首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Low biomass in the bacterial lung tissue microbiome utilizes quantitative PCR (qPCR) 16S bacterial assays at their limit of detection. New technology like droplet digital PCR (ddPCR) could allow for higher sensitivity and accuracy of quantification. These attributes are needed if specific bacteria within the bacterial lung tissue microbiome are to be evaluated as potential contributors to diseases such as chronic obstructive pulmonary disease (COPD). We hypothesize that ddPCR is better at quantifying the total bacterial load in lung tissue versus qPCR.

Methods

Control (n = 16) and COPD GOLD 2 (n = 16) tissue samples were obtained from patients who underwent lung resection surgery, were cut on a cryotome, and sections were assigned for use in quantitative histology or for DNA extraction. qPCR and ddPCR were performed on these samples using primers spanning the V2 region on the 16S rRNA gene along with negative controls. Total 16S counts were compared between the two methods. Both methods were assessed for correlations with quantitative histology measurements of the tissue.

Results

There was no difference in the average total 16S counts (P>0.05) between the two methods. However, the negative controls contained significantly lower counts in the ddPCR (0.55 ± 0.28 16S/uL) than in the qPCR assay (1.00 ± 0.70 16S copies) (P <0.05). The coefficient of variation was significantly lower for the ddPCR assay (0.18 ± 0.14) versus the qPCR assay (0.62 ± 0.29) (P<0.05).

Conclusion

Overall the ddPCR 16S assay performed better by reducing the background noise in 16S of the negative controls compared with 16S qPCR assay.  相似文献   

2.

Background

The relationship between poor sanitation and the parasitic infection schistosomiasis is well-known, but still rarely investigated directly and quantitatively. In a Brazilian village we correlated the spatial concentration of human fecal contamination of its main river and the prevalence of schistosomiasis.

Methods

We validated three bacterial markers of contamination in this population by high throughput sequencing of the 16S rRNA gene and qPCR of feces from local residents. The qPCR of genetic markers from the 16S rRNA gene of Bacteroides-Prevotella group, Bacteroides HF8 cluster, and Lachnospiraceae Lachno2 cluster as well as sequencing was performed on georeferenced samples of river water. Ninety-six percent of residents were examined for schistosomiasis.

Findings

Sequence of 16S rRNA DNA from stool samples validated the relative human specificity of the HF8 and Lachno 2 fecal indicators compared to animals. The concentration of fecal contamination increased markedly along the river as it passed an increasing proportion of the population on its way downstream as did the sequence reads from bacterial families associated with human feces. Lachnospiraceae provided the most robust signal of human fecal contamination. The prevalence of schistosomiasis likewise increased downstream. Using a linear regression model, a significant correlation was demonstrated between the prevalence of S. mansoni infection and local concentration of human fecal contamination based on the Lachnospiraceae Lachno2 cluster (r2 0.53) as compared to the correlation with the general fecal marker E. coli (r2 0.28).

Interpretation

Fecal contamination in rivers has a downstream cumulative effect. The transmission of schistosomiasis correlates with very local factors probably resulting from the distribution of human fecal contamination, the limited movement of snails, and the frequency of water contact near the home. In endemic regions, the combined use of human associated bacterial markers and GIS analysis can quantitatively identify areas with risk for schistosomiasis as well as assess the efficacy of sanitation and environmental interventions for prevention.  相似文献   

3.

Background

DNA methylation is an important epigenetic mechanism in several human diseases, most notably cancer. The quantitative analysis of DNA methylation patterns has the potential to serve as diagnostic and prognostic biomarkers, however, there is currently a lack of consensus regarding the optimal methodologies to quantify methylation status. To address this issue we compared five analytical methods: (i) MethyLight qPCR, (ii) MethyLight digital PCR (dPCR), methylation-sensitive and -dependent restriction enzyme (MSRE/MDRE) digestion followed by (iii) qPCR or (iv) dPCR, and (v) bisulfite amplicon next generation sequencing (NGS). The techniques were evaluated for linearity, accuracy and precision.

Results

MethyLight qPCR displayed the best linearity across the range of tested samples. Observed methylation measured by MethyLight- and MSRE/MDRE-qPCR and -dPCR were not significantly different to expected values whilst bisulfite amplicon NGS analysis over-estimated methylation content. Bisulfite amplicon NGS showed good precision, whilst the lower precision of qPCR and dPCR analysis precluded discrimination of differences of < 25% in methylation status. A novel dPCR MethyLight assay is also described as a potential method for absolute quantification that simultaneously measures both sense and antisense DNA strands following bisulfite treatment.

