at the Galpha subunit, have not been studied extensively in chondrogenesis. Recently, we have identified the Rgs2 gene as a regulator of chondrocyte differentiation. Here we extend these studies to additional Rgs genes. We demonstrate that the Rgs4, Rgs5, Rgs7, and Rgs10 genes are differentially regulated during chondrogenic differentiation in vitro and in vivo. To investigate the roles of RGS proteins during cartilage development, we overexpressed RGS4, RGS5, RGS7, and RGS10 in the chondrogenic cell line ATDC5. We found unique and overlapping effects of individual Rgs genes on numerous parameters of chondrocyte differentiation. In particular, RGS5, RGS7, and RGS10 promote and RGS4 inhibits chondrogenic differentiation. The identification of Rgs genes as novel regulators of chondrogenesis will contribute to a better understanding of both normal cartilage development and the etiology of chondrodysplasias and osteoarthritis.  相似文献   

4.
Liver fibrosis is mediated by hepatic stellate cells (HSCs), which respond to a variety of cytokine and growth factors to moderate the response to injury and create extracellular matrix at the site of injury. G-protein coupled receptor (GPCR)-mediated signaling, via endothelin-1 (ET-1) and angiotensin II (AngII), increases HSC contraction, migration and fibrogenesis. Regulator of G-protein signaling-5 (RGS5), an inhibitor of vasoactive GPCR agonists, functions to control GPCR-mediated contraction and hypertrophy in pericytes and smooth muscle cells (SMCs). Therefore we hypothesized that RGS5 controls GPCR signaling in activated HSCs in the context of liver injury. In this study, we localize RGS5 to the HSCs and demonstrate that Rgs5 expression is regulated during carbon tetrachloride (CCl4)-induced acute and chronic liver injury in Rgs5LacZ/LacZ reporter mice. Furthermore, CCl4 treated RGS5-null mice develop increased hepatocyte damage and fibrosis in response to CCl4 and have increased expression of markers of HSC activation. Knockdown of Rgs5 enhances ET-1-mediated signaling in HSCs in vitro. Taken together, we demonstrate that RGS5 is a critical regulator of GPCR signaling in HSCs and regulates HSC activation and fibrogenesis in liver injury.  相似文献   

5.
G protein-coupled receptors (GPCRs) can interact with regulator of G protein signaling (RGS) proteins. However, the effects of such interactions on signal transduction and their physiological relevance have been largely undetermined. Ligand-bound GPCRs initiate by promoting exchange of GDP for GTP on the Gα subunit of heterotrimeric G proteins. Signaling is terminated by hydrolysis of GTP to GDP through intrinsic GTPase activity of the Gα subunit, a reaction catalyzed by RGS proteins. Using yeast as a tool to study GPCR signaling in isolation, we define an interaction between the cognate GPCR (Mam2) and RGS (Rgs1), mapping the interaction domains. This reaction tethers Rgs1 at the plasma membrane and is essential for physiological signaling response. In vivo quantitative data inform the development of a kinetic model of the GTPase cycle, which extends previous attempts by including GPCR-RGS interactions. In vivo and in silico data confirm that GPCR-RGS interactions can impose an additional layer of regulation through mediating RGS subcellular localization to compartmentalize RGS activity within a cell, thus highlighting their importance as potential targets to modulate GPCR signaling pathways.  相似文献   

6.
Regulators of G-protein signaling (RGS proteins) negatively regulate heterotrimeric G-protein cascades that enable eukaryotic cells to perceive and respond to external stimuli. The rice-blast fungus Magnaporthe grisea forms specialized infection structures called appressoria in response to inductive surface cues. We isolated Magnaporthe RGS1 in a screen for mutants that form precocious appressoria on non-inductive surfaces. We report that a thigmotropic cue is necessary for initiating appressoria and for accumulating cAMP. Similar to an RGS1-deletion strain, magA(G187S) (RGS-insensitive Galpha(s)) and magA(Q208L) (GTPase-dead) mutants accumulated excessive cAMP and elaborated appressoria on non-inductive surfaces, suggesting that Rgs1 regulates MagA during pathogenesis. Rgs1 was also found to negatively regulate the Galpha(i) subunit MagB during asexual development. Deficiency of MAGB suppressed the hyper-conidiation defect in RGS1-deletion strain, whereas magB(G183S) and magB(Q204L) mutants produced more conidia, similar to the RGS1-deletion strain. Rgs1 physically interacted with GDP.AlF(4)(-)-activated forms of MagA, MagB and MagC (a Galpha(II) subunit). Thus, Rgs1 serves as a negative regulator of all Galpha subunits in Magnaporthe and controls important developmental events during asexual and pathogenic development.  相似文献   

