首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements were made of cytochrome c oxidase activity and the GDP-binding capacity of mitochondria in brown adipose tissue of genetically obese mice and wild-type siblings, to estimate the thermogenic capacity of the tissue. The binding capacity was decreased in ad libitum fed obese animals compared with wild-type animals. Limited feeding of obese animals to restrict their body weight caused a large increase in the binding capacity of the tissue, which was greater than that in wild-type animals fed either ad limitum or on a limited diet. The decreased binding capacity of brown adipose tissue mitochondria in obese mice appears to be a consequence of ad libitum feeding and therefore not a cause of the obesity. Limit feeding of obese animals also corrected their characteristic hypothermia at low ambient temperature. The large increase in the thermogenic capacity of brown adipose tissue in obese animals, induced by limited feeding, may account for the vital improvement of their thermoregulation. However, close similarities were found between obesity hypothermia and hypothermia induced in wild-type animals by restraint. It is suggested that changes in posture caused by obesity, resulting in increased loss of body heat, may be important in the development of obesity hypothermia. Obese animals fed less than wild-type grained more weight than wild-type animals, indicating that the high thermogenic capacity of their brown adipose tissue did not function to regulate their calorie intake.  相似文献   

2.
A number of clinical and biochemical studies demonstrate that obesity and insulin resistance are associated with increases in oxidative stress and inflammation. Paradoxically, insulin sensitivity can be enhanced by oxidative inactivation of cysteine residues of phosphatases, and inflammation can be reduced by S‐glutathionylation with formation of protein‐glutathione mixed disulfides (PSSG). Although oxidation of protein‐bound thiols (PSH) is increased in multiple diseases, it is not known whether there are changes in PSH oxidation species in obesity.

Objective:

In this work, the hypothesis that obesity is associated with decreased levels of proteins containing oxidized protein thiols was tested.

Design and Methods:

The tissue levels of protein sulfenic acids (PSOH) and PSSG in liver, visceral adipose tissue, and skeletal muscle derived from glucose intolerant, obese‐prone Sprague‐Dawley rats were examined.

Results:

The data in this study indicate that decreases in PSSG content occurred in liver (44%) and adipose (26%) but not skeletal muscle in obese rats that were fed a 45% fat‐calorie diet versus lean rats that were fed a 10% fat‐calorie diet. PSOH content did not change in the tissue between the two groups. The activity of the enzyme glutaredoxin (GLRX) responsible for reversal of PSSG formation did not change in muscle and liver between the two groups. However, levels of GLRX1 were elevated 70% in the adipose tissue of the obese, 45% fat calorie‐fed rats.

Conclusion:

These are the first data to link changes in S‐glutathionylation and GLRX1 to adipose tissue in the obese and demonstrate that redox changes in thiol status occur in adipose tissue as a result of obesity.  相似文献   

3.
BackgroundAging is associated with structural, functional and biochemical alterations in the nervous system. Calorie restriction (CR) was found to retard most physiological indices of aging.ObjectivesThis work aimed to investigate the effect of CR on age-related changes in sciatic nerves.Materials and methodsThirty male albino rats aged 1 month were equally divided into three groups; Group I [control adult-ad libitum AL]: fed a regular diet and sacrificed at the age of 6 months, group II (aged-AL group): fed a regular diet AL and sacrificed at the age of 18 months, and group III (aged CR) fed a 40% calorie restricted diet and sacrificed at the age of 18 months. Rats were anesthetized and sciatic nerves were processed for light, electron microscope and morphometric studies. Oxidative stress in sciatic nerves was investigated by estimation of lipid perioxidation by product malondialdehyde (MDA) tissue level and antioxidant enzyme; superoxide dismutase activity (SOD).ResultsThe aged (AL) sciatic nerves appeared disorganized, with thick perineurium and increased collagen fibers associated with decreased g-ratio. Abnormal myelin forms were seen as outfolded myelin loops, thin denuded myelin, splitting of myelin into myelin figures and interlamellar vacuoles. Schwann cells revealed vacuolated cytoplasm. There was also significant increase in MDA level and a significant decrease in SOD activity in comparison to control adult (AL). Apparent structural and histomorphological improvement were noticed after CR in aged rats.ConclusionAging caused structural and biochemical alterations in sciatic nerves with alleviating effect of calorie restriction on such effects.  相似文献   

4.

