首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Escherichia coli MutT protein hydrolyzes 8-oxo-7,8-dihydro-2′-dGTP (8-oxo-dGTP) to the monophosphate, thus avoiding the incorporation of 8-oxo-7,8-dihydroguanine (8-oxo-G) into nascent DNA. Bacterial and mammalian homologs of MutT protein share the phosphohydrolase module (MutT: Gly37→Gly59). By saturation mutagenesis of conserved residues in the MutT module, four of the 10 conserved residues (Gly37, Gly38, Glu53 and Glu57) were revealed to be essential to suppress spontaneous A:T→C:G transversion mutation in a mutT mutator strain. For the other six residues (Lys39, Glu44, Thr45, Arg52, Glu56 and Gly59), many positive mutants which can suppress the spontaneous mutation were obtained; however, all of the positive mutants for Glu44 and Arg52 either partially or inefficiently suppressed the mutation, indicating that these two residues are also important for MutT function. Several positive mutants for Lys39, Thr45, Glu56 and Gly59 efficiently decreased the elevated spontaneous mutation rate, as seen with the wild-type, hence, these four residues are non-essential for MutT function. As Lys38 and Glu55 in human MTH1, corresponding to the non-essential residues Lys39 and Glu56 in MutT, could not be replaced by any other residue without loss of function, different structural features between the two modules of MTH1 and MutT proteins are evident.  相似文献   

4.
MutT-related proteins, including the Escherichia coli MutT and human MutT homologue 1 (MTH1) proteins, degrade 8-oxo- 7,8-dihydrodeoxyguanosine triphosphate (8-oxo-dGTP) to a monophosphate, thereby preventing mutations caused by the misincorporation of 8-oxoguanine into DNA. Here, we report that human cells have another mechanism for cleaning up the nucleotide pool to ensure accurate DNA replication. The human Nudix type 5 (NUDT5) protein hydrolyses 8-oxo-dGDP to monophosphate with a Km of 0.77 µM, a value considerably lower than that for ADP sugars, which were originally identified as being substrates of NUDT5. NUDT5 hydrolyses 8-oxo-dGTP only at very low levels, but is able to substitute for MutT when it is defective. When NUDT5 is expressed in E. coli mutT cells, the increased frequency of spontaneous mutations is decreased to normal levels. Considering the enzymatic parameters of MTH1 and NUDT5 for oxidized guanine nucleotides, NUDT5 might have a much greater role than MTH1 in preventing the occurrence of mutations that are caused by the misincorporation of 8-oxoguanine in human cells.  相似文献   

5.
6.
《Free radical research》2013,47(6-7):511-516
Abstract

The molecule 8-oxo-7,8-dihydroguanine (8-oxoGua), an oxidized form of guanine, can pair with adenine or cytosine during nucleic acid synthesis. RNA sequences that contain 8-oxoGua cause translational errors that lead to the synthesis of abnormal proteins. Human Nudix type 5 (NUDT5), a MutT-related protein, catalyzes the hydrolysis of 8-oxoGDP to 8-oxoGMP, thereby preventing the misincorporation of 8-oxoGua into RNA. To investigate the biological roles of NUDT5 in human fibroblast cells, we established cell lines with decreased levels of NUDT5 expression. In NUDT5 knockdown cells, the RNA oxidation levels were significantly higher, the rates of cellular senescence and cell apoptosis were significantly increased, and the cell viability was significantly decreased in comparison with control cells. These results suggested that the NUDT5 protein could play significant roles in the prevention of RNA oxidation and survival in human fibroblast cells.  相似文献   