Conclusions

Our findings comprise a comprehensive benchmark for the quantitative accuracy of key methods for methylation analysis and demonstrate their applicability to the quantification of circulating tumour DNA biomarkers by using sample concentrations that are representative of typical clinical isolates.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1174) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

Quantitative PCR (qPCR) is a workhorse laboratory technique for measuring the concentration of a target DNA sequence with high accuracy over a wide dynamic range. The gold standard method for estimating DNA concentrations via qPCR is quantification cycle () standard curve quantification, which requires the time- and labor-intensive construction of a standard curve. In theory, the shape of a qPCR data curve can be used to directly quantify DNA concentration by fitting a model to data; however, current empirical model-based quantification methods are not as reliable as standard curve quantification.

Principal Findings

We have developed a two-parameter mass action kinetic model of PCR (MAK2) that can be fitted to qPCR data in order to quantify target concentration from a single qPCR assay. To compare the accuracy of MAK2-fitting to other qPCR quantification methods, we have applied quantification methods to qPCR dilution series data generated in three independent laboratories using different target sequences. Quantification accuracy was assessed by analyzing the reliability of concentration predictions for targets at known concentrations. Our results indicate that quantification by MAK2-fitting is as reliable as standard curve quantification for a variety of DNA targets and a wide range of concentrations.

Significance

We anticipate that MAK2 quantification will have a profound effect on the way qPCR experiments are designed and analyzed. In particular, MAK2 enables accurate quantification of portable qPCR assays with limited sample throughput, where construction of a standard curve is impractical.  相似文献   

5.

Background

Fungi are important pathogens but challenging to enumerate using next-generation sequencing because of low absolute abundance in many samples and high levels of fungal DNA from contaminating sources.

Results

Here, we analyze fungal lineages present in the human airway using an improved method for contamination filtering. We use DNA quantification data, which are routinely acquired during DNA library preparation, to annotate output sequence data, and improve the identification and filtering of contaminants. We compare fungal communities and bacterial communities from healthy subjects, HIV+ subjects, and lung transplant recipients, providing a gradient of increasing lung impairment for comparison. We use deep sequencing to characterize ribosomal rRNA gene segments from fungi and bacteria in DNA extracted from bronchiolar lavage samples and oropharyngeal wash. Comparison to clinical culture data documents improved detection after applying the filtering procedure.

Conclusions

We find increased representation of medically relevant organisms, including Candida, Cryptococcus, and Aspergillus, in subjects with increasingly severe pulmonary and immunologic deficits. We analyze covariation of fungal and bacterial taxa, and find that oropharyngeal communities rich in Candida are also rich in mitis group Streptococci, a community pattern associated with pathogenic polymicrobial biofilms. Thus, using this approach, it is possible to characterize fungal communities in the human respiratory tract more accurately and explore their interactions with bacterial communities in health and disease.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0487-y) contains supplementary material, which is available to authorized users.  相似文献   

6.

Background

Multiplexing technologies, which allow for simultaneous detection of multiple nucleic acid sequences in a single reaction, can save a lot of time, cost and labor compared to traditional single reaction detection methods. However, the multiplexing method currently used requires precise handiwork and many complicated steps, making a new, simpler technique desirable. Oligonucleotides containing locked nucleic acid residues are an attractive tool because they have strong affinities for their complementary targets, they have been used to avoid dimer formation and mismatch hybridization and to enhance efficient priming. In this study, we aimed to investigate the use of locked nucleic acid pentamers for genomic DNA amplification and multiplex genotyping.

Results

We designed locked nucleic acid pentamers as universal PCR primers for genomic DNA amplification. The locked nucleic acid pentamers were able to prime amplification of the selected sequences within the investigated genomes, and the resulting products were similar in length to those obtained by restriction digest. In Real Time PCR of genomic DNA from three bacterial species, locked nucleic acid pentamers showed high priming efficiencies. Data from bias tests demonstrated that locked nucleic acid pentamers have equal affinities for each of the six genes tested from the Klebsiella pneumoniae genome. Combined with suspension array genotyping, locked nucleic acid pentamer-based PCR amplification was able to identify a total of 15 strains, including 3 species of bacteria, by gene- and species-specific probes. Among the 32 species used in the assay, 28 species and 50 different genes were clearly identified using this method.