7.
Normal lymphoid tissue development and function depend upon chemokine-directed cell migration. Since chemokines signal through heterotrimeric G-protein-coupled receptors, RGS proteins, which act as GTPase-activating proteins for Galpha subunits, likely fine tune the cellular responses to chemokines. Here we show that Rgs1(-/-) mice possess B cells that respond excessively and desensitize improperly to the chemokines CXCL12 and CXCL13. Many of the B-cell follicles in the spleens of Rgs1(-/-) mice have germinal centers even in the absence of immune stimulation. Furthermore, immunization of these mice leads to exaggerated germinal center formation; partial disruption of the normal architecture of the spleen and Peyer's patches; and abnormal trafficking of immunoglobulin-secreting cells. These results reveal the importance of a regulatory mechanism that limits and desensitizes chemokine receptor signaling.  相似文献   

8.
Generation and characterization of Rgs4 mutant mice   总被引:6,自引:1,他引:5       下载免费PDF全文
RGS proteins are negative regulators of signaling through heterotrimeric G protein-coupled receptors and, as such, are in a position to regulate a plethora of biological phenomena. However, those have just begun to be explored in vivo. Here, we describe a mouse line deficient for Rgs4, a gene normally expressed early on in discrete populations of differentiating neurons and later on at multiple sites of the central nervous system, the cortex in particular, where it is one of the most highly transcribed Rgs genes. Rgs4lacZ/lacZ mice had normal neural development and were viable and fertile. Behavioral testing on mutant adults revealed subtle sensorimotor deficits but, so far, supported neither the proposed status of Rgs4 as a schizophrenia susceptibility gene (by showing intact prepulse inhibition in the mutants) nor (unlike another member of the Rgs family, Rgs9) a role of Rgs4 in the acute or chronic response to opioids.  相似文献   

9.
Regulator of G protein signaling 10 (RGS10), a GTPase accelerating protein (GAP) for G alpha subunits, is a negative regulator of NF-κB in microglia. Here, we investigated the role of RGS10 in macrophages, a closely related myeloid-derived cell type. Features of classical versus alternative activation were assessed in Rgs10-/- peritoneal and bone marrow-derived macrophages upon LPS or IL-4 treatments, respectively. Our results showed that Rgs10-/- macrophages produced higher levels of pro-inflammatory cytokines including TNF, IL-1β and IL-12p70 in response to LPS treatment and exerted higher cytotoxicity on dopaminergic MN9D neuroblastoma cells. We also found that Rgs10-/- macrophages displayed a blunted M2 phenotype upon IL-4 priming. Specifically, Rgs10-/- macrophages displayed lower YM1 and Fizz1 mRNA levels as measured by QPCR compared to wild type macrophages upon IL-4 treatment and this response was not attributable to differences in IL-4 receptor expression. Importantly, phagocytic activities of Rgs10-/- macrophages were blunted in response to IL-4 priming and/or LPS treatments. However, there was no difference in chemotaxis between Rgs10-/- and WT macrophages. Our data indicate that Rgs10-/- macrophages displayed dysregulated M1 responses along with blunted M2 alternative activation responses, suggesting that RGS10 plays an important role in determining macrophage activation responses.  相似文献   