Background

Polyunsaturated n-3 fatty acids (n-3 PUFAs) are reported to protect against high fat diet-induced obesity and inflammation in adipose tissue. Here we aimed to investigate if the amount of sucrose in the background diet influences the ability of n-3 PUFAs to protect against diet-induced obesity, adipose tissue inflammation and glucose intolerance.

Methodology/Principal Findings

We fed C57BL/6J mice a protein- (casein) or sucrose-based high fat diet supplemented with fish oil or corn oil for 9 weeks. Irrespective of the fatty acid source, mice fed diets rich in sucrose became obese whereas mice fed high protein diets remained lean. Inclusion of sucrose in the diet also counteracted the well-known anti-inflammatory effect of fish oil in adipose tissue, but did not impair the ability of fish oil to prevent accumulation of fat in the liver. Calculation of HOMA-IR indicated that mice fed high levels of proteins remained insulin sensitive, whereas insulin sensitivity was reduced in the obese mice fed sucrose irrespectively of the fat source. We show that a high fat diet decreased glucose tolerance in the mice independently of both obesity and dietary levels of n-3 PUFAs and sucrose. Of note, increasing the protein∶sucrose ratio in high fat diets decreased energy efficiency irrespective of fat source. This was accompanied by increased expression of Ppargc1a (peroxisome proliferator-activated receptor, gamma, coactivator 1 alpha) and increased gluconeogenesis in the fed state.

Conclusions/Significance

The background diet influence the ability of n-3 PUFAs to protect against development of obesity, glucose intolerance and adipose tissue inflammation. High levels of dietary sucrose counteract the anti-inflammatory effect of fish oil in adipose tissue and increases obesity development in mice.  相似文献   

5.
Objective: We used a rodent model of dietary obesity to evaluate effects of caloric restriction‐induced weight loss on mortality rate. Research Measures and Procedures: In a randomized parallel‐groups design, 312 outbred Sprague‐Dawley rats (one‐half males) were assigned at age 10 weeks to one of three diets: low fat (LF; 18.7% calories as fat) with caloric intake adjusted to maintain body weight 10% below that for ad libitum (AL)‐fed rat food, high fat (HF; 45% calories as fat) fed at the same level, or HF fed AL. At age 46 weeks, the lightest one‐third of the AL group was discarded to ensure a more obese group; the remaining animals were randomly assigned to one of three diets: HF‐AL, HF with energy restricted to produce body weights of animals restricted on the HF diet throughout life, or LF with energy restricted to produce the body weights of animals restricted on the LF diet throughout life. Life span, body weight, and leptin levels were measured. Results: Animals restricted throughout life lived the longest (p < 0.001). Life span was not different among animals that had been obese and then lost weight and animals that had been nonobese throughout life (p = 0.18). Animals that were obese and lost weight lived substantially longer than animals that remained obese throughout life (p = 0.002). Diet composition had no effect on life span (p = 0.52). Discussion: Weight loss after the onset of obesity during adulthood leads to a substantial increase in longevity in rats.  相似文献   

6.
Metabolomics is a high-throughput tool that quantifies and identifies the complete set of biofluid metabolites. This “omics” science is playing an increasing role in understanding the mechanisms involved in disease progression. The aim of this study was to determine whether a nontargeted metabolomic approach could be applied to investigate metabolic differences between obese rats fed a high-fat sucrose (HFS) diet for 9 weeks and control diet-fed rats. Animals fed with the HFS diet became obese, hyperleptinemic, hyperglycemic, hyperinsulinemic, and resistant to insulin. Serum samples of overnight-fasted animals were analyzed by 1H NMR technique, and 49 metabolites were identified and quantified. The biochemical changes observed suggest that major metabolic processes like carbohydrate metabolism, β-oxidation, tricarboxylic acid cycle, Kennedy pathway, and folate-mediated one-carbon metabolism were altered in obese rats. The circulating levels of most amino acids were lower in obese animals. Serum levels of docosahexaenoic acid, linoleic acid, unsaturated n-6 fatty acids, and total polyunsaturated fatty acids also decreased in HFS-fed rats. The circulating levels of urea, six water-soluble metabolites (creatine, creatinine, choline, acetyl carnitine, formate, and allantoin), and two lipid compounds (phosphatidylcholines and sphingomyelin) were also significantly reduced by the HFS diet intake. This study offers further insight of the possible mechanisms implicated in the development of diet-induced obesity. It suggests that the HFS diet-induced hyperinsulinemia is responsible for the decrease in the circulating levels of urea, creatinine, and many amino acids, despite an increase in serum glucose levels.  相似文献   

