首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bortezomib is a novel proteasome inhibitor that has promising antitumor activity against various cancer cells. We have assessed its antitumor activity in non-small cell lung cancer (NSCLC) A549 and H157 cells in vitro where it inhibited cell growth and induced apoptosis, which was associated with cytochrome c release and caspase-3 activation. Bortezomib upregulated autophagic-related proteins, the Atg12–Atg5 complex and LC3-II, which indicated autophagy had occurred. The combination of bortezomib with autophagic inhibitor 3-methyladenine or chloroquine significantly enhanced suppression of cell growth and apoptosis induced by bortezomib in A549 and H157 cells. Our study indicated that inhibition of both proteasome and autophagy has great potential for NSCLC treatment.  相似文献   

2.
Livin is highly expressed in most tumor tissues and could inhibit the tumor cells apoptosis. Knockdown of endogenous livin expression in non-small cell lung cancer (NSCLC) cells could inhibit cell growth. But it is still unclear if knockdown of endogenous livin expression combined with conventional chemotherapy could play a positive role in NSCLC treatment. In this article, the efficient RNA interferences (RNAi) of livin were constructed, and then we transfected them into A549 cells and 103H cells to study their influence on cell cycle and apoptosis index. At last, we detected the cell's sensitivity to conventional chemotherapeutic drugs after knockdown endogenous livin expression in A549 cells and 103H cells. Our results showed that knockdown livin expression could inhibit cell growth and induce apoptosis in A549 cells and 103H cells. A549 cells and 103H cells had an increased chemosensitivity to adriamycin and cisplatin after transfection of livin RNAi constructs. The results indicated that cell cycle redistribution and increased apoptosis index after knockdown livin expression might provide the main explanation for the enhanced chemosensitivity. Proper combination of livin RNAi and some conventional chemotherapeutic drugs may entail potential benefits in the treatment of NSCLC.  相似文献   

3.
Mohammed Ali Ashehri 《Phyton》2021,90(6):1749-1762
In most of Arabian courtiers Rhazya stricta is extensively utilized in public medicine for several diseases treatment. In this study, crude alkaloid extract of R. stricta (CAERS) coated with silver nanoparticles (CAERS-AgNPs) as potential treatment against diabetes in DM animal model was evaluated. Swiss albino male rats (n = 80) were injected with STZ to induce Diabetes Mellitus type-2 (DM). DM-rats were injected different doses of CAERS or CAERS-nanoparticles (CAERS-NPs) for 2 months. The results exhibited that mRNA expression of insulin and insulin receptor was down-regulated, activity levels of antioxidant enzymes were decreased, generation of ROS mediated DNA adducts and apoptosis in DM-rats was increased significantly than those in negative control rats. In contrast, the expression of insulin and insulin receptor genes was up-regulated, activity levels of antioxidant enzymes, ROS generation, DNA adducts and apoptosis incidence in DM-rats supplemented with high dose of CAERS and all doses of CAERS-NPs were improved. In conclusion: R. stricta nanoparticles improved the anti-diabetic effect of the plant much more than the powder form of the extract. This action could be attributed to modification of the chemical and physical properties of the plant materials. The properties modification might be improved the ability of plant compounds to penetrate the cell membrane which facilitating release of plant materials into the target cells.  相似文献   

4.
The goal of the present study was to define gene expression signatures that predict a chemosensitivity of nonsmall cell lung cancer (NSCLC) to cisplatin and paclitaxel. To generate a set of candidate genes likely to be predictive, current knowledge of the pathways involved in resistance and sensitivity to individual drugs was used. Forty-four genes coding proteins belonging to the following categories—ATP-dependent transport proteins, detoxification system proteins, reparation system proteins, tubulin and proteins responsible for its synthesis, cell cycle, and apoptosis proteins—were considered. Eight NSCLC cell lines (A549, Calu1, H1299, H322, H358, H460, H292, and H23) were used in our study. For each NSCLC cell line, a cisplatin and paclitaxel chemosensitivity, as well as an expression level of 44 candidate genes, were evaluated. To develop a chemosensitivity prediction model based on selected genes’ expression level, a multiple regression analysis was performed. The model based on the expression level of 11 genes (TUBB3, TXR1, MRP5, MSH2, ERCC1, STMN, SMAC, FOLR1, PTPN14, HSPA2, GSTP1) allowed us to predict the paclitaxel cytotoxic concentration with a high level of correlation (r = 0.91, p < 0.01). However, no model developed was able to reliably predict sensitivity of the NSCLC cells to cisplatin.  相似文献   