7.
8.
9.
A search for candidates for a functional homologue of Escherichia coli MutT in yeast Saccharomyces cerevisiae was made in the NCBI-BLAST database using the Nudix box, a short amino acid sequence conserved among E.coli MutT, Pseudomonoas vulgaris MutT, and human, rat and mouse MTH1. Among five candidates, we focused on the open reading frame YLR151c, because it had a region with ~76% similarity to the N-terminal half of MutT including the Nudix box. We thus evaluated the ability of YLR151c as a functional homologue of E.coli MutT in S.cerevisiae. Expression of YLR151c was able to suppress the transversion from A:T to C:G caused by misincorporation of the oxidized nucleotide 8-oxo-dGTP in the E.coli mutT-deficient strain. The disruption of the YLR151c in yeast strain caused ~14-fold increase in the frequency of spontaneous mutation compared to the wild type. Additionally, biochemical analysis indicated that GST-YLR151c fusion protein possessed pyrophosphatase activity for both 7,8-dihydro-8-oxo-2′-deoxyguanosine triphosphate (8-oxo-dGTP) and 1,2-dihydro-2-hydroxy-2′-deoxyadenosine triphosphate (2-OH-dATP). The specific activity of GST-YLR151c for 8-oxo-dGTP was 5.6 × 10−3 μM−1 s−1, which was similar to that of RibA, a backup enzyme for MutT in E.coli, but was 150-fold lower than that of hMTH1. From these results, we conclude that YLR151c has an ability to prevent spontaneous mutagenesis via sanitization of oxidized nucleotides, and that it may be the functional homologue of E.coli MutT in S.cerevisiae.  相似文献   

10.
5-Formyluracil is a major oxidation product of thymine, formed in DNA in yields comparable to that of 8-oxo-7,8-dihydroguanine by exposure to gamma-irradiation. Whereas the repair pathways for removal and the biological effects of persisting 8-oxo-7,8-dihydroguanine are much elucidated, much less attention has been paid to the cellular implications of 5-formyluracil in DNA. Here we review the present state of knowledge in this important area within research on oxidative DNA damage.  相似文献   

11.
GTP cyclohydrolase (GCYH-I) is an enzyme in the folate biosynthesis pathway that has not been previously exploited as an antibiotic target, although several pathogens including N. gonorrhoeae use a form of the enzyme GCYH-IB that is structurally distinct from the human homologue GCYH-IA. A comparison of the crystal structures of GCYH-IA and -IB with the nM inhibitor 8-oxo-GTP bound shows that the active site of GCYH-IB is larger and differently shaped. Based on this structural information, we designed and synthesized a small set of 8-oxo-G derivatives with ether linkages at O6 and O8 expected to displace water molecules from the expanded active site of GCYH-IB. The most potent of these compounds, G3, is selective for GCYH-IB, supporting the premise that potent and selective inhibitors of GCYH-IB could constitute a new class of small molecule antibiotics.  相似文献   

12.
13.
Reactive oxygen species (ROS) are produced during normal cellular metabolism, and various oxidized compounds are formed by the ROS attack. Among oxidized bases, 8-oxo-7,8-dihydroguanine (8-oxoG) is most abundant and seems important with respect to the maintenance and transfer of genetic information. The accumulation of 8-oxoG in messenger RNA may cause errors during codon-anticodon pairing in the translation process, which may result in the synthesis of abnormal proteins. Organisms that use oxygen as the source of energy production must therefore have some mechanisms to eliminate the deleterious effects of RNA oxidation. Recently, we found two protein factors, AUF1 and PCBP1, which each have a different binding capacity to oxidized RNA. Evidence demonstrated that AUF1 is involved in the specific degradation of oxidized RNA, and that PCBP1 has a function of inducing cell death to eliminate severely damaged RNA.  相似文献   

14.
Genome integrity is maintained via removal (repair) of DNA lesions and an increased load of such DNA damage has been linked to numerous pathological conditions, including carcinogenesis and ageing. 8-Oxo-7,8-dihydroguanine is one of the most critical lesions of this type. The free 8-oxo-7,8-dihydroguanine produced by the action of a specific DNA glycosylase is a potential source of this compound in urine. To date, there has been no direct, experimental evidence demonstrating that urinary 8-oxo-7,8-dihydroguanine is produced by the base excision repair pathway. For clarification of this issue, we applied a recently developed methodology which involved high performance liquid chromatography pre-purification followed by gas chromatography with isotope dilution mass spectrometric detection to compare the urinary excretion rate of 8-oxo-7,8-dihydroguanine in wild type and OGG1 glycosylase knock out mice. Our study revealed a 26% reduction in urinary level of 8-oxo-7,8-dihydroguanine in OGG1 deficient mice in comparison with the wild type strain. This clearly indicates that the mouse OGG1 glycosylase contributes significantly to the generation of urinary 8-oxo-7,8-dihydroguanine. Therefore, urinary measurements of 8-oxo-7,8-dihydroguanine may be attributed to DNA damage and repair, which in turn suggests that they may be useful in studying associations between DNA repair and disease.  相似文献   