7.
Abstract

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is upregulated in a variety of tissues in obesity. It is still unclear as to whether NADPH oxidase upregulation in a specific tissue is part of a systemic response. Here we analyzed the expression pattern of NADPH oxidase in vascular, adipose, and kidney tissues in a rat model of diet-induced obesity. After weaning, rats were fed either a normal or high-fat diet for 12 weeks. The high-fat diet resulted in 20% increased body weight. In the aorta, Nox4 expression was increased by three-fold in obese rats. Upregulations of p22phox and p47phox in adipose, and Nox4, p22phox, and p47phox in kidney were observed in obesity. Marked increases in plasma leptin and insulin were observed, with more modest changes in adiponectin in obese rats. The average systolic blood pressure in the obese group was 11 mmHg higher than that of lean rats (P < 0.005). There was a significant correlation between blood pressure and aortic Nox4 expression (P < 0.01). In cultured vascular smooth muscle cells, adiponectin reduced the expression of Nox4 in a protein kinase A-dependent manner. Our results suggest that upregulation of NADPH oxidase in multiple tissues during obesity appears to be a systemic response. At least in vitro, adiponectin may have a protective antioxidant role by suppressing vascular NADPH oxidase expression. The association between NADPH oxidase Nox4 expression in the vasculature and the elevated blood pressure in obesity requires further investigation.  相似文献   

8.
AimsLeptin resistance has been associated with cardiac lipotoxicity; however, whether leptin resistance is a risk factor associated with cardiac lipotoxicity at different time points in diet-induced obesity is unclear. The objective of this study was to evaluate this relationship.Main methodsMale Wistar rats were fed a normal chow diet (12% from fat) or a high-fat diet (49% from fat) for 15 and 45 weeks, respectively. The adiposity index, body weight and co-morbidities were evaluated. Heart lipotoxicity was assessed by analyzing cardiac function and morphological changes as well as cardiac triglyceride, ceramide and lipid hydroperoxide accumulations. Cardiac apoptosis was examined using the TUNEL method. Leptin function was determined by examining plasma leptin levels, cardiac leptin receptors (OB-R) and related phosphorylations of AMP-activated kinase protein (AMPK) and Acetyl CoA carboxylase (ACC).Key findingsThe diet-induced obesity was characterized by an elevated adiposity index, body weight and leptin levels at both 15 and 45 weeks. There was no difference between groups in the cardiac triglyceride or lipid hydroperoxide levels. Interestingly, ceramide levels decreased in obese animals in both experimental periods. The cardiac morphological and functional parameters were not altered. Although down-regulation of OB-R has occurred in chronic obesity, it did not adversely affect AMPK or ACC phosphorylation.SignificanceThe development of obesity via long-term feeding of a high-fat diet to rats does not result in cardiac lipotoxicity but promotes the down-regulation of OB-R. However, this does not result in altered levels of AMPK or ACC phosphorylations in this animal model.  相似文献   