5.
Cisplatin resistance of non-small-cell lung cancer (NSCLC) needs to be well elucidated. RING finger protein (RNF38) has been proposed as a biomarker of NSCLC poor prognosis. However, its role in drug resistance in NSCLC is poorly understood. RNF38 expression was detected in normal lung epithelial cell and four NSCLC cell lines. RNF38 was stably overexpressed in A549 and H460 cells or silenced in H1975 and cisplatin-resistant A549 cells (A549-CDDP resistant) using lentiviral vectors. RNF38 expression levels were determined using quantitative real-time polymerase chain reaction and western blotting analysis. Cell viability in response to different concentrations of cisplatin was evaluated by Cell Counting Kit-8 assay. RNF38 expression levels were markedly elevated in NSCLC cells and cells harboring high RNF38 were less sensitive to cisplatin. Overexpression of RNF38 reduced, while RNF38 silencing increased the drug sensitivity of cisplatin in NSCLC cells. Cisplatin-resistant cells expressed high RNF38 level. RNF38 silencing promoted cell apoptosis and enhanced the drug sensitivity of cisplatin in cisplatin-resistant NSCLC cells. These findings indicate that RNF38 might induce cisplatin resistance of NSCLC cells via promoting cell apoptosis and RNF38 could be a novel target for rectify cisplatin resistance in NSCLC cases.  相似文献   

6.
Breviscapine (BVP) has previously been shown to inhibit the proliferation of hepatocellular carcinoma cells. However, little is known about the effects of BVP on non-small cell lung cancer (NSCLC) growth. Here, we aimed to study the effects of BVP on human NSCLC growth. We employed A549, NCL-H460 and A549 cells transfected with microRNA-7 (miR-7) mimic and inhibitor to investigate the effect of BVP on cell proliferation, apoptosis and apoptosis-associated molecules. The results showed that BVP significantly reduced the growth of A549 and NCL-H460 cells in a concentration-dependent and time-dependent manner, accompanied by a significant elevation of apoptosis. Additionally, the present study also confirmed that BVP-treated A549 cells showed increased levels of Bax and microRNA-7 (miR-7) and a decreased level of Bcl-2. The up-regulation of miR-7 enhanced the BVP sensitivity of NSCLC cells by suppressing cell proliferation and promoting cell apoptosis, while the inhibition of miR-7 reversed the anti-proliferative pro-apoptotic effects of BVP. Pre-treatment with miR-7 mimics enhanced the BVP-mediated down-regulation of Bax/Bcl-2 in NSCLC cells, while pre-treatment with the miR-7 inhibitor blocked the BVP-mediated down-regulation of Bax/Bcl. Taken together, these results confirm that BVP effectively inhibits NSCLC proliferation and that miR-7, as a novel target, is likely involved in BVP-induced growth suppression and the apoptosis of NSCLC cells.  相似文献   

7.
ABSTRACT

To evaluate the effects of LncRNAZFAS1 on cell proliferation and tumor metastasis in non-small cell lung cancer (NSCLC), we detected the expression level of LncRNAZFAS1 in NSCLC-related tissues and cells. qRT-PCR results revealed that LncRNAZFAS1 in tumor tissues was significantly higher than that in normal lung tissue, especially significantly up-regulated in stage III / IV and in metastatic NSCLC tissues. LncRNAZFAS1 expression was dramatically up-regulated in 4 NSCLC-related cells (A549, SPC-A1, SK-MES-1, and NCI-H1299), with having the highest expression level in A549 cells. Furthermore, we implemented a knockdown of LncRNAZFAS1 in A549 cells, and the results of CCK8 and Transwell assays suggested that knockdown of LncRNAZFAS1 significantly inhibited NSCLC cell proliferation and metastasis. Next, we constructed a tumor xenograft model to evaluate the effect of LncRNAZFAS1 on the NSCLC cell proliferation in vivo. The results indicated that knockdown of LncRNAZFAS1 dramatically inhibited A549 cells proliferation and repressed tumor growth. Additionally, knockdown of LncRNAZFAS1 drastically weakened the expressions of MMP2, MMP9 and Bcl-2 proteins, whereas noticeably strengthened the expression of BAX protein. Our results altogether suggest that knockdown of LncRNAZFAS1 has a negative effect on the proliferation and metastasis of NSCLC cell, which implying LncRNAZFAS1 is a potential unfavorable biomarker in patients with NSCLC.  相似文献   