10.
Vertebrate development requires communication among cells of the embryo in order to define the body axis, and the Wnt-signaling network plays a key role in axis formation as well as in a vast array of other cellular processes. One arm of the Wnt-signaling network, the non-canonical Wnt pathway, mediates intracellular calcium release via activation of heterotrimeric G proteins. Regulator of G protein Signaling (RGS) proteins can accelerate inactivation of G proteins by acting as G protein GTPase-activating proteins (GAPs), however, the possible role of RGS proteins in non-canonical Wnt signaling and development is not known. Here, we identify rgs3 as having an overlapping expression pattern with wnt5b in zebrafish and reveal that individual knockdown of either rgs3 or wnt5b gene function produces similar somite patterning defects. Additionally, we describe endogenous calcium release dynamics in developing zebrafish somites and determine that both rgs3 and wnt5b function are required for appropriate frequency and amplitude of calcium release activity. Using rescue of gene knockdown and in vivo calcium imaging assays, we demonstrate that the activity of Rgs3 requires its ability to interact with Gα subunits and function as a G protein GAP. Thus, Rgs3 function is necessary for appropriate frequency and amplitude of calcium release during somitogenesis and is downstream of Wnt5 activity. These results provide the first evidence for an essential developmental role of RGS proteins in modulating the duration of non-canonical Wnt signaling.  相似文献   

11.
Signaling pathways mediated by heterotrimeric G-protein complexes comprising Gα, Gβ, and Gγ subunits and their regulatory RGS (Regulator of G-protein Signaling) protein are conserved in all eukaryotes. We have shown that the specific Gβ and Gγ proteins of a soybean (Glycine max) heterotrimeric G-protein complex are involved in regulation of nodulation. We now demonstrate the role of Nod factor receptor 1 (NFR1)-mediated phosphorylation in regulation of the G-protein cycle during nodulation in soybean. We also show that during nodulation, the G-protein cycle is regulated by the activity of RGS proteins. Lower or higher expression of RGS proteins results in fewer or more nodules, respectively. NFR1 interacts with RGS proteins and phosphorylates them. Analysis of phosphorylated RGS protein identifies specific amino acids that, when phosphorylated, result in significantly higher GTPase accelerating activity. These data point to phosphorylation-based regulation of G-protein signaling during nodule development. We propose that active NFR1 receptors phosphorylate and activate RGS proteins, which help maintain the Gα proteins in their inactive, trimeric conformation, resulting in successful nodule development. Alternatively, RGS proteins might also have a direct role in regulating nodulation because overexpression of their phospho-mimic version leads to partial restoration of nodule formation in nod49 mutants.  相似文献   

12.
13.
We have characterized a novel member of the recently identified family of regulators of heterotrimeric G protein signalling (RGS) in the yeast Saccharomyces cerevisiae. The YOR107w/RGS2 gene was isolated as a multi-copy suppressor of glucose-induced loss of heat resistance in stationary phase cells. The N-terminal half of the Rgs2 protein consists of a typical RGS domain. Deletion and overexpression of Rgs2, respectively, enhances and reduces glucose-induced accumulation of cAMP. Overexpression of RGS2 generates phenotypes consistent with low activity of cAMP-dependent protein kinase A (PKA), such as enhanced accumulation of trehalose and glycogen, enhanced heat resistance and elevated expression of STRE-controlled genes. Deletion of RGS2 causes opposite phenotypes. We demonstrate that Rgs2 functions as a negative regulator of glucose-induced cAMP signalling through direct GTPase activation of the Gs-alpha protein Gpa2. Rgs2 and Gpa2 constitute the second cognate RGS-G-alpha protein pair identified in yeast, in addition to the mating pheromone pathway regulators Sst2 and Gpa1. Moreover, Rgs2 and Sst2 exert specific, non-overlapping functions, and deletion mutants in Rgs2 and Sst2 are complemented to some extent by different mammalian RGS proteins.  相似文献   

14.
15.
Wang J  Xie Y  Wolff DW  Abel PW  Tu Y 《FEBS letters》2010,584(22):4570-4574
Regulator of G-protein signaling 4 (RGS4), an intracellular modulator of G-protein coupled receptor (GPCR)-mediated signaling, is regulated by multiple processes including palmitoylation and proteasome degradation. We found that co-expression of DHHC acyltransferases (DHHC3 or DHHC7), but not their acyltransferase-inactive mutants, increased expression levels of RGS4 but not its Cys2 to Ser mutant (RGS4C2S). DHHC3 interacts with and palmitoylates RGS4 but not RGS4C2S in vivo. Palmitoylation prolongs the half-life of RGS4 by over 8-fold and palmitoylated RGS4 blocked α1A-adrenergic receptor-stimulated intracellular Ca2+ mobilization. Together, our findings revealed that DHHC proteins could regulate GPCR-mediated signaling by increasing RGS4 stability.