Conclusion

As a novel genomic DNA amplification, the use of locked nucleic acid pentamers as universal primer pairs in conjunction with suspension array genotyping, allows for the identification of multiple distinct genes or species with a single amplification procedure. This demonstrates that locked nucleic acid pentamer-based PCR can be utilized extensively in pathogen identification.  相似文献   

7.

Background

High incidence of septic patients increases the pressure of faster and more reliable bacterial identification methods to adapt patient management towards focused and effective treatment options. The aim of this study was to assess two automated DNA extraction solutions with the PCR and microarray-based assay to enable rapid and reliable detection and speciation of causative agents in the diagnosis of sepsis.

Methodology/Principal Findings

We evaluated two automated DNA instruments NucliSENS® easyMAG® and NorDiag Arrow for the preparation of blood culture samples. A set of 91 samples flagged as positive during incubation was analyzed prospectively with the high-throughput generation of Prove-it™ Sepsis assay designed to identify over 60 Gram-negative and Gram-positive bacterial species as well as methicillin resistance marker from a blood culture. Bacterial findings were accurately reported from 77 blood culture samples, whereas 14 samples were reported as negative, containing bacteria not belonging to the pathogen panel of the assay. No difference was observed between the performance of NorDiag Arrow or NucliSENS® easyMAG® with regard to the result reporting of Prove-it™ Sepsis. In addition, we also assessed the quality and quantity of DNA extracted from the clinical Escherichia coli isolate with DNA extraction instruments. We observed only minor differences between the two instruments.

Conclusions

Use of automated and standardized sample preparation methods together with rapid, multiplex pathogen detection offers a strategy to speed up reliably the diagnostics of septic patients. Both tested DNA extraction devices were shown to be feasible for blood culture samples and the Prove-it™ Sepsis assay, providing an accurate identification of pathogen within 4,5 hours when the detected pathogen was in the repertoire of the test.  相似文献   

8.

Objective

Cell-free fetal DNA is a source of fetal genetic material that can be used for non-invasive prenatal diagnosis. Usually constituting less than 10% of the total cell free DNA in maternal plasma, the majority is maternal in origin. Optimizing conditions for maximizing yield of cell-free fetal DNA will be crucial for effective implementation of testing. We explore factors influencing yield of fetal DNA from maternal blood samples, including assessment of collection tubes containing cell-stabilizing agents, storage temperature, interval to sample processing and DNA extraction method used.

Methods

Microfluidic digital PCR was performed to precisely quantify male (fetal) DNA, total DNA and long DNA fragments (indicative of maternal cellular DNA). Real-time qPCR was used to assay for the presence of male SRY signal in samples.

Results

Total cell-free DNA quantity increased significantly with time in samples stored in K3EDTA tubes, but only minimally in cell stabilizing tubes. This increase was solely due to the presence of additional long fragment DNA, with no change in quantity of fetal or short DNA, resulting in a significant decrease in proportion of cell-free fetal DNA over time. Storage at 4°C did not prevent these changes.

Conclusion

When samples can be processed within eight hours of blood draw, K3EDTA tubes can be used. Prolonged transfer times in K3EDTA tubes should be avoided as the proportion of fetal DNA present decreases significantly; in these situations the use of cell stabilising tubes is preferable. The DNA extraction kit used may influence success rate of diagnostic tests.  相似文献   

9.

Background

Next-generation sequencing sample preparation requires nanogram to microgram quantities of DNA; however, many relevant samples are comprised of only a few cells. Genomic analysis of these samples requires a whole genome amplification method that is unbiased and free of exogenous DNA contamination. To address these challenges we have developed protocols for the production of DNA-free consumables including reagents and have improved upon multiple displacement amplification (iMDA).