9.
ABSTRACT

Obesity is a chronic disease that is characterized by increased body fat owing to imbalance between consumed and expended energy. Inflammation generally is accompanied by accumulation of excess lipid in adipose tissue and liver. High mobility group box-1 (HMGB1) participates in the pathogenesis of inflammatory diseases. We investigated the relation of the number of HMGB1 positive cells to body mass index (BMI), liver inflammation and the number of Kupffer cells. We divided 18 female Wistar albino rats into two groups: group 1, untreated control fed normal commercial rat diet and group 2, obese rats fed a special diet containing 40% fat. The plasma concentrations of cholesterol, glucose, superoxide dismutase enzyme (SOD) and catalase activities were measured for all animals. The numbers of hepatocytes, Kupffer cells and HMGB1 positive cells were counted using stereological methods. The mean numbers of Kupffer cells and HMGB1 positive cells were higher for group 2 than for group 1. The concentrations of plasma cholesterol and glucose levels also were higher in group 2. Plasma levels of SOD and catalase were significantly lower in group 2 compared to group 1. The number of HMGB1 cells was related directly to BMI and inflammation. The role of HMGB1 was demonstrated for the liver of the obese group. We demonstrated the relations among HMGB1, BMI, obesity and inflammation.  相似文献   

10.
In an experimental model of obesity and hyperglycemia in Drosophila melanogaster we studied the effect of diet modification and administration of metformin on systemic infection with Rhizopus, a common cause of mucormycosis in diabetic patients. Female Wt-type Drosophila flies were fed regular (RF) or high-fat diet (HFD; 30% coconut oil) food with or without metformin for 48 h and then injected with R. oryzae. Survival rates, glucose and triglyceride levels were compared between 1) normal-weight flies (RF), 2) obese flies (HFD), 3) obese flies fed with RF, 4) flies continuously on HFD + metformin, 5) flies fed on HFD + metformin, then transferred to RF, and 6) obese flies administered metformin after infection. Glucose levels were compared across groups of non-infected flies and across groups of infected flies. Survival was significantly decreased (P = 0.003) in obese flies, while post-infection glucose levels were significantly increased (P = 0.0001), compared to normal-weight flies. Diet and administration of metformin led to weight loss, normalized glucose levels during infection, and were associated with decreased mortality and tissue fungal burden. In conclusion, diet and metformin help control infection-associated hyperglycemia and improve survival in Drosophila flies with mucormycosis. Fly models of obesity bear intriguing similarities to the pathophysiology of insulin resistance and diabetes in humans, and can provide new insights into the pathogenesis and treatment of infections in obese and diabetic patients.  相似文献   

11.
Objective: A high intake of fat in the diet plays a crucial role in promoting obesity and obesity‐related pathologies, and especially visceral obesity is closely associated with obesity‐related complications. Because adipose tissue is anatomically associated with lymph nodes, the secondary lymphoid organ, we hypothesized that fat tissue‐derived factors may influence the cellularity of lymphoid tissue embedded in fat. Methods and Procedures: Mesenteric and inguinal lymph nodes were isolated from obese mice fed a high‐fat diet and control mice fed a regular diet. T‐cell population, activation state, and the extent of apoptosis were determined by flow cytometric analysis or terminal deoxynucleotidyl transferase biotin‐dUTP nick end labeling (TUNEL) assay. Results: The weight of mesenteric lymph nodes and the total number of lymphoid cells in the obese mice significantly decreased compared with those in the control mice; however, no change was observed in the weight of inguinal lymph nodes. The numbers of CD4+ and CD8+ T cells in the mesenteric lymph nodes of obese mice significantly decreased compared with those of the control. Enhanced T‐cell activation and apoptosis were observed in the mesenteric lymph node cells of the obese mice. The treatment of lymph node cells with free fatty acids, oxidative stress, and chylomicrons, which are obesity‐related factors, resulted in lymph node T‐cell activation and apoptosis. Discussion: These results suggest that visceral fat accumulation with a high‐fat diet can cause the atrophy of mesenteric lymph nodes by enhancing activation‐induced lymphoid cell apoptosis. Dietary fat‐induced visceral obesity may be crucial for obesity‐related immune dysfunction.  相似文献   