15.
Chronic psychological stress is associated with accelerated aging, but the underlying biological mechanisms are not known. Prolonged elevations of the stress hormone cortisol is suspected to play a critical role. Through its actions, cortisol may potentially induce oxidatively generated damage to cellular constituents such as DNA and RNA, a phenomenon which has been implicated in aging processes. We investigated the relationship between 24 h excretion of urinary cortisol and markers of oxidatively generated DNA and RNA damage, 8-oxo-7,8-dihydro-2′-deoxyguanosine and 8-oxo-7,8-dihydroguanosine, in a sample of 220 elderly men and women (age 65 – 83 years). We found a robust association between the excretion of cortisol and the oxidation markers (R2 = 0.15, P<0.001 for both markers). Individuals in the highest quartile of cortisol excretion had a 57% and 61% higher median excretion of the DNA and RNA oxidation marker, respectively, than individuals in the lowest quartile. The finding adds support to the hypothesis that cortisol-induced damage to DNA/RNA is an explanatory factor in the complex relation between stress, aging and disease.  相似文献   

16.
8-Oxo-7,8-dihydroguanine (8-oxoGua) is produced in cells by reactive oxygen species normally formed during cellular metabolic processes. This oxidized base can pair with both adenine and cytosine, and thus the existence of this base in messenger RNA would cause translational errors. The MutT protein of Escherichia coli degrades 8-oxoGua-containing ribonucleoside di- and triphosphates to the monophosphate, thereby preventing the misincorporation of 8-oxoGua into RNA. Here, we show that for human the MutT-related proteins, NUDT5 and MTH1 have the ability to prevent translational errors caused by oxidative damage. The increase in the production of erroneous proteins by oxidative damage is 28-fold over the wild-type cells in E.coli mutT deficient cells. By the expression of NUDT5 or MTH1 in the cells, it is reduced to 1.4- or 1.2-fold, respectively. NUDT5 and MTH1 hydrolyze 8-oxoGDP to 8-oxoGMP with V(max)/K(m) values of 1.3 x 10(-3) and 1.7 x 10(-3), respectively, values which are considerably higher than those for its normal counterpart, GDP (0.1-0.5 x 10(-3)). MTH1, but not NUDT5, possesses an additional activity to degrade 8-oxoGTP to the monophosphate. These results indicate that the elimination of 8-oxoGua-containing ribonucleotides from the precursor pool is important to ensure accurate protein synthesis and that both NUDT5 and MTH1 are involved in this process in human cells.  相似文献   

17.
The molecule 8-oxo-7,8-dihydroguanine (8-oxoGua), an oxidized form of guanine, can pair with adenine or cytosine during nucleic acid synthesis. Moreover, RNA containing 8-oxoGua causes translational errors, thus leading to the production of abnormal proteins. Human NUDT5, a MutT-related protein, catalyzes the hydrolysis of 8-oxoGDP to 8-oxoGMP, thereby preventing misincorporation of 8-oxoGua into RNA. To investigate the biological roles of NUDT5 in mammalian cells, we established cell lines with decreased level of NUDT5 expression. In NUDT5 inhibited cells, the RNA oxidation was not significantly higher than that of normal cells. However, the cell cycle G1 phase was significantly delayed, and cell numbers in both S and G2/M phases were reduced, indicating that cell proliferation was hampered by NUDT5 suppression. Key proteins for preventing the G1-S transition, including p53, p16, and Rb were increased, while the Rb phosphorylation was decreased. These results suggested that the NUDT5 protein may play significant roles in regulating the G1-S transition in mammalian cells.  相似文献   