Results

A specialized ethylene oxide treatment was developed that renders free DNA and DNA present within Gram positive bacterial cells undetectable by qPCR. To reduce DNA contamination in amplification reagents, a combination of ion exchange chromatography, filtration, and lot testing protocols were developed. Our multiple displacement amplification protocol employs a second strand-displacing DNA polymerase, improved buffers, improved reaction conditions and DNA free reagents. The iMDA protocol, when used in combination with DNA-free laboratory consumables and reagents, significantly improved efficiency and accuracy of amplification and sequencing of specimens with moderate to low levels of DNA. The sensitivity and specificity of sequencing of amplified DNA prepared using iMDA was compared to that of DNA obtained with two commercial whole genome amplification kits using 10 fg (~1-2 bacterial cells worth) of bacterial genomic DNA as a template. Analysis showed >99% of the iMDA reads mapped to the template organism whereas only 0.02% of the reads from the commercial kits mapped to the template. To assess the ability of iMDA to achieve balanced genomic coverage, a non-stochastic amount of bacterial genomic DNA (1 pg) was amplified and sequenced, and data obtained were compared to sequencing data obtained directly from genomic DNA. The iMDA DNA and genomic DNA sequencing had comparable coverage 99.98% of the reference genome at ≥1X coverage and 99.9% at ≥5X coverage while maintaining both balance and representation of the genome.

Conclusions

The iMDA protocol in combination with DNA-free laboratory consumables, significantly improved the ability to sequence specimens with low levels of DNA. iMDA has broad utility in metagenomics, diagnostics, ancient DNA analysis, pre-implantation embryo screening, single-cell genomics, whole genome sequencing of unculturable organisms, and forensic applications for both human and microbial targets.  相似文献   

10.

Background

Accurate diagnosis of Loa loa infection is essential to the success of mass drug administration efforts to eliminate onchocerciasis and lymphatic filariasis, due to the risk of fatal encephalopathic reactions to ivermectin occurring among highly microfilaremic Loa-infected individuals living in areas co-endemic for multiple filarial species.

Methodology/Principal Findings

From a pool of over 1,800 L. loa microfilaria (mf) expressed sequence tags, 18 candidate L. loa mf-specific PCR targets were identified. Real-time PCR (qPCR) assays were developed for two targets (LLMF72 and LLMF269). The qPCR assays were highly specific for L. loa compared with related filariae and also highly sensitive, with detection limits of 0.1 pg genomic DNA, or 1% of DNA extracted from normal blood spiked with a single L. loa microfilaria. Using various DNA extraction methods with dried blood spots obtained from Cameroonian subjects with parasitologically proven loiasis, the LLMF72 qPCR assay successfully estimated mf burden in 65 of 68 samples (50–96,000 mf/mL by microscopy), including all 12 samples subjected to a simple 10-minute boiling extraction. Additionally, the assay detected low-level microfilaremia among 5 of 16 samples from patients thought to be amicrofilaremic by microscopy.

Conclusions/Significance

This novel, rapid, highly sensitive and specific qPCR assay is an important step forward in the laboratory diagnosis of L. loa infection.  相似文献   

11.

Introduction

Studies employing serological, DTH or conventional PCR techniques suggest a vast proportion of Leishmania infected individuals living in regions endemic for Visceral Leishmaniasis (VL) remain asymptomatic. This study was designed to assess whether quantitative PCR (qPCR) can be used for detection of asymptomatic or early Leishmania donovani infection and as a predictor of progression to symptomatic disease.

Methods

The study included 1469 healthy individuals living in endemic region (EHC) including both serology-positive and -negative subjects. TaqMan based qPCR assay was done on peripheral blood of each subject using kDNA specific primers and probes.

Results

A large proportion of EHC 511/1469 (34.78%) showed qPCR positivity and 56 (3.81% of 1469 subjects) had more than 1 calculated parasite genome/ml of blood. However, the number of individuals with parasite load above 5 genomes/ml was only 20 (1.36% of 1469). There was poor agreement between serological testing and qPCR (k = 0.1303), and 42.89% and 31.83% EHC were qPCR positive in seropositive and seronegative groups, respectively. Ten subjects had developed to symptomatic VL after 12 month of their follow up examination, of which eight were initially positive according to qPCR and among these, five had high parasite load.

Discussion

Thus, qPCR can help us to detect significant early parasitaemia, thereby assisting us in recognition of potential progressors to clinical disease. This test could facilitate early intervention, decreased morbidity and mortality, and possibly interruption of disease transmission.  相似文献   

12.

Background

Carrion'' disease, caused by Bartonella bacilliformis, remains truly neglected due to its focal geographical nature. A wide spectrum of clinical manifestations, including asymptomatic bacteremia, and lack of a sensitive diagnostic test can potentially lead to a spread of the disease into non-endemic regions where competent sand fly vectors may be present. A reliable test capable of detecting B. bacilliformis is urgently needed. Our objective is to develop a loop-mediated isothermal amplification (LAMP) assay targeting the pap31 gene to detect B. bacilliformis.