8.
Thioredoxin reductase (TrxR) is overpressed in many human tumors and has a key role in regulating intracellular redox balance. Recently, thioredoxin system has emerged as a valuable target for anticancer drug development. Herein we demonstrate that selenocystine (SeC) could enhance auranofin (AF)-induced A549 human lung adenocarcinoma cell apoptosis in vitro and in vivo through synergetic inhibition of TrxR1. SeC pretreatment significantly enhanced AF-induced loss of mitochondrial membrane potential (Δψm) by regulating Bcl-2 family proteins. The combined treatment with SeC and AF also resulted in enhanced intracellular reactive oxygen species (ROS) accumulation, DNA damage, and inactivation of ERK and AKT. Inhibitors of ERK and AKT effectively enhanced combined treatment-induced apoptotic cell death. However, inhibition of ROS reversed the apoptosis induced by SeC and AF, and recovered the inactivation of ERK and AKT, which revealed the importance of ROS in cell apoptosis and regulation of ERK and AKT pathways. Moreover, xenograft lung tumor growth in nude mice was more effectively inhibited by combined treatment with SeC and AF by induction of apoptosis through targeting TrxR1 in vivo. Taken together, our results suggest the strategy to use SeC and AF in combination could be a highly efficient way to achieve anticancer synergism by targeting TrxR1.  相似文献   

9.
In order to assess the effect of p73 gene polymorphism G4C14‐A4T14 on cisplatin‐based chemosensitivity of human lung adenocarcinoma cell lines, we examined the differences in biological character and drug sensitivity affected by cisplatin between human lung adenocarcinoma cell lines A549 and P15. The allelic expression ofp73 in A549 and P15 was studied by Sty I polymorphism analysis. MTT [3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide] assay was used to analyse the response of these two cell lines to cisplatin. The changes in the biological behaviour of the cells were observed by colony formation assay. The drug‐induced apoptosis of cells was measured by Hoechst and TUNEL techniques. Homozygous allelic expression was demonstrated in the two cell lines. AT/AT genotype appeared in A549, GC/GC genotype was detected in P15. Although the colony formation number decreased with an increasing cisplatin dose (P<0.05), there was no significant difference in colony‐formation rate in these two cell lines (P>0.05). MTT assay also determined that the 50% inhibitory concentration (IC50) for A549 and P15 was 8.9 and 11.6 μmol/l, respectively; the IC50 value did not differ significantly between A549 and P15 (P>0.05). The cell apoptosis induced by cisplatin was demonstrated in both A549 and P15. P73 G4C14‐A4T14 polymorphisms at exon 2 existed in human NSCLC (non‐small‐cell lung cancer) cell lines. Our data in vitro suggest that p73 G4C14‐A4T14 polymorphism has no significant relationship to the cisplatin‐based chemosensitivity in human lung adenocarcinoma.  相似文献   

10.
Blockade of epidermal growth factor receptor (EGFR) activity has been a primary therapeutic target for non-small cell lung cancers (NSCLC). As patients with wild-type EGFR have demonstrated only modest benefit from EGFR tyrosine kinase inhibitors (TKIs), there is a need for additional therapeutic approaches in patients with wild-type EGFR. As a key component of downstream integrin signalling and known receptor cross-talk with EGFR, we hypothesized that targeting focal adhesion kinase (FAK) activity, which has also been shown to correlate with aggressive stage in NSCLC, would lead to enhanced activity of EGFR TKIs. As such, EGFR TKI-resistant NSCLC cells (A549, H1299, H1975) were treated with the EGFR TKI erlotinib and FAK inhibitors (PF-573,228 or PF-562,271) both as single agents and in combination. We determined cell viability, apoptosis and 3-dimensional growth in vitro and assessed tumor growth in vivo. Treatment of EGFR TKI-resistant NSCLC cells with FAK inhibitor alone effectively inhibited cell viability in all cell lines tested; however, its use in combination with the EGFR TKI erlotinib was more effective at reducing cell viability than either treatment alone when tested in both 2- and 3-dimensional assays in vitro, with enhanced benefit seen in A549 cells. This increased efficacy may be due in part to the observed inhibition of Akt phosphorylation when the drugs were used in combination, where again A549 cells demonstrated the most inhibition following treatment with the drug combination. Combining erlotinib with FAK inhibitor was also potent in vivo as evidenced by reduced tumor growth in the A549 mouse xenograft model. We further ascertained that the enhanced sensitivity was irrespective of the LKB1 mutational status. In summary, we demonstrate the effectiveness of combining erlotinib and FAK inhibitors for use in known EGFR wild-type, EGFR TKI resistant cells, with the potential that a subset of cell types, which includes A549, could be particularly sensitive to this combination treatment. As such, further evaluation of this combination therapy is warranted and could prove to be an effective therapeutic approach for patients with inherent EGFR TKI-resistant NSCLC.  相似文献   