12.
BackgroundEpidemiological and experimental studies have shown a protective effect of helminth infections in weight gain and against the development of metabolic dysfunctions in the host. However, the mechanisms Treg cells exert in the helminth-obesity interface has been poorly investigated. The present study aimed to verify the influence of Heligmosomoides polygyrus infection in early stages of high fat diet-induced obesity.Principal findingsThe presence of infection was able to prevent exacerbated weight gain in mice fed with high fat diet when compared to non-infected controls. In addition, infected animals displayed improved insulin sensitivity and decreased fat accumulation in the liver. Obesity-associated inflammation was reduced in the presence of infection, demonstrated by lower levels of leptin and resistin, lower infiltration of Th1 and Th17 cells in adipose tissue, higher expression of IL10 and adiponectin, increased infiltration of Th2 and eosinophils in adipose tissue of infected animals. Of note, the parasite infection was associated with increased Treg frequency in adipose tissue which showed higher expression of cell surface markers of function and activation, like LAP and CD134. The infection could also increase adipose Treg suppressor function in animals on high fat diet.ConclusionThese data suggest that H. polygyrus modulates adipose tissue Treg cells with implication for weight gain and metabolic syndrome.  相似文献   

13.
Objective: We aimed to characterize further the Lou/C (LOU) and Fischer 344 (F344) rat strains for nutritional traits to validate their use as contrasting strains for molecular genetic studies. Research Methods and Procedures: Five batches of LOU and F344 rats were used to measure caloric intake, weight gain, and body composition when fed a chow diet, a self‐selection diet (together with the study of preferences for macronutrients), hypercaloric diets, and a chow diet in a cold environment. Results: Despite a higher caloric intake when fed a chow diet, LOU rats showed a lower weight gain, final body weight, and percentage of fat tissue, together with a higher percentage of carcass weight, than F344 rats. When fed a self‐selection diet, LOU males ingested less protein and more fat than F344 males, and the reverse was observed for females. In this condition, feed efficiency was reduced in LOU but increased in F344 rats compared with the chow diet. Diet‐induced obesity was observed in F344 rats but not in LOU rats fed hypercaloric diets. In a cold environment, both LOU and F344 rats displayed an increased percentage of brown adipose tissue compared with control groups, together with a higher caloric intake. Discussion: The study shows robust nutritional differences between the LOU rat, a lean strain with a low feed efficiency and resistant to diet‐induced obesity, and the contrasting F344 rat strain. It also shows the interest in these strains for studying the genetic components of resistance to obesity.  相似文献   

14.
ObjectiveMaternal mineral status, including manganese (Mn), is critical for fetal growth as well as the health of the newborn lamb. Consequently, it is essential to supply minerals at sufficient levels for the pregnant animal to achieve the development of the embryo and fetus during gestation.MethodsThe current research was conducted to investigate the impact of organic Mn supplementation on blood biochemical, other mineral and, hematology in Afshari ewes and their newborn lambs in the transition period. Twenty-four ewes were randomly divided into three groups with eight replications. The control group was fed with a diet without organic Mn. The other groups were fed a diet supplemented with 40 (recommended by the NRC) and 80 (twice-recommended by the NRC) mg/kg of DM organic Mn.ResultsIn this study, the consumption of organic Mn caused a significant increase in ewes and lambs plasma Mn concentration. Moreover, in the groups mentioned, levels of glucose, insulin, and superoxide dismutase were significantly increased in both ewes and lambs. Concentrations of total protein and albumin were higher in ewes fed whit organic Mn. In both ewes and newborn lambs, the levels of red blood cells, hemoglobin, hematocrit, mean corpuscular hemoglobin, and mean corpuscular concentration in groups fed with organic Mn raised.ConclusionIn general, the nutrition of organic Mn, improved factors of blood biochemical and hematology in ewes and their newborn lambs, and since the twice-recommended NRC level did not cause poisoning, it was recommended to supplement the diet with 80 mg of organic Mn per kg of DM.  相似文献   