Methods and Findings

The sensitivity of the LAMP was evaluated in comparison to qPCR using plasmid DNA containing the target gene and genomic DNA in the absence and presence of human or sand fly DNA. The detection limit of LAMP was 1 to 10 copies/µL, depending on the sample metrics. No cross-reaction was observed when testing against a panel of various closely related bacteria. The utility of the LAMP was further compared to qPCR by the examination of 74 Lutzomyia longipalpis sand flies artificially fed on blood spiked with B. bacilliformis and harvested at days (D) 1, 3, 5, 7 and 9 post feeding. Only 86% of sand flies at D1 and 63% of flies at D3 were positive by qPCR. LAMP was able to detect B. bacilliformis in all those flies confirmed positive by qPCR. However, none of the flies after D3 were positive by either LAMP or qPCR. In addition to demonstrating the sensitivity of the LAMP assay, these results suggest that B. bacilliformis cannot propagate in artificially fed L. longipalpis.

Conclusions

The LAMP assay is as sensitive as qPCR for the detection of B. bacilliformis and could be useful to support diagnosis of patients in low-resource settings and also to identify B. bacilliformis in the sand fly vector.  相似文献   

13.

Background

Water and High Purity Water (HPW) distribution systems can be contaminated with human pathogenic microorganisms. This biocontamination may pose a risk to human health as HPW is commonly used in the industrial, pharmaceutical and clinical sectors. Currently, routine microbiological testing of HPW is performed using slow and labour intensive traditional microbiological based techniques. There is a need to develop a rapid culture independent methodology to quantitatively detect and identify biocontamination associated with HPW.

Results

A novel internally controlled 5-plex real-time PCR Nucleic Acid Diagnostics assay (NAD), was designed and optimised in accordance with Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines, to rapidly detect, identify and quantify the human pathogenic bacteria Stenotrophomonas maltophilia, Burkholderia species, Pseudomonas aeruginosa and Serratia marcescens which are commonly associated with the biocontamination of water and water distribution systems. The specificity of the 5-plex assay was tested against genomic DNA isolated from a panel of 95 microorganisms with no cross reactivity observed. The analytical sensitivities of the S. maltophilia, B. cepacia, P. aeruginosa and the S. marcescens assays are 8.5, 5.7, 3.2 and 7.4 genome equivalents respectively.Subsequently, an analysis of HPW supplied by a Millipore Elix 35 water purification unit performed using standard microbiological methods revealed high levels of naturally occurring microbiological contamination. Five litre water samples from this HPW delivery system were also filtered and genomic DNA was purified directly from these filters. These DNA samples were then tested using the developed multiplex real-time PCR NAD assay and despite the high background microbiological contamination observed, both S. maltophilia and Burkholderia species were quantitatively detected and identified. At both sampling points the levels of both S. maltophilia and Burkholderia species present was above the threshold of 10 cfu/100 ml recommended by both EU and US guidelines.

Conclusions

The novel culture independent methodology described in this study allows for rapid (<5 h), quantitative detection and identification of these four human pathogens from biocontaminated water and HPW distribution systems. We propose that the described NAD assay and associated methodology could be applied to routine testing of water and HPW distribution systems to assure microbiological safety and high water quality standards.

Electronic supplementary material

The online version of this article (doi:10.1186/s12896-015-0124-1) contains supplementary material, which is available to authorized users.  相似文献   

14.

Objective

To determine whether microbial contamination of door handles in two busy intensive care units and one high dependency unit was related to their design, location, and usage.

Design

Observational study of the number of viable bacteria on existing door handles of different design at defined entry/exit points with simultaneous data collection of who used these doors and how often.

Setting

Two busy specialised intensive care units and one high dependency unit in a tertiary referral NHS neurological hospital.

Main outcome measures

Surface bacterial density on door handles with reference to design, location, and intensity of use.

Results

We found a significant correlation between the frequency of movements through a door and the degree to which it was contaminated (p = <0.01). We further found that the door''s location, design and mode of use all influenced contamination. When compared to push plate designs, pull handles revealed on average a five fold higher level of contamination; lever handles, however, displayed the highest levels of bacterial contamination when adjusted for frequency of use. We also observed differences in contamination levels at doors between clinical areas, particularly between the operating theatres and one of the ICUs.