11.
Although carboplatin is one of the standard chemotherapeutic agents for non-small cell lung cancer (NSCLC), it has limited therapeutic efficacy due to activation of a survival signaling pathway and the induction of multidrug resistance. Curcumin, a natural compound isolated from the plant Curcuma longa, is known to sensitize tumors to different chemotherapeutic agents. The aim of this study is to evaluate whether curcumin can chemosensitize lung cancer cells to carboplatin and to analyze the signaling pathway underlying this synergism. We investigated the synergistic effect of both agents on cell proliferation, apoptosis, invasion, migration, and expression of related signaling proteins using the human NSCLC cell line, A549. A549 cell was treated with different concentrations of curcumin and carboplatin alone and in combination. Combined treatment with curcumin and carboplatin inhibited tumor cell growth, migration, and invasion compared with either drug alone. Matrix metalloproteinase (MMP)-2 and MMP-9 were more efficiently downregulated by co-treatment than by each treatment alone. mRNA and protein expression of caspase-3 and caspase-9 and proapoptotic genes was increased in cells treated with a combination of curcumin and carboplatin, whereas expression of the antiapoptotic Bcl-2 gene was suppressed. Co-treatment of both agents substantially suppressed NF-κB activation and increased expression of p53. Phosphorylation of Akt, a protein upstream of NF-κB, was reduced, resulting in inhibition of the degradation of inhibitor of κB(IκBα), whereas the activity of extracellular signal-regulated kinase (ERK1/2) was enhanced. Our study demonstrated that the synergistic antitumor activity of curcumin combined with carboplatin is mediated by multiple mechanisms involving suppression of NF-κB via inhibition of the Akt/IKKα pathway and enhanced ERK1/2 activity. Based on this mechanism, curcumin has potential as a chemosensitizer for carboplatin in the treatment of patients with NSCLC.  相似文献   

12.
We have recently shown that the crosstalk between mild endoplasmic reticulum (ER) stress and low concentrations of the pro-inflammatory cytokine interleukin (IL)-1β exacerbates beta cell inflammatory responses via the IRE1α/XBP1 pathway. We presently investigated whether mild ER stress also sensitizes beta cells to cytokine-induced apoptosis. Cyclopiazonic acid (CPA)-induced ER stress enhanced the IL-1β apoptosis in INS-1E and primary rat beta cells. This was not prevented by XBP1 knockdown (KD), indicating the dissociation between the pathways leading to inflammation and cell death. Analysis of the role of pro- and anti-apoptotic proteins in cytokine-induced apoptosis indicated a central role for the pro-apoptotic BH3 (Bcl-2 homology 3)-only protein Bim (Bcl-2-interacting mediator of cell death), which was counteracted by four anti-apoptotic Bcl-2 (B-cell lymphoma-2) proteins, namely Bcl-2, Bcl-XL, Mcl-1 and A1. CPA+IL-1β-induced beta cell apoptosis was accompanied by increased expression of Bim, particularly the most pro-apoptotic variant, small isoform of Bim (BimS), and decreased expression of A1. Bim silencing protected against CPA+IL-1β-induced apoptosis, whereas A1 KD aggravated cell death. Bim inhibition protected against cell death caused by A1 silencing under all conditions studied. In conclusion, mild ER stress predisposes beta cells to the pro-apoptotic effects of IL-1β by disrupting the balance between pro- and anti-apoptotic Bcl-2 proteins. These findings link ER stress to exacerbated apoptosis during islet inflammation and provide potential mechanistic targets for beta cell protection, namely downregulation of Bim and upregulation of A1.  相似文献   