18.
Replication of DNA containing 7,8-dihydro-8-oxo-2′-deoxyguanosine (OxodG) gives rise to G → T transversions. The syn-isomer of the lesion directs misincorporation of 2′-deoxyadenosine (dA) opposite it. We investigated the role of the 2-amino substituent on duplex thermal stability and in replication using 7,8-dihydro-8-oxo-2′-deoxyinosine (OxodI). Oligonucleotides containing OxodI at defined sites were chemically synthesized via solid phase synthesis. Translesion incorporation opposite OxodI was compared with 7,8-dihydro-8-oxo-2′-deoxyguanosine (OxodG), 2′-deoxyinosine (dI) and 2′-deoxyguanosine (dG) in otherwise identical templates. The Klenow exo fragment of Escherichia coli DNA polymerase I incorporated 2′-deoxyadenosine (dA) six times more frequently than 2′-deoxycytidine (dC) opposite OxodI. Preferential translesion incorporation of dA was unique to OxodI. UV-melting experiments revealed that DNA containing OxodI opposite dA is more stable than when the modified nucleotide is opposed by dC. These data suggest that while duplex DNA accommodates the 2-amino group in syn-OxodG, this substituent is thermally destabilizing and does not provide a kinetic inducement for replication by Klenow exo.  相似文献   

19.
The guanosine 3′,5′-bisdiphosphate (ppGpp) signaling system is shared by bacteria and plant chloroplasts, but its role in plants has remained unclear. Here we show that guanylate kinase (GK), a key enzyme in guanine nucleotide biosynthesis that catalyzes the conversion of GMP to GDP, is a target of regulation by ppGpp in chloroplasts of rice, pea, and Arabidopsis. Plants have two distinct types of GK that are localized to organelles (GKpm) or to the cytosol (GKc), with both enzymes being essential for growth and development. We found that the activity of rice GKpm in vitro was inhibited by ppGpp with a Ki of 2.8 μm relative to the substrate GMP, whereas the Km of this enzyme for GMP was 73 μm. The IC50 of ppGpp for GKpm was ∼10 μm. In contrast, the activity of rice GKc was insensitive to ppGpp, as was that of GK from bakers'' yeast, which is also a cytosolic enzyme. These observations suggest that ppGpp plays a pivotal role in the regulation of GTP biosynthesis in chloroplasts through specific inhibition of GKpm activity, with the regulation of GTP biosynthesis in chloroplasts thus being independent of that in the cytosol. We also found that GKs of Escherichia coli and Synechococcus elongatus PCC 7942 are insensitive to ppGpp, in contrast to the ppGpp sensitivity of the Bacillus subtilis enzyme. Our biochemical characterization of GK enzymes has thus revealed a novel target of ppGpp in chloroplasts and has uncovered diversity among bacterial GKs with regard to regulation by ppGpp.  相似文献   

20.
Escherichia coli MutT hydrolyzes 8-oxo-dGTP to 8-oxo-dGMP, an event that can prevent the misincorporation of 8-oxoguanine opposite adenine in DNA. Of the several enzymes that recognize 8-oxoguanine, MutT exhibits high substrate specificity for 8-oxoguanine nucleotides; however, the structural basis for this specificity is unknown. The crystal structures of MutT in the apo and holo forms and in the binary and ternary forms complexed with the product 8-oxo-dGMP and 8-oxo-dGMP plus Mn2+, respectively, were determined. MutT strictly recognizes the overall conformation of 8-oxo-dGMP through a number of hydrogen bonds. This recognition mode revealed that 8-oxoguanine nucleotides are discriminated from guanine nucleotides by not only the hydrogen bond between the N7-H and Oδ (N119) atoms but also by the syn glycosidic conformation that 8-oxoguanine nucleotides prefer. Nevertheless, these discrimination factors cannot by themselves explain the roughly 34,000-fold difference between the affinity of MutT for 8-oxo-dGMP and dGMP. When the binary complex of MutT with 8-oxo-dGMP is compared with the ligand-free form, ordering and considerable movement of the flexible loops surrounding 8-oxo-dGMP in the binary complex are observed. These results indicate that MutT specifically recognizes 8-oxoguanine nucleotides by the ligand-induced conformational change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号