Structured summary

MINT-8049215: Rgs4 (uniprotkb:P49799) physically interacts (MI:0915) with DHHC3 (uniprotkb:Q8R173) by anti-tag coimmunoprecipitation (MI:0007)  相似文献   

16.
Parasympathetic activity decreases heart rate (HR) by inhibiting pacemaker cells in the sinoatrial node (SAN). Dysregulation of parasympathetic influence has been linked to sinus node dysfunction and arrhythmia. RGS (regulator of G protein signaling) proteins are negative modulators of the parasympathetic regulation of HR and the prototypical M2 muscarinic receptor (M2R)-dependent signaling pathway in the SAN that involves the muscarinic-gated atrial K+ channel IKACh. Both RGS4 and RGS6-Gβ5 have been implicated in these processes. Here, we used Rgs4−/−, Rgs6−/−, and Rgs4−/−:Rgs6−/− mice to compare the relative influence of RGS4 and RGS6 on parasympathetic regulation of HR and M2R-IKACh-dependent signaling in the SAN. In retrogradely perfused hearts, ablation of RGS6, but not RGS4, correlated with decreased resting HR, increased heart rate variability, and enhanced sensitivity to the negative chronotropic effects of the muscarinic agonist carbachol. Similarly, loss of RGS6, but not RGS4, correlated with enhanced sensitivity of the M2R-IKACh signaling pathway in SAN cells to carbachol and a significant slowing of M2R-IKACh deactivation rate. Surprisingly, concurrent genetic ablation of RGS4 partially rescued some deficits observed in Rgs6−/− mice. These findings, together with those from an acute pharmacologic approach in SAN cells from Rgs6−/− and Gβ5−/− mice, suggest that the partial rescue of phenotypes in Rgs4−/−:Rgs6−/− mice is attributable to another R7 RGS protein whose influence on M2R-IKACh signaling is masked by RGS4. Thus, RGS6-Gβ5, but not RGS4, is the primary RGS modulator of parasympathetic HR regulation and SAN M2R-IKACh signaling in mice.  相似文献   

17.
T follicular helper (Tfh) cells support differentiation of B cells to plasma cells and high affinity antibody production in germinal centers (GCs), and Tfh differentiation requires the function of B cell lymphoma 6 (BCL6). We have now discovered that early growth response gene 2 (EGR2) and EGR3 directly regulate the expression of Bcl6 in Tfh cells, which is required for their function in regulation of GC formation. In the absence of EGR2 and -3, the expression of BCL6 in Tfh cells is defective, leading to impaired differentiation of Tfh cells, resulting in a failure to form GCs following virus infection and defects in production of antiviral antibodies. Enforced expression of BCL6 in EGR2/3-deficient CD4 T cells partially restored Tfh differentiation and GC formation in response to virus infection. Our findings demonstrate a novel function of EGR2/3 that is important for Tfh cell development and Tfh cell-mediated B cell immune responses.  相似文献   

18.
R Ramanujam  X Yishi  H Liu  NI Naqvi 《PloS one》2012,7(7):e41084

Background

Rgs1, a prototypical Regulator of G protein Signaling, negatively modulates the cyclic AMP pathway thereby influencing various aspects of asexual development and pathogenesis in the rice-blast fungus Magnaporthe oryzae. Rgs1 possesses tandem DEP motifs (termed DEP-A and DEP-B; for Dishevelled, Egl-10, Pleckstrin) at the N-terminus, and a Gα-GTP interacting RGS catalytic core domain at the C-terminus. In this study, we focused on gaining further insights into the mechanisms of Rgs1 regulation and subcellular localization by characterizing the role(s) of the individual domains and the full-length protein during asexual development and pathogenesis in Magnaporthe.