Conclusions

Door handles in busy, “real life” high acuity clinical environments were variably contaminated with bacteria, and the number of bacteria found related to design, location, mode and frequency of operation. Largely ignored issues of handle and environmental design can support or undermine strategies designed to limit avoidable pathogen transmission, especially in locations designed to define “thresholds” and impose physical barriers to pathogen transmission between clinical areas. Developing a multidisciplinary approach beyond traditional boundaries for purposes of infection control may release hitherto unappreciated options and beneficial outcomes for the control of at least some hospital acquired infections.  相似文献   

15.

Background

UVA rays present in sunlight are able to reach the dermal skin layer generating reactive oxygen species (ROS) responsible for oxidative damage, alterations in gene expression, DNA damage, leading to cell inflammation, photo-ageing/-carcinogenesis. Sunscreens contain UV filters as active ingredients that absorb/reflect/dissipate UV radiation: their efficiency depends on their spectral profile and photostability which should then be reflected in biological protection of underlying skin.

Methods

A set of new UV filters was synthesized, and the most photostable one was compared to BMDBM, a widely used UVA filter. Cultured human dermal fibroblasts were exposed to UVA radiation which was filtered by a base cream containing or not UV filters placed above cell culture wells. The endpoints measured were: cell viability (MTT assay), ROS generation (DCFH-DA assay), mitochondrial function (JC-1 assay), DNA integrity (Comet assay) and gene expression (MMP-1, COL1A1) by RT-qPCR.

Results

The new UV filter resulted more efficient than BMDBM in preserving cell viability, mitochondrial functionality and oxidative DNA damage, despite similar inhibition levels of intracellular ROS. Moreover, expression of genes involved in dermal photoageing were positively affected by the filtering action of the tested molecules.

Conclusions

The experimental model proposed was able to validate the efficacy of the new UV filter, taking into account important cellular events related to UV-induced intracellular oxidative stress, often underestimated in the assessments of these compounds.

General Significance

The model may be used to compare the actual biological protection of commercial sunscreens and suncare products aside from their SPF and UVA-PF values.  相似文献   

16.
17.

Background

PCR in principle can detect a single target molecule in a reaction mixture. Contaminating bacterial DNA in reagents creates a practical limit on the use of PCR to detect dilute bacterial DNA in environmental or public health samples. The most pernicious source of contamination is microbial DNA in DNA polymerase preparations. Importantly, all commercial Taq polymerase preparations inevitably contain contaminating microbial DNA. Removal of DNA from an enzyme preparation is problematical.

Methodology/Principal Findings

This report demonstrates that the background of contaminating DNA detected by quantitative PCR with broad host range primers can be decreased greater than 10-fold through the simple expedient of Taq enzyme dilution, without altering detection of target microbes in samples. The general method is: For any thermostable polymerase used for high-sensitivity detection, do a dilution series of the polymerase crossed with a dilution series of DNA or bacteria that work well with the test primers. For further work use the concentration of polymerase that gave the least signal in its negative control (H2O) while also not changing the threshold cycle for dilutions of spiked DNA or bacteria compared to higher concentrations of Taq polymerase.

Conclusions/Significance

It is clear from the studies shown in this report that a straightforward procedure of optimizing the Taq polymerase concentration achieved “treatment-free” attenuation of interference by contaminating bacterial DNA in Taq polymerase preparations. This procedure should facilitate detection and quantification with broad host range primers of a small number of bona fide bacteria (as few as one) in a sample.  相似文献   

18.

Introduction

Accurate analyses of microbiota composition of low-density communities (103–104 bacteria/sample) can be challenging. Background DNA from chemicals and consumables, extraction biases as well as differences in PCR efficiency can significantly interfere with microbiota assessment. This study was aiming to establish protocols for accurate microbiota analysis at low microbial density.

Methods

To examine possible effects of bacterial density on microbiota analyses we compared microbiota profiles of serial diluted saliva and low (nares, nasopharynx) and high-density (oropharynx) upper airway communities in four healthy individuals. DNA was extracted with four different extraction methods (Epicentre Masterpure, Qiagen DNeasy, Mobio Powersoil and a phenol bead-beating protocol combined with Agowa-Mag-mini). Bacterial DNA recovery was analysed by 16S qPCR and microbiota profiles through GS-FLX-Titanium-Sequencing of 16S rRNA gene amplicons spanning the V5–V7 regions.