15.
Impairment of gut epithelial barrier function is a key predisposing factor for inflammatory bowel disease, type 1 diabetes (T1D) and related autoimmune diseases. We hypothesized that maternal obesity induces gut inflammation and impairs epithelial barrier function in the offspring of nonobese diabetic (NOD) mice. Four-week-old female NOD/ShiLtJ mice were fed with a control diet (CON; 10% energy from fat) or a high-fat diet (HFD; 60% energy from fat) for 8 weeks to induce obesity and then mated. During pregnancy and lactation, mice were maintained in their respective diets. After weaning, all offspring were fed the CON diet. At 16 weeks of age, female offspring were subjected to in vivo intestinal permeability test, and then ileum was sampled for biochemical analyses. Inflammasome mediators, activated caspase-1 and mature forms of interleukin (IL)-1β and IL-18 were enhanced in offspring of obese mothers, which was associated with elevated serum tumor necrosis factor α level and inflammatory mediators. Consistently, abundance of oxidative stress markers including catalase, peroxiredoxin-4 and superoxide dismutase 1 was heightened in offspring ileum (P<.05). Furthermore, offspring from obese mothers had a higher intestinal permeability. Morphologically, maternal obesity reduced villi/crypt ratio in the ileum of offspring gut. In conclusion, maternal obesity induced inflammation and impaired gut barrier function in offspring of NOD mice. The enhanced gut permeability in HFD offspring might predispose them to the development of T1D and other gut permeability-associated diseases.  相似文献   

16.
Introduction/aims: In recent years, it has been shown that free fatty acids receptors (FFAR) of whose function in the cell surface plays a significant role in the regulation of cell function and nutrition as well are activated by various endogenous ligands, but mainly by fatty acids. Within FFAR of our interest are GPR 41, 43 and 120. The functions of these receptors are varied and dependent on the tissue where they are. The activation and signaling of these receptors, FFAR, are involved in many physiological processes, and currently the target of many drugs in metabolic disorders like obesity, diabetes and atherosclerosis.

Material and methods: Obesity was induced with hypercaloric diet (HD) in male Wistar rats for 20?weeks (n?=?10). At the end, adipose tissue (abdominal and subcutaneous) was taken to perform assays for relative quantification mRNA expression by end-point RT-PCR and protein level expression by Western blot.

Results: These present data have shown for the first time that total mRNA isolation and protein expression from both adipose tissues (abdominal and subcutaneous) of rat in obesity condition yield significative statistical difference among the control versus obese groups, showing that the diet high in carbohydrates modifies the total presence of mRNA and protein level expression of the receptors GPR41, 43 and 120.

Conclusions: Further comparative methods are in process to clarify whether or not the obesity changes the functional receptors in these two tissues for new pharmacological approaches.  相似文献   

17.
Both exposure to ionizing radiation and obesity have been associated with various pathologies including cancer. There is a crucial need in better understanding the interactions between ionizing radiation effects (especially at low doses) and other risk factors, such as obesity. In order to evaluate radiation responses in obese animals, C3H and C57BL/6J mice fed a control normal fat or a high fat (HF) diet were exposed to fractionated doses of X-rays (0.75 Gy ×4). Bone marrow micronucleus assays did not suggest a modulation of radiation-induced genotoxicity by HF diet. Using MSP, we observed that the promoters of p16 and Dapk genes were methylated in the livers of C57BL/6J mice fed a HF diet (irradiated and non-irradiated); Mgmt promoter was methylated in irradiated and/or HF diet-fed mice. In addition, methylation PCR arrays identified Ep300 and Socs1 (whose promoters exhibited higher methylation levels in non-irradiated HF diet-fed mice) as potential targets for further studies. We then compared microRNA regulations after radiation exposure in the livers of C57BL/6J mice fed a normal or an HF diet, using microRNA arrays. Interestingly, radiation-triggered microRNA regulations observed in normal mice were not observed in obese mice. miR-466e was upregulated in non-irradiated obese mice. In vitro free fatty acid (palmitic acid, oleic acid) administration sensitized AML12 mouse liver cells to ionizing radiation, but the inhibition of miR-466e counteracted this radio-sensitization, suggesting that the modulation of radiation responses by diet-induced obesity might involve miR-466e expression. All together, our results suggested the existence of dietary effects on radiation responses (especially epigenetic regulations) in mice, possibly in relationship with obesity-induced chronic oxidative stress.  相似文献   