13.
DNA methylation plays a critical role during the development of acquired chemoresistance. The aim of this study was to identify candidate DNA methylation drivers of cisplatin (DDP) resistance in non-small cell lung cancer (NSCLC). The A549/DDP cell line was established by continuous exposure of A549 cells to increasing concentrations of DDP. Gene expression and methylation profiling were determined by high-throughput microarrays. Relationship of methylation status and DDP response was validated in primary tumor cell culture and the Cancer Genome Atlas (TCGA) samples. Cell proliferation, apoptosis, cell cycle, and response to DDP were determined in vitro and in vivo. A total of 372 genes showed hypermethylation and downregulation in A549/DDP cells, and these genes were involved in most fundamental biological processes. Ten candidate genes (S100P, GDA, WISP2, LOXL1, TIMP4, ICAM1, CLMP, HSP8, GAS1, BMP2) were selected, and exhibited varying degrees of association with DDP resistance. Low dose combination of 5-aza-2′-deoxycytidine (5-Aza-dC) and trichostatin A (TSA) reversed drug resistance of A549/DDP cells in vitro and in vivo, along with demethylation and restoration of expression of candidate genes (GAS1, TIMP4, ICAM1 and WISP2). Forced expression of GAS1 in A549/DDP cells by gene transfection contributed to increased sensitivity to DDP, proliferation inhibition, cell cycle arrest, apoptosis enhancement, and in vivo growth retardation. Together, our study demonstrated that a panel of candidate genes downregulated by DNA methylation induced DDP resistance in NSCLC, and showed that epigenetic therapy resensitized cells to DDP.  相似文献   

14.
Our group was the first one reporting that autophagy could be triggered by airborne fine particulate matter (PM) with a mean diameter of less than 2.5 μm (PM2.5) in human lung epithelial A549 cells, which could potentially lead to cell death. In the present study, we further explored the potential interactions between autophagy and apoptosis because it was well documented that PM2.5 could induce apoptosis in A549 cells. Much to our surprise, we found that PM2.5-exposure caused oxidative stress, resulting in activation of multiple cell death pathways in A549 cells, that is, the tumor necrosis factor-alpha (TNF-α)-induced pathway as evidenced by TNF-α secretion and activation of caspase-8 and -3, the intrinsic apoptosis pathway as evidenced by increased expression of pro-apoptotic protein Bax, decreased expression of anti-apoptotic protein Bcl-2, disruption of mitochondrial membrane potential, and activation of caspase-9 and -3, and autophagy as evidenced by an increased number of double-membrane vesicles, accompanied by increases of conversion and punctuation of microtubule-associated proteins light chain 3 (LC3) and expression of Beclin 1. It appears that reactive oxygen species (ROS) function as signaling molecules for all the three pathways because pretreatment with N-acetylcysteine, a scavenger of ROS, almost completely abolished TNF-α secretion and significantly reduced the number of apoptotic and autophagic cells. In another aspect, inhibiting autophagy with 3-methyladenine, a specific autophagy inhibitor, enhanced PM2.5-induced apoptosis and cytotoxicity. Intriguingly, neutralization of TNF-α with an anti-TNF-α special antibody not only abolished activation of caspase-8, but also drastically reduced LC3-II conversion. Thus, the present study has provided novel insights into the mechanism of cytotoxicity and even pathogenesis of diseases associated with PM2.5 exposure.  相似文献   

15.

Objectives

To compare the biological effects of 125I seeds continuous low-dose-rate (CLDR) radiation and 60Co γ-ray high-dose-rate (HDR) radiation on non-small cell lung cancer (NSCLC) cells.

Materials and Methods

A549, H1299 and BEAS-2B cells were exposed to 125I seeds CLDR radiation or 60Co γ-ray HDR radiation. The survival fraction was determined using a colony-forming assay. The cell cycle progression and apoptosis were detected by flow cytometry (FCM). The expression of the apoptosis-related proteins caspase-3, cleaved-caspase-3, PARP, cleaved-PARP, BAX and Bcl-2 were detected by western blot assay.

