首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.

Background

T-cell responses against dormancy-, resuscitation-, and reactivation-associated antigens of Mycobacterium tuberculosis are candidate biomarkers of latent infection in humans.

Methodology/Principal Findings

We established an assay based on two rounds of in vitro restimulation and intracellular cytokine analysis that detects T-cell responses to antigens expressed during latent M. tuberculosis infection. Comparison between active pulmonary tuberculosis (TB) patients and healthy latently M. tuberculosis-infected donors (LTBI) revealed significantly higher T-cell responses against 7 of 35 tested M. tuberculosis latency-associated antigens in LTBI. Notably, T cells specific for Rv3407 were exclusively detected in LTBI but not in TB patients. The T-cell IFNγ response against Rv3407 in individual donors was the most influential factor in discrimination analysis that classified TB patients and LTBI with 83% accuracy using cross-validation. Rv3407 peptide pool stimulations revealed distinct candidate epitopes in four LTBI.

Conclusions

Our findings further support the hypothesis that the latency-associated antigens can be exploited as biomarkers for LTBI.  相似文献   

2.
Mycobacterium tuberculosis resides and replicates within host phagocytes by modulating host microbicidal responses. In addition, it suppresses the production of host protective cytokines to prevent activation of and antigen presentation by M. tuberculosis-infected cells, causing dysregulation of host protective adaptive immune responses. Many cytokines are regulated by microRNAs (miRNAs), a newly discovered class of small noncoding RNAs, which have been implicated in modulating host immune responses in many bacterial and viral diseases. Here, we show that miRNA-99b (miR-99b), an orphan miRNA, plays a key role in the pathogenesis of M. tuberculosis infection. We found that miR-99b expression was highly up-regulated in M. tuberculosis strain H37Rv-infected dendritic cells (DCs) and macrophages. Blockade of miR-99b expression by antagomirs resulted in significantly reduced bacterial growth in DCs. Interestingly, knockdown of miR-99b in DCs significantly up-regulated proinflammatory cytokines such as IL-6, IL-12, and IL-1β. Furthermore, mRNA and membrane-bound protein data indicated that inhibition of miR-99b augments TNF-α and TNFRSF-4 production. Thus, miR-99b targets TNF-α and TNFRSF-4 receptor genes. Treatment of anti-miR-99b-transfected DCs with anti-TNF-α antibody resulted in increased bacterial burden. Thus, our findings unveil a novel host evasion mechanism adopted by M. tuberculosis via miR-99b, which may open up new avenues for designing miRNA-based vaccines and therapies.  相似文献   

3.
4.

Background

IFN-γ and IL-2 cytokine-profiles define three functional T-cell subsets which may correlate with pathogen load in chronic intracellular infections. We therefore investigated the feasibility of the immunospot platform to rapidly enumerate T-cell subsets by single-cell IFN-γ/IL-2 cytokine-profiling and establish whether immunospot-based T-cell signatures distinguish different clinical stages of human tuberculosis infection.

Methods

We used fluorophore-labelled anti-IFN-γ and anti-IL-2 antibodies with digital overlay of spatially-mapped colour-filtered images to enumerate dual and single cytokine-secreting M. tuberculosis antigen-specific T-cells in tuberculosis patients and in latent tuberculosis infection (LTBI). We validated results against established measures of cytokine-secreting T-cells.

Results

Fluorescence-immunospot correlated closely with single-cytokine enzyme-linked-immunospot for IFN-γ-secreting T-cells and IL-2-secreting T-cells and flow-cytometry-based detection of dual IFN-γ/IL-2-secreting T-cells. The untreated tuberculosis signature was dominated by IFN-γ-only-secreting T-cells which shifted consistently in longitudinally-followed patients during treatment to a signature dominated by dual IFN-γ/IL-2-secreting T-cells in treated patients. The LTBI signature differed from active tuberculosis, with higher proportions of IL-2-only and IFN-γ/IL-2-secreting T-cells and lower proportions of IFN-γ-only-secreting T-cells.

Conclusions

Fluorescence-immunospot is a quantitative, accurate measure of functional T-cell subsets; identification of cytokine-signatures of pathogen burden, distinct clinical stages of M. tuberculosis infection and long-term immune containment suggests application for treatment monitoring and vaccine evaluation.  相似文献   

5.

Background

Tuberculosis (TB) is a disease caused by the chronic and continuous infection of the pathogen Mycobacterium tuberculosis (M. tuberculosis). M. tuberculosis is an intracellular bacterial pathogen and is eliminated mainly through CD4+ effector Th cells. M. tuberculosis induces regulatory T lymphocytes (Tregs) that mediate immune suppression by cell-to-cell contact or by secreting cytokines such as transforming growth factor-β (TGF-β). To understand the role of regulatory T-cells in the pathogenesis of TB, we have measured the in vivo frequency of regulatory T-cells and associated in vivo cytokine production in pulmonary tuberculosis patients.

Methodology/Principal Findings

In this study, we analyzed blood samples from 3 different populations (Group 1: patients with active TB, Group 2: patients recovered from TB and Group 3: healthy controls). We measured natural regulatory T-cell expression in peripheral blood using flow cytometry, and levels of blood serum IFN-γ and TGF-β1 using ELISA. The in vivo function of inductive regulatory T cells was mainly indicated by the expression of IFN-γ, TGF-β1, etc. Frequencyof natural regulatory T cells and inductive regulatory T cells in the peripheral blood samples from Group 1 patients were all significantly higher (P<0.05) than those from Groups 2 and 3.

Conclusion/Significance

Our results indicate that frequency of natural regulatory T cells and inductive regulatory T cells are significantly higher in the peripheral blood of patients with active pulmonary tuberculosis. These findings have potential application in improving TB diagnostic methods.  相似文献   

6.
PPE68 (Rv3873), a major antignic protein encoded by Mycobacteriun tuberculosis-specific genomic region of difference (RD)1, is a strong stimulator of peripheral blood mononuclear cells (PBMCs) obtained from tuberculosis patients and Mycobacterium bovis bacillus Calmette Guerin (BCG)-vaccianted healthy subjects in T helper (Th)1 cell assays, i.e. antigen-induced proliferation and interferon-gamma (IFN-γ) secretion. To confirm the antigen-specific recognition of PPE68 by T cells in IFN-γ assays, antigen-induced human T-cell lines were established from PBMCs of M. Bovis BCG-vaccinated and HLA-heterogeneous healthy subjects and tested with peptide pools of RD1 proteins. The results showed that PPE68 was recognized by antigen-specific T-cell lines from HLA-heteregeneous subjects. To further identify the immunodominant and HLA-promiscuous Th1-1 cell epitopes present in PPE68, 24 synthetic peptides covering the sequence of PPE68 were indivdually analyzed for HLA-DR binding prediction analysis and tested with PBMCs from M. bovis BCG-vaccinated and HLA-heterogeuous healthy subjects in IFN-γ assays. The results identified the peptide P9, i.e. aa 121-VLTATNFFGINTIPIALTEMDYFIR-145, as an immunodominant and HLA-DR promiscuous peptide of PPE68. Furthermore, by using deletion peptides, the immunodominant and HLA-DR promiscuous core sequence was mapped to aa 127-FFGINTIPIA-136. Interestingly, the core sequence is present in several PPE proteins of M. tuberculosis, and conserved in all sequenced strains/species of M. tuberculosis and M. tuberculosis complex, and several other pathogenic mycobacterial species, including M. leprae and M. avium-intracellulalae complex. These results suggest that the peptide aa 121–145 may be exploited as a peptide-based vaccine candidate against tuberculosis and other mycobacterial diseases.  相似文献   

7.
Expression profiling of microRNAs (miRNAs) in most diseases might be popular and provide the possibility for diagnostic implication, but few studies have accurately quantified the expression level of dysregulated miRNAs in acute myeloid leukemia (AML). In this study, we analyzed the peripheral blood mononuclear cells (PBMCs) from 10 AML patients (subtypes M1 to M5) and six normal controls by miRNA microarray and identified several differentially expressed miRNAs. Among them miR-29a and miR-142-3p were selectively encountered in Northern blot analysis and their significantly decreased expression in AML was further confirmed. Quantitative real-time PCR in 52 primarily diagnosed AML patients and 100 normal controls not only verified the expression properties of these 2 miRNAs, but also established that the expression level of miR-142-3p and miR-29a in PBMCs could be used as novel diagnostic markers. A better diagnostic outcome was achieved by combining miR-29a and miR-142-3p with about 90% sensitivity, 100% specificity, and an area under the ROC curve (AUC) of 0.97. Our results provide insights into the involvement of miRNAs in leukemogenesis, and offer candidates for AML diagnosis and therapeutic strategy.  相似文献   

8.
CD8 T cells play a critical role in control of chronic viral infections; however, the role of these cells in containing persistent bacterial infections, such as those caused by Mycobacterium tuberculosis (Mtb), is less clear. We assessed the phenotype and functional capacity of CD8 T cells specific for the immunodominant Mtb antigens CFP-10 and ESAT-6, in patients with pulmonary tuberculosis (TB) disease, before and after treatment, and in healthy persons with latent Mtb infection (LTBI). In patients with TB disease, CFP-10/ESAT-6-specific IFN-γ+ CD8 T cells had an activated, pro-apoptotic phenotype, with lower Bcl-2 and CD127 expression, and higher Ki67, CD57, and CD95 expression, than in LTBI. When CFP-10/ESAT-6-specific IFN-γ+ CD8 T cells were detectable, expression of distinct combinations of these markers was highly sensitive and specific for differentiating TB disease from LTBI. Successful treatment of disease resulted in changes of these markers, but not in restoration of CFP-10/ESAT-6-specific CD8 or CD4 memory T cell proliferative capacity. These data suggest that high mycobacterial load in active TB disease is associated with activated, short-lived CFP-10/ESAT-6-specific CD8 T cells with impaired functional capacity that is not restored following treatment. By contrast, LTBI is associated with preservation of long-lived CFP-10/ESAT-6-specific memory CD8 T cells that maintain high Bcl-2 expression and which may readily proliferate.  相似文献   

9.

Background

Activation of innate immunity via pathogen recognition receptors (PRR) modulates adaptive immune responses. PRR ligands are being exploited as vaccine adjuvants and as therapeutics, but their utility in diagnostics has not been explored. Interferon-gamma (IFN-γ) release assays (IGRAs) are functional T cell assays used to diagnose latent tuberculosis infection (LTBI); however, novel approaches are needed to improve their sensitivity.

Methods

In vitro immunomodulation of a whole blood IGRA (QuantiFERON®-TB GOLD In-Tube) with Toll-like receptor agonists poly(I:C), LPS, and imiquimod was performed on blood from subjects with LTBI and negative controls.

Results

In vitro immunomodulation significantly enhanced the response of T cells stimulated with M. tuberculosis antigens from subjects with LTBI but not from uninfected controls. Immunomodulation of IGRA revealed T cell responses in subjects with LTBI whose T cells otherwise do not respond to in vitro stimulation with antigens alone. Similar to their in vivo functions, addition of poly(I:C) and LPS to whole blood induced secretion of inflammatory cytokines and IFN-α and enhanced the surface expression of antigen presenting and costimulatory molecules on antigen presenting cells.

Conclusions

In vitro immunomodulation of whole blood IGRA may be an effective strategy for enhancing the sensitivity of T cells for diagnosis of LTBI.  相似文献   

10.
11.
microRNAs (miRNAs) are small non-coding RNAs that can function as endogenous silencers of target genes and play critical roles in human malignancies. To investigate the molecular pathogenesis of gastric mucosa-associated lymphoid tissue (MALT) lymphoma, the miRNA expression profile was analyzed. miRNA microarray analysis with tissue specimens from gastric MALT lymphomas and surrounding non-tumor mucosae revealed that a hematopoietic-specific miRNA miR-142 and an oncogenic miRNA miR-155 were overexpressed in MALT lymphoma lesions. The expression levels of miR-142-5p and miR-155 were significantly increased in MALT lymphomas which do not respond to Helicobacter pylori (H. pylori) eradication. The expression levels of miR-142-5p and miR-155 were associated with the clinical courses of gastric MALT lymphoma cases. Overexpression of miR-142-5p and miR-155 was also observed in Helicobacter heilmannii-infected C57BL/6 mice, an animal model of gastric MALT lymphoma. In addition, miR-142-5p and miR-155 suppress the proapoptotic gene TP53INP1 as their target. The results of this study indicate that overexpression of miR-142-5p and miR-155 plays a critical role in the pathogenesis of gastric MALT lymphoma. These miRNAs might have potential application as therapeutic targets and novel biomarkers for gastric MALT lymphoma.  相似文献   

12.
Maternal cigarette smoking during pregnancy is associated with poor fetal outcome and aberrant miRNA expression is associated with adverse pregnancy outcomes. In 25 human placentas, we analyzed the expression of four candidate miRNA previously implicated in growth and developmental processes: miR-16, miR-21, miR-146a and miR-182, and used three immortalized placental cell lines to identify if specific components of cigarette smoke were responsible for alterations to miRNA expression. miR-16, miR-21 and miR-146a were significantly downregulated in cigarette smoke-exposed placentas compared to controls. TCL-1 cells exposed to both nicotine and benzo(a)pyrene exhibited significant, dose-dependent downregulation of miR-146a. These results suggest that miR-146a is particularly responsive to exposures, and that smoking may elicit some of its downstream effects through alteration of miRNA expression.Key words: miRNA, placenta, cigarette smoking, nicotine, benzo(a)pyrene, epigenetics  相似文献   

13.
Bacille Calmette–Guérin (BCG) immunization provides variable protection against tuberculosis. Prenatal antigen exposure may have lifelong effects on responses to related antigens and pathogens. We therefore hypothesized that maternal latent Mycobacterium tuberculosis infection (LTBI) influences infant responses to BCG immunization at birth. We measured antibody (n = 53) and cellular (n = 31) responses to M. tuberculosis purified protein derivative (PPD) in infants of mothers with and without LTBI, in cord blood and at one and six weeks after BCG. The concentrations of PPD-specific antibodies declined between birth (median [interquartile range (IQR)]) 5600 ng ml−1 [3300–11 050] in cord blood) and six weeks (0.00 ng ml−1 [0–288]). Frequencies of PPD-specific IFN-γ-expressing CD4+T cells increased at one week and declined between one and six weeks (p = 0.031). Frequencies of IL-2- and TNF-α-expressing PPD-specific CD4+T cells increased between one and six weeks (p = 0.019, p = 0.009, respectively). At one week, the frequency of PPD-specific CD4+T cells expressing any of the three cytokines, combined, was lower among infants of mothers with LTBI, in crude analyses (p = 0.002) and after adjusting for confounders (mean difference, 95% CI −0.041% (−0.082, −0.001)). In conclusion, maternal LTBI was associated with lower infant anti-mycobacterial T-cell responses immediately following BCG immunization. These findings are being explored further in a larger study.  相似文献   

14.

Background

Antigen specific release of IP-10 is the most promising alternative marker to IFN-γ for infection with M. tuberculosis. Compared to Interferon-γ release assays (IGRA), IP-10 is released in high levels enabling novel approaches such as field friendly dried blood spots (DBS) and molecular detection.

Aim

To develop a robust IP-10 based molecular assay for the diagnosis of infection with M. tubercuolsis from whole blood and DBS.

Method

We developed a one-step probe based multiplex RT-qPCR assay for detecting IP-10 and IFN-γ mRNA expression from whole blood and DBS samples. The assay was validated and applied for the diagnosis of M. tuberculosis infection in DBS samples from 43 patients with confirmed TB, 13 patients with latent TB and 96 presumed uninfected controls. In parallel, IP-10 and INF-γ levels were measured in Quantiferon (QFT-TB) plasma supernatants.

Results

IP-10 mRNA upregulation was detectable at 4 hours after stimulation (6 fold upregulation) peaking at 8 hours (108 fold upregulation). IFN-γ expression occurred in concert but levels were lower (peak 6.7 fold upregulation). IP-10 gene expression level was significantly higher in patients with tuberculosis (median 31.2, IQR 10.7–67.0) and persons with latent tuberculosis infection (LTBI) (41.2, IQR 9.8–64.9) compared to healthy controls (1.6, IQR 1.1–2.4; p<0.0001). The IP-10 mRNA and protein based tests had comparable diagnostic accuracy to QFT-TB, sensitivity (85% and 88% vs 85%) and specificity (96% and 96% vs 97%, p = ns.).

Conclusion

We developed a rapid, robust and accurate molecular immunodiagnostic test for M. tuberculosis infection. By combining DBS based sample acquisition, mail or currier based sample transport with centralized molecular detection, this immunodiagnostic test concept can reduce the local technological requirements everywhere and make it possible to offer highly accurate immunodiagnostic tests in low resource settings.  相似文献   

15.

Background and Aims

Cholangiocarcinoma (CCA) is highly resistant to chemotherapy, including gemcitabine (Gem) treatment. MicroRNAs (miRNAs) are endogenous, non-coding, short RNAs that can regulate multiple genes expression. Some miRNAs play important roles in the chemosensitivity of tumors. Here, we examined the relationship between miRNA expression and