18.
BackgroundThe enhancement of energy expenditure has attracted attention as a therapeutic target for the management of body weight. Withaferin A (WFA), a major constituent of Withania somnifera extract, has been reported to possess anti-obesity properties, however the underlying mechanism remains unknown.PurposeTo investigate whether WFA exerts anti-obesity effects via increased energy expenditure, and if so, to characterize the underlying pathway.MethodsC57BL/6 J mice were fed a high-fat diet (HFD) for 10 weeks, and WFA was orally administered for 7 days. The oxygen consumption rate of mice was measured at 9 weeks using an OxyletPro™ system. Hematoxylin and eosin (H&E), immunohistochemistry, immunoblotting, and real-time PCR methods were used.ResultsTreatment with WFA ameliorated HFD-induced obesity by increasing energy expenditure by improving of mitochondrial activity in brown adipose tissue (BAT) and promotion of subcutaneous white adipose tissue (scWAT) browning via increasing uncoupling protein 1 levels. WFA administration also significantly increased AMP-activated protein kinase (AMPK) phosphorylation in the BAT of obese mice. Additionally, WFA activated mitogen-activated protein kinase (MAPK) signaling, including p38/extracellular signal-regulated kinase MAPK, in both BAT and scWAT.ConclusionWFA enhances energy expenditure and ameliorates obesity via the induction of AMPK and activating p38/extracellular signal-regulated kinase MAPK, which triggers mitochondrial biogenesis and browning-related gene expression.  相似文献   

19.

Objective:

High dietary calcium (Ca) in the context of a dairy food matrix has been shown to reduce obesity development and associated inflammation in diet‐induced obese (DIO) rodents. The influence of Ca and dairy on these phenotypes in the context of preexisting obesity is not known. Furthermore, interpretations have been confounded historically by differences in body weight gain among DIO animals fed dairy‐based protein or high Ca.

Design and Methods:

Adiposity along with associated metabolic and inflammatory outcomes were measured in DIO mice previously fattened for 12 week on a soy protein‐based obesogenic high fat diet (45% energy, 0.5% adequate Ca), then fed one of three high fat diets (n = 29‐30/group) for an additional 8 week: control (same as lead‐in diet), high‐Ca (1.5% Ca), or high‐Ca + nonfat dry milk (NFDM).

Results and Conclusion:

Mice fed high‐Ca + NFDM had modestly, but significantly, attenuated weight gain compared to mice fed high‐Ca or versus controls (P < 0.001), whereas mice fed high‐Ca alone had increased weight gain compared to controls (P < 0.001). Total measured adipose depot weights between groups were similar, as were white adipose tissue inflammation and macrophage infiltration markers (e.g. TNFα, IL‐6, CD68 mRNAs). Mice fed high‐Ca + NFDM had significantly improved glucose tolerance following a glucose tolerance test, and markedly lower liver triglycerides compared to high‐Ca and control groups. Improved metabolic phenotypes in prefattened DIO mice following provision of a diet enriched with dairy‐based protein and carbohydrates appeared to be driven by non‐Ca components of dairy and were observed despite minimal differences in body weight or adiposity.  相似文献   

20.
Objective: Dietary zinc repletion can ameliorate sucrose‐induced obesity. A positive correlation between zinc and leptin has been recently noted, and both are known as important mediators in appetite control. In this study, we examined whether the reported amelioration of sucrose‐induced obesity by zinc repletion was consequent on the changes in circulating leptin levels. Research Methods and Procedures: Mice with obesity that was induced by giving a 32% sucrose solution in addition to a semipurified diet were divided into two groups based on whether they had 20 mg/liter zinc supplementation in their drinking water. Results: As expected, the mice with sucrose‐induced obesity had hyperglycemia, hyperinsulinemia, hypertriglyceridemia, hyperleptinemia, and hypozincemia when compared with the mice given the diet alone. Body weight gain, body fat content, and food and sucrose intake tended to decrease but not with statistical significance in sucrose‐fed obese mice with zinc supplementation. Nevertheless, some serum variables (glucose, insulin, triglycerides, and zinc) in sucrose‐fed obese mice with zinc treatment were approximate to those values of the mice given the diet alone. Moreover, sucrose‐fed obese mice with zinc supplementation had the highest serum values of leptin. Discussion: This study indicates that the amelioration of sucrose‐induced obesity by zinc repletion may be partly attributable to the hyperleptinemia induced by the mineral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号