首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sympathetic nervous system plays a central role in lipolysis and the production of leptin in white adipose tissue (WAT). In this study, we have examined whether nerve growth factor (NGF), a target-derived neurotropin that is a key signal in the development and survival of sympathetic neurons, is expressed and secreted by white adipocytes. NGF mRNA was detected by RT-PCR in the major WAT depots of mice (epididymal, perirenal, omental, mesenteric, subcutaneous) and in human fat (subcutaneous, omental). In mouse WAT, NGF expression was observed in mature adipocytes and in stromal vascular cells. NGF expression was also evident in 3T3-L1 cells before and after differentiation into adipocytes. NGF protein, measured by ELISA, was secreted from 3T3-L1 cells, release being higher before differentiation. Addition of the sympathetic agonists norepinephrine, isoprenaline, or BRL-37344 (beta(3)-agonist) led to falls in NGF gene expression and secretion by 3T3-L1 adipocytes, as did IL-6 and the PPARgamma agonist rosiglitazone. A substantial decrease in NGF expression and secretion occurred with dexamethasone. In contrast, LPS increased NGF mRNA levels and NGF secretion. A major increase in NGF mRNA level (9-fold) and NGF secretion (相似文献   

2.
Corticosterone — product of 11-β-hydroxysteroid dehydrogenase type I (11βHSD1) stimulates adipocytes differentiation and activates lipogenic enzymes gene expression in white adipose tissue (WAT) of rats. The aim of the study was to examine the effect of chronic food restriction, often practised by obese individuals trying to lose body mass, on: a) 11βHSD1 gene expression, b) expression of genes associated with adipocyte differentiation (PPARg, SREBP-1, adiponectin), and c) expression of genes associated with lipogenesis in WAT of rats. Two-month old rats were divided into a control and a food restricted group obtaining 50% of food consumed by controls for 30 days. mRNA levels of studied genes in perirenal WAT were analysed by real-time PCR. 11βHSD1 and lipogenic enzymes activities were measured by radiometric conversion assay and by spectrophotometric assay respectively. Food restriction caused significant increase of 11βHSD1, PPARg, SREBP1, adiponectin and lipogenic enzymes mRNA levels in perirenal WAT. 11βHSD1 and some lipogenic enzymes activities were also increased by food restriction. The coordinated up-regulation of 11βHSD1, and genes associated with adipocyte differentiation and lipogenesis by food restriction suggests that such nutritional condition shifts WAT metabolism, that would permit this tissue to synthesize and accumulate triacylglycerols immediately after refeeding.  相似文献   

3.
CD24 is a glycophosphatidylinositol (GPI)-linked cell surface receptor that is involved in regulating the survival or differentiation of several different cell types. CD24 has been used to identify pre-adipocytes that are able to reconstitute white adipose tissue (WAT) in vivo. Moreover, we recently found that the dynamic upregulation of CD24 in vitro during early phases of adipogenesis is necessary for mature adipocyte development. To determine the role of CD24 in adipocyte development in vivo, we evaluated the development of the inguinal and interscapular subcutaneous WAT and the epididymal visceral WAT in mice with a homozygous deletion of CD24 (CD24KO). We observed a significant decrease in WAT mass of 40% to 74% in WAT mass from both visceral and subcutaneous depots in male mice, with no significant effect in female mice, compared to wild-type (WT) sex- and age-matched controls. We also found that CD24KO mice had increased fasting glucose and free fatty acids, decreased fasting insulin, and plasma leptin. No major differences were observed in the sensitivity to insulin or glucose, or in circulating triglycerides, total cholesterol, HDL-cholesterol, or LDL-cholesterol levels between WT and CD24KO mice. Challenging the CD24KO mice with either high sucrose (35%) or high fat (45%) diets that promote increased adiposity, increased WAT mass and fasting insulin, adiponectin and leptin levels, as well as reduced the sensitivity to insulin and glucose, to the levels of WT mice on the same diets. The CD24-mediated reduction in fat pad size was due to a reduction in adipocyte cell size in all depots with no significant reduction pre-adipocyte or adipocyte cell number. Thus, we have clearly demonstrated that the global absence of CD24 affects adipocyte cell size in vivo in a sex- and diet-dependent manner, as well as causing metabolic disturbances in glucose homeostasis and free fatty acid levels.  相似文献   

4.
5.
6.