Methodology/Principal Findings

Utilizing western blot analysis and specific antisera against the N- and C-terminal halves of Rgs1, we identify and report the in vivo endoproteolytic processing/cleavage of full-length Rgs1 that yields an N-terminal DEP and a RGS core domain. Independent expression of the resultant DEP-DEP half (N-Rgs1) or RGS core (C-Rgs1) fragments, failed to complement the rgs1Δ defects in colony morphology, aerial hyphal growth, surface hydrophobicity, conidiation, appressorium formation and infection. Interestingly, the full-length Rgs1-mCherry, as well as the tagged N-terminal DEP domains (individually or in conjunction) localized to distinct punctate vesicular structures in the cytosol, while the catalytic RGS core motif was predominantly vacuolar.

Conclusions/Significance

Based on our data from sequence alignments, immuno-blot and microscopic analysis, we propose that the post-translational proteolytic processing of Rgs1 and the vacuolar sequestration of the catalytic RGS domain represents an important means of down regulating Rgs1 function and thus forming an additional and alternative means of regulating G protein signaling in Magnaporthe. We further hypothesize the prevalence of analogous mechanisms functioning in other filamentous fungi. Furthermore, we conclusively assign a specific vesicular/membrane targeting function for the N-terminal DEP domains of Rgs1 in the rice-blast fungus.  相似文献   

19.
RGS (regulators of G-protein signaling) proteins comprise a large family that modulates heterotrimeric G-protein signaling. This protein family has a common RGS domain and functions as GTPase-activating proteins for the alpha-subunits of heterotrimeric G-proteins located at the plasma membrane. RGS8 was identified as a neuron-specific RGS protein, which belongs to the B/R4 subfamily. We previously showed that RGS8 protein was translocated to the plasma membrane from the nucleus on coexpression of GTPase-deficient Galphao (GalphaoQL). Here, we first examined which subtypes of Galpha can induce the translocation of RGS8. When the Galphai family was expressed, the translocation of RGS8 did occur. To investigate the mechanism of this translocation, we generated a mutant RGS8 with reduced affinity to Galphao and an RGS-insensitive (RGS-i) mutant of GalphaoQL. Co-expression experiments with both mutants revealed that disruption of the Galpha-RGS8 interaction abolished the membrane-translocation of RGS8 despite the apparent membrane localization of RGS-i GalphaoQL. These results demonstrated that RGS8 is recruited to the plasma membrane where G-proteins are activated mainly by direct association with Galpha.  相似文献   

20.
Hu Y  Xing J  Chen L  Guo X  Du Y  Zhao C  Zhu Y  Lin M  Zhou Z  Sha J 《Biology of reproduction》2008,79(6):1021-1029
The heterotrimeric G-protein pathway controls numerous cellular processes, including proliferation, differentiation, migration, membrane trafficking, and embryonic development. Regulator of G-protein signaling (RGS) proteins are known to function at the G-protein level. Here, the functional role of a novel RGS protein, regulator of G-protein signaling 22 (RGS22), in the testis was investigated at the mRNA and protein levels. Our results demonstrate that RGS22 is a testis-specific gene. However, significantly decreased expression of RGS22 was found in the testes of patients with azoospermia. RGS22 was translated or posttranslationally modified into multiple proteins of different molecular sizes in prokaryocytes as well as in the testes. Its protein (NP_056483) was localized in spermatogenic cells and Leydig cells and could interact with guanine nucleotide binding protein, alpha 12, 13, and 11 (GNA12, GNA13, and GNA11). Fragmental GFP-fusion protein tracking revealed that the N-terminal of RGS22 was localized in the nucleus. RGS22 and GNA13 were localized in the nucleus from the elongated spermatid stage onward. Indirect immunofluorescence studies revealed defective expression of GNA13 in macrocephalic and global nucleus spermatozoa. These findings suggest that their functions in this subcellular compartment are likely related to the postmeiotic developmental phase, spermiogenesis. RGS22 may also play a role in GNA13 translocation from the cytoplasm to the nucleus during spermiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号