Results

Lower template concentrations significantly impacted microbiota profiling results. With higher dilutions, low abundant species were overrepresented. In samples of <105 bacteria per ml, e.g. DNA <1 pg/µl, microbiota profiling deviated from the original sample and other dilutions showing a significant increase in the taxa Proteobacteria and decrease in Bacteroidetes. In similar low density samples, DNA extraction method determined if DNA levels were below or above 1 pg/µl and, together with lysis preferences per method, had profound impact on microbiota analyses in both relative abundance as well as representation of species.

Conclusion

This study aimed to interpret microbiota analyses of low-density communities. Bacterial density seemed to interfere with microbiota analyses at < than 106 bacteria per ml or DNA <1 pg/µl. We therefore recommend this threshold for working with low density materials. This study underlines that bias reduction is crucial for adequate profiling of especially low-density bacterial communities.  相似文献   

19.

Aim of the Study

In many countries, Low Level Disinfection (LLD) of covered transvaginal ultrasound probes is recommended between patients'' examinations. The aim of this study was to evaluate the antimicrobial efficacy of LLD under routine conditions on a range of microorganisms.

Materials and Methods

Samples were taken over a six month period in a private French Radiology Center. 300 specimens derived from endovaginal ultrasound probes were analyzed after disinfection of the probe with wipes impregnated with a quaternary ammonium compound and chlorhexidine. Human papillomavirus (HPV) was sought in the first set of s100 samples, Chlamydia trachomatis and mycoplasmas were searched in the second set of 100 samples, bacteria and fungi in the third 100 set samples. HPV, C. trachomatis and mycoplasmas were detected by PCR amplification. PCR positive samples were subjected to a nuclease treatment before an additional PCR assay to assess the likely viable microorganisms. Bacteria and fungi were investigated by conventional methods.

Results

A substantial persistence of microorganisms was observed on the disinfected probes: HPV DNA was found on 13% of the samples and 7% in nuclease-resistant form. C. trachomatis DNA was detected on 20% of the probes by primary PCR but only 2% after nuclease treatment, while mycoplasma DNA was amplified in 8% and 4%, respectively. Commensal and/or environmental bacterial flora was present on 86% of the probes, occasionally in mixed culture, and at various levels (10->3000 CFU/probe); Staphylococcus aureus was cultured from 4% of the probes (10-560 CFU/probe). No fungi were isolated.

Conclusion

Our findings raise concerns about the efficacy of impregnated towels as a sole mean for disinfection of ultrasound probes. Although the ultrasound probes are used with disposable covers, our results highlight the potential risk of cross contamination between patients during ultrasound examination and emphasize the need for reviewing the disinfection procedure.  相似文献   

20.

Background

Multiple independent culture-based studies have identified the presence of Pseudomonas aeruginosa in respiratory samples as a positive risk factor for bronchiolitis obliterans syndrome (BOS). Yet, culture-independent microbiological techniques have identified a negative association between Pseudomonas species and BOS. Our objective was to investigate whether there may be a unifying explanation for these apparently dichotomous results.

Methods

We performed bronchoscopies with bronchoalveolar lavage (BAL) on lung transplant recipients (46 procedures in 33 patients) and 26 non-transplant control subjects. We analyzed bacterial communities in the BAL fluid using qPCR and pyrosequencing of 16S rRNA gene amplicons and compared the culture-independent data with the clinical metadata and culture results from these subjects.

Findings

Route of bronchoscopy (via nose or via mouth) was not associated with changes in BAL microbiota (p = 0.90). Among the subjects with positive Pseudomonas bacterial culture, P. aeruginosa was also identified by culture-independent methods. In contrast, a distinct Pseudomonas species, P. fluorescens, was often identified in asymptomatic transplant subjects by pyrosequencing but not detected via standard bacterial culture. The subject populations harboring these two distinct pseudomonads differed significantly with respect to associated symptoms, BAL neutrophilia, bacterial DNA burden and microbial diversity. Despite notable differences in culturability, a global database search of UM Hospital Clinical Microbiology Laboratory records indicated that P. fluorescens is commonly isolated from respiratory specimens.

Interpretation

We have reported for the first time that two prominent and distinct Pseudomonas species (P. fluorescens and P. aeruginosa) exist within the post-transplant lung microbiome, each with unique genomic and microbiologic features and widely divergent clinical associations, including presence during acute infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号