Background

Inducing beige fat from white adipose tissue (WAT) is considered to be a shortcut to weight loss and increasingly becoming a key area in research into treatments for obesity and related diseases. However, currently, animal models of beige fat are restricted to rodents, where subcutaneous adipose tissue (sWAT, benign WAT) is more liable to develop into the beige fat under specific activators than the intra-abdominal adipose tissue (aWAT, malignant WAT) that is the major source of obesity related diseases in humans.

Methods

Here we induced beige fat by cold exposure in two species of bats, the great roundleaf bat (Hipposideros armiger) and the rickett''s big-footed bat (Myotis ricketti), and compared the molecular and morphological changes with those seen in the mouse. Expression of thermogenic genes (Ucp1 and Pgc1a) was measured by RT-qPCR and adipocyte morphology examined by HE staining at three adipose locations, sWAT, aWAT and iBAT (interscapular brown adipose tissue).

Results

Expression of Ucp1 and Pgc1a was significantly upregulated, by 729 and 23 fold, respectively, in aWAT of the great roundleaf bat after exposure to 10°C for 7 days. Adipocyte diameters of WATs became significantly reduced and the white adipocytes became brown-like in morphology. In mice, similar changes were found in the sWAT, but much lower amounts of changes in aWAT were seen. Interestingly, the rickett''s big-footed bat did not show such a tendency in beige fat.

Conclusions

The great roundleaf bat is potentially a good animal model for human aWAT browning research. Combined with rodent models, this model should be helpful for finding therapies for reducing harmful aWAT in humans.  相似文献   

7.
8.
9.
Adipose tissue is a connective tissue specified for energy metabolism and endocrines, but functional differences between subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) have not been fully elucidated. To reveal the physiological role of SAT, we characterized in vivo tissue development and in vitro adipocyte differentiation. In a DNA microarray analysis of SAT and VAT in Wistar rats, functional annotation clusters of extracellular matrix (ECM)-related genes were found in SAT, and major ECM molecules expressed in adipose tissues were profiled. In a histological analysis and quantitative expression analysis, ECM expression patterns could be classified into two types: (i) a histogenesis-correlated type such as type IV and XV collagen, and laminin subunits, (ii) a high-SAT expression type such as type I, III, and V collagen and minor characteristic collagens. Type (i) was related to basal membrane and up-regulated in differentiated 3T3-L1 cells and in histogenesis at depot-specific timings. In contrast, type (ii) was related to fibrous forming and highly expressed in 3T3-L1 preadipocytes. Exceptionally, fibronectin was abundant in developed adipose tissue, although it was highly expressed in 3T3-L1 preadipocytes. The present study showed that adipose tissues site-specifically regulate molecular type and timing of ECM expression, and suggests that these characteristic ECM molecules provide a critical microenvironment, which may affect bioactivity of adipocyte itself and interacts with other tissues. It must be important to consider the depot-specific property for the treatment of obesity-related disorders, dermal dysfunction and for the tissue regeneration.  相似文献   

10.
The role of obestatin, a 23-amino-acid peptide encoded by the ghrelin gene, on the control of the metabolism of pre-adipocyte and adipocytes as well as on adipogenesis was determined. For in vitro assays, pre-adipocyte and adipocyte 3T3-L1 cells were used to assess the obestatin effect on cell metabolism and adipogenesis based on the regulation of the key enzymatic nodes, Akt and AMPK and their downstream targets. For in vivo assays, white adipose tissue (WAT) was obtained from male rats under continuous subcutaneous infusion of obestatin. Obestatin activated Akt and its downstream targets, GSK3α/β, mTOR and S6K1, in 3T3-L1 adipocyte cells. Simultaneously, obestatin inactivated AMPK in this cell model. In keeping with this, ACC phosphorylation was also decreased. This fact was confirmed in vivo in white adipose tissue (omental, subcutaneous and gonadal) obtained from male rats under continuous sc infusion of obestatin (24 and 72 hrs). The relevance of obestatin as regulator of adipocyte metabolism was supported by AS160 phosphorylation, GLUT4 translocation and augment of glucose uptake in 3T3-L1 adipocyte cells. In contrast, obestatin failed to modify translocation of fatty acid transporters, FATP1, FATP4 and FAT/CD36, to plasma membrane. Obestatin treatment in combination with IBMX and DEX showed to regulate the expression of C/EBPα, C/EBPβ, C/EBPδ and PPARγ promoting adipogenesis. Remarkable, preproghrelin expression, and thus obestatin expression, increased during adipogenesis being sustained throughout terminal differentiation. Neutralization of endogenous obestatin secreted by 3T3-L1 cells by anti-obestatin antibody decreased adipocyte differentiation. Furthermore, knockdown experiments by preproghrelin siRNA supported that obestatin contributes to adipogenesis. In summary, obestatin promotes adipogenesis in an autocrine/paracrine manner, being a regulator of adipocyte metabolism. These data point to a putative role in the pathogenesis of metabolic syndrome.  相似文献   

11.
Adenine nucleotide translocases (ANTs) are mitochondrial proteins encoded by nuclear DNA that catalyze the exchange of ATP generated in the mitochondria for ADP produced in cytosol. There are four ANT isoforms in humans (hANT1-4) and three in mice (mANT1, mANT2 and mANT4), all encoded by distinct genes. The aim of this study was to quantify expression of ANT isoform genes during the adipogenesis of mouse 3T3-L1 and human Simpson–Golabi–Behmel syndrome (SGBS)-derived preadipocytes. We also studied the effects of the adipogenesis regulators, insulin and rosiglitazone, on ANT isoform expression in differentiated adipocytes and examined the expression of ANT isoforms in subcutaneous and visceral white adipose tissue (WAT) from mice and humans. We found that adipogenesis was associated with an increase in the expression of ANT isoforms, specifically mANT2 in mouse 3T3-L1 cells and hANT3 in human SGBS cells. These changes could be involved in the increases in oxidative metabolism and decreases in lactate production observed during differentiation. Insulin and rosiglitazone induced mANT2 gene expression in mature 3T3-L1 cells and hANT2 and hANT3 gene expression in SGBS adipocytes. Furthermore, human WAT expressed greater amounts of hANT3 than hANT2, and the expression of both of these isoforms was greater in subcutaneous WAT than in visceral WAT. Finally, inhibition of ANT activity by atractyloside or bongkrekic acid impaired proper adipocyte differentiation. These results suggest that changes in the expression of ANT isoforms may be involved in adipogenesis in both human and mouse WAT.  相似文献   

12.
13.
14.
15.
Objective: Salt restriction has been reported to increase white adipose tissue (WAT) mass in rodents. The objective of this study was to investigate the effect of different sodium content diets on the lipogenic and lipolytic activities of WAT. Research Methods and Procedures: Male Wistar rats were fed on normal‐sodium (NS; 0.5% Na+), high‐sodium (HS; 3.12% Na+), or low‐sodium (LS; 0.06% Na+) diets for 3, 6, and 9 weeks after weaning. Blood pressure (BP) was measured using a computerized tail‐cuff system. At the end of each period, rats were killed and blood samples were collected for leptin determinations. The WAT from abdominal and inguinal subcutaneous (SC), periepididymal (PE) and retroperitoneal (RP) depots was weighed and processed for adipocyte isolation, rate measurement of lipolysis and d ‐[U‐14C]‐glucose incorporation into lipids, glucose‐6‐phosphate dehydrogenase (G6PDH) and malic enzyme activity evaluation, and determination of G6PDH and leptin mRNA expression. Results: After 6 weeks, HS diet significantly increased BP; SC, PE, and RP WAT masses; PE adipocyte size; plasma leptin concentration; G6PDH activity in SC WAT; and PE depots and malic activity only in SC WAT. The leptin levels correlated positively with WAT masses and adipocyte size. An increase in the basal and isoproterenol‐stimulated lipolysis and in the ability to incorporate glucose into lipids was observed in isolated adipocytes from HS rats. Discussion: HS diet induced higher adiposity characterized by high plasma leptin concentration and adipocyte hypertrophy, probably due to an increased lipogenic capacity of WAT.  相似文献   

16.
Insulin resistance (IR) underlies metabolic disease. Visceral, but not subcutaneous, white adipose tissue (WAT) has been linked to the development of IR, potentially due to differences in regulatory protein abundance. Here we investigate how protein levels are changed in IR in different WAT depots by developing a targeted proteomics approach to quantitatively compare the abundance of 42 nuclear proteins in subcutaneous and visceral WAT from a commonly used insulin-resistant mouse model, Lepr(db/db), and from C57BL/6J control mice. The most differentially expressed proteins were important in adipogenesis, as confirmed by siRNA-mediated depletion experiments, suggesting a defect in adipogenesis in visceral, but not subcutaneous, insulin-resistant WAT. Furthermore, differentiation of visceral, but not subcutaneous, insulin-resistant stromal vascular cells (SVCs) was impaired. In an in vitro approach to understand the cause of this impaired differentiation, we compared insulin-resistant visceral SVCs to preadipocyte cell culture models made insulin resistant by different stimuli. The insulin-resistant visceral SVC protein abundance profile correlated most with preadipocyte cell culture cells treated with both palmitate and TNFα. Together, our study introduces a method to simultaneously measure and quantitatively compare nuclear protein expression patterns in primary adipose tissue and adipocyte cell cultures, which we show can reveal relationships between differentiation and disease states of different adipocyte tissue types.  相似文献   

17.
BackgroundThe regulative effects of caudatin, a C-21 steroid that is identified from Cynanchum bungee roots, on adipogenesis and obesity have not been studied. Many studies have demonstrated that the activation of hedgehog (Hh) signaling can help prevent obesity. Therefore, we hypothesized that caudatin can inhibit adipogenesis and obesity via activating the Hh signaling pathway.MethodsTo investigate the effects of caudatin on adipogenesis in 3T3-L1 preadipocytes and high-fat diet induced obesity in C57BL/6 mice, in vitro and in vivo experiments were performed. For in vitro evaluation, Oil red O staining were used to represent lipid accumulation in differentiated 3T3-L1 adipocytes. For in vivo assessment, male 5 week-old C57BL/6 mice were fed with standard chow diet, high-fat diet (HFD), HFD with 25 mg/kg caudatin, HFD with 1mg/kg purmorpharmine for 10 weeks, respectively. Hh signaling and key adipogenic marker involved in adipogenesis were evaluated by real-time PCR and western blot. The adipocyte size of white adopose tissue and lipid storage of liver were visualized by hematoxylin and eosin staining. In addition, the expression of Gli1 and peroxisome proliferator-activated receptor γ (PPARγ) in white adipose tissue were investigated by immunohistochemistry staining.ResultsCaudatin suppressed the accumulation of lipid droplets and downregulated the expression of key adipogenic factors, i.e., peroxisome proliferator-activated receptor γ PPARγ and CCAAT-enhancer binding protein α (C/EBPα), through activating Hh signaling in differentiated 3T3-L1 cells. Furthermore, caudatin and the Hh activator purmorpharmine significantly decreased body weight gain and white adipose tissue (WAT) weight in HFD-induced mice and affected adipogenic markers and Hh signaling mediators in WAT, which were in line with the in vitro experimental results.ConclusionTo our best knowledge, it is the first report to demonstrate that caudatin downregulated adipocyte differentiation and suppressed HFD-induced body weight gain through activating the Hh signaling pathway, suggesting that caudatin can potentially counteract obesity.  相似文献   

18.
Lactoferrin is considered an epithelial protein present in different gland secretions. Administration of exogenous lactoferrin is also known to modulate adipogenesis and insulin action in human adipocytes. Here, we aimed to investigate lactoferrin gene expression (real-time polymerase chain reaction) and protein (enzyme-linked immunosorbent assay) levels in human (n=143) and mice adipose tissue samples, in adipose tissue fractions and during human preadipocyte and 3T3-L1 cell line differentiation, evaluating the effects of inducers (rosiglitazone) and disruptors (inflammatory factors) of adipocyte differentiation. Lactoferrin (LTF) gene and protein were detectable at relatively high levels in whole adipose tissue and isolated adipocytes in direct association with low-density lipoprotein-related protein 1 (LRP1, its putative receptor). Obese subjects with type 2 diabetes and increased triglycerides had the lowest levels of LTF gene expression in subcutaneous adipose tissue. Specifically, LTF gene expression was significantly increased in adipocytes, mainly from lean subjects, increasing during differentiation in parallel to adipogenic genes and gene markers of lipid droplets. The induction or disruption of adipogenesis led to concomitant changes (increase and decrease, respectively) of lactoferrin levels during adipocyte differentiation also in parallel to gene markers of adipogenesis and lipid droplet development. The administration of lactoferrin led to autopotentiated increased expression of the LTF gene. The decreased lactoferrin mRNA levels in association with obesity and diabetes were replicated in mice adipose tissue. In conclusion, this is the first observation, to our knowledge, of lactoferrin gene expression in whole adipose tissue and isolated adipocytes, increasing during adipogenesis and suggesting a possible contribution in adipose tissue physiology through LRP1.  相似文献   

19.
Peroxisome proliferator-activated receptor-α (PPARα) is a dietary lipid sensor, whose activation results in hypolipidemic effects. In this study, we investigated whether PPARα activation affects energy metabolism in white adipose tissue (WAT). Activation of PPARα by its agonist (bezafibrate) markedly reduced adiposity in KK mice fed a high-fat diet. In 3T3-L1 adipocytes, addition of GW7647, a highly specific PPARα agonist, during adipocyte differentiation enhanced glycerol-3-phosphate dehydrogenase activity, insulin-stimulated glucose uptake, and adipogenic gene expression. However, triglyceride accumulation was not increased by PPARα activation. PPARα activation induced expression of target genes involved in FA oxidation and stimulated FA oxidation. In WAT of KK mice treated with bezafibrate, both adipogenic and FA oxidation-related genes were significantly upregulated. These changes in mRNA expression were not observed in PPARα-deficient mice. Bezafibrate treatment enhanced FA oxidation in isolated adipocytes, suppressing adipocyte hypertrophy. Chromatin immunoprecipitation (ChIP) assay revealed that PPARα was recruited to promoter regions of both adipogenic and FA oxidation-related genes in the presence of GW7647 in 3T3-L1 adipocytes. These findings indicate that the activation of PPARα affects energy metabolism in adipocytes, and PPARα activation in WAT may contribute to the clinical effects of fibrate drugs.  相似文献   

20.
This study investigated the regulation of thermogenic capacity in classical brown adipose tissue (BAT) and subcutaneous inguinal (SC Ing) white adipose tissue (WAT) and how it affects whole-body energy expenditure in sedentary and endurance-trained rats fed ad libitum either low fat or high fat (HF) diets. Analysis of tissue mass, PGC-1α and UCP-1 content, the presence of multilocular adipocytes, and palmitate oxidation revealed that a HF diet increased the thermogenic capacity of the interscapular and aortic brown adipose tissues, whereas exercise markedly suppressed it. Conversely, exercise induced browning of the SC Ing WAT. This effect was attenuated by a HF diet. Endurance training neither affected skeletal muscle FNDC5 content nor circulating irisin, but it increased FNDC5 content in SC Ing WAT. This suggests that locally produced FNDC5 rather than circulating irisin mediated the exercise-induced browning effect on this fat tissue. Importantly, despite reducing the thermogenic capacity of classical BAT, exercise increased whole-body energy expenditure during the dark cycle. Therefore, browning of subcutaneous WAT likely exerted a compensatory effect and raised whole-body energy expenditure in endurance-trained rats. Based on these novel findings, we propose that exercise-induced browning of the subcutaneous WAT provides an alternative mechanism that reduces thermogenic capacity in core areas and increases it in peripheral body regions. This could allow the organism to adjust its metabolic rate to accommodate diet-induced thermogenesis while simultaneously coping with the stress of chronically increased heat production through exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号