Results

After irradiation with 125I seeds CLDR radiation, there was a lower survival fraction, more pronounced cell cycle arrest (G1 arrest and G2/M arrest in A549 and H1299 cells, respectively) and a higher apoptotic ratio for A549 and H1299 cells than after 60Co γ-ray HDR radiation. Moreover, western blot assays revealed that 125I seeds CLDR radiation remarkably up-regulated the expression of Bax, cleaved-caspase-3 and cleaved-PARP proteins and down-regulated the expression of Bcl-2 proteins in A549 and H1299 cells compared with 60Co γ-ray HDR radiation. However, there was little change in the apoptotic ratio and expression of apoptosis-related proteins in normal BEAS-2B cells receiving the same treatment.

Conclusions

125I seeds CLDR radiation led to remarkable growth inhibition of A549 and H1299 cells compared with 60Co HDR γ-ray radiation; A549 cells were the most sensitive to radiation, followed by H1299 cells. In contrast, normal BEAS-2B cells were relatively radio-resistant. The imbalance of the Bcl-2/Bax ratio and the activation of caspase-3 and PARP proteins might play a key role in the anti-proliferative effects induced by 125I seeds CLDR radiation, although other possibilities have not been excluded and will be investigated in future studies.  相似文献   

16.
Cisplatin, a commonly used chemotherapeutic, is associated with ototoxicity, renal toxicity and neurotoxicity, thus identifying means to increase the therapeutic index of cisplatin may allow for improved outcomes. A SNP (rs4343077) within EPS8, discovered through a genome wide association study of cisplatin-induced cytotoxicity and apoptosis in lymphoblastoid cell lines (LCLs), provided impetus to further study this gene. The purpose of this work was to evaluate the role of EPS8 in cellular susceptibility to cisplatin in cancerous and non-cancerous cells. We used EPS8 RNA interference to determine the effect of decreased EPS8 expression on LCL and A549 lung cancer cell sensitivity to cisplatin. EPS8 knockdown in LCLs resulted in a 7.9% increase in cisplatin-induced survival (P = 1.98×10−7) and an 8.7% decrease in apoptosis (P = 0.004) compared to control. In contrast, reduced EPS8 expression in lung cancer cells resulted in a 20.6% decrease in cisplatin-induced survival (P = 5.08×10−5). We then investigated an EPS8 inhibitor, mithramycin A, as a potential agent to increase the therapeutic index of cisplatin. Mithramycin A decreased EPS8 expression in LCLs resulting in decreased cellular sensitivity to cisplatin as evidenced by lower caspase 3/7 activation following cisplatin treatment (42.7%±6.8% relative to control P = 0.0002). In 5 non-small-cell lung carcinoma (NSCLC) cell lines, mithramycin A also resulted in decreased EPS8 expression. Adding mithramycin to 4 NSCLC cell lines and a bladder cancer cell line, resulted in increased sensitivity to cisplatin that was significantly more pronounced in tumor cell lines than in LCL lines (p<0.0001). An EGFR mutant NSCLC cell line (H1975) showed no significant change in sensitivity to cisplatin with the addition of mithramycin treatment. Therefore, an inhibitor of EPS8, such as mithramycin A, could improve cisplatin treatment by increasing sensitivity of tumor relative to normal cells.  相似文献   

17.
The purpose of this study is to investigate the effects of berbamine (BER), a naturally occurring small-molecule compound from Traditional Chinese Medicine (TCM) Berberis amurensis, on the growth and migration of human lung cancer A549 cell line. This cell line is the non–small cell lung cancer (NSCLC) which constitutes 80% of lung cancer cases and remains an aggressive lung cancer associated with a poor patient survival. Our present results have shown that BER significantly suppressed the in vitro and ex vivo growth of A549 cells in dose- and time-dependent manners. Furthermore, Western blot analysis confirmed that BER dose-dependently down-regulated the expression of anti-apoptotic protein Bcl-2 and up-regulated the level of pro-apoptotic protein Bax, eventually leading the reduction of Bcl-2/Bax protein ratio in A549 cells. In addition, BER significantly inhibited the A549 cell migration at the low concentrations without restraining the cell growth. More importantly, BER significantly enhanced the anticancer activity of anticancer agents such as trichostatin A (the histone deacetylase inhibitor) and celecoxib (the inhibitor of cyclooxygenase-2) by strongly reducing the viability and/or the Bcl-2/Bax protein ratio in A549 cells. Our findings suggest that BER may have the wide therapeutic and/or adjuvant therapeutic application in the treatment of human NSCLC.  相似文献   

18.
REV3L, the catalytic subunit of DNA Polymerase ζ (Polζ), plays a significant role in the DNA damage tolerance mechanism of translesion synthesis (TLS). The role of REV3L in chemosensitivity of cervical cancer needs exploration. In the present study, we evaluated the expression of the Polζ protein in paraffin-embedded tissues using immunohistochemistry and found that the expression of Polζ in cervical cancer tissues was higher than that in normal tissues. We then established some cervical cancer cell lines with REV3L suppression or overexpression. Depletion of REV3L suppresses cell proliferation and colony formation of cervical cancer cells through G1 arrest, and REV3L promotes cell proliferation and colony formation of cervical cancer cells by promoting G1 phase to S phase transition. The suppression of REV3L expression enhanced the sensitivity of cervical cancer cells to cisplatin, and the overexpression of REV3L conferred resistance to cisplatin as evidenced by the alteration of apoptosis rates, and significantly expression level changes of anti-apoptotic proteins B-cell lymphoma 2 (Bcl-2), myeloid cell leukemia sequence 1 (Mcl-1) and B-cell lymphoma-extra large (Bcl-xl) and proapoptotic Bcl-2-associated x protein (Bax). Our data suggest that REV3L plays an important role in regulating cervical cancer cellular response to cisplatin, and thus targeting REV3L may be a promising way to alter chemosensitivity in cervical cancer patients.  相似文献   

19.
Spondias pinnata, a commonly distributed tree in India, previously proven for various pharmacological properties and also reported for efficient anti-oxidant, free radical scavenging and iron chelating activity, continuing this, the present study is aimed to investigate the role of 70 % methanolic extract of S. pinnata bark (SPME) in promoting apoptosis in human lung adenocarcinoma cell line (A549) and human breast adenocarcinoma cell line (MCF-7). These two malignant cell lines and a normal cell line were treated with increasing concentrations of SPME and cell viability is calculated. SPME showed significant cytotoxicity to both A549 and MCF-7 cells with an IC50 value of 147.84 ± 3.74 and 149.34 ± 13.30 μg/ml, respectively, whereas, comparatively no cytotoxicity was found in normal human lung fibroblast cell line (WI-38): IC50 932.38 ± 84.44 μg/ml. Flow cytometric analysis and confocal microscopic studies confirmed that SPME is able to induce apoptosis in both malignant cell lines. Furthermore, immunoblot result proposed the pathway of apoptosis induction by increasing Bax/Bcl-2 ratio in both cell types, which results in the activation of the caspase-cascade and ultimately leads to the cleavage of Poly adeno ribose polymerase. For the first time this study proved the anticancer potential of SPME against human lung and breast cancer by inducing apoptosis through the modulation of Bcl-2 family proteins. This might take S. pinnata in light to investigate it for further development as therapeutic anticancer source.  相似文献   

20.
Both the root and stem bark of Mahonia species were popular folk medicines. The plant has several proven biological activities including anti-bacterial, anti-fungal, and anti-inflammatory effects. However, Mahonia has not been studied for its anticancer effects. In the present study, we made extracts from Mahonia oiwakensis (MOE), a selected species in Taiwan, and investigated their effects on various human lung cells. We found that MOE-induced apoptotic death in human A549 non-small-cell lung carcinoma (NSCLC) cells in a dose- and time-dependent manner. Treatment with the extracts also caused an increase in the sub-G1 fraction of cells, chromosome condensation, and DNA fragmentation. The mitochondrial-mediated pathway was implicated in this MOE-induced apoptosis as evidenced by the activation of the caspase cascade, cleavage of poly (ADP-ribose) polymerase (PARP), disruption of mitochondrial membrane potential, and release of cytochrome C. A higher ratio of Bax/Bcl-2 proteins and cleavage of Bid were also observed in MOE-induced cell apoptosis. In A549 tumor-xenografted nude mice, MOE also retarded in vivo proliferation (P < 0.05) and induced apoptosis in tumor cells, as shown by a decrease in Ki-67-positive staining (P < 0.05) and increased transferase-mediated dUTP nick-end labeling (TUNEL)-positive staining (P < 0.05). In conclusion, MOE inhibits the growth of human lung cancer cells in vitro and in vivo, suggesting that it may have therapeutic potential against human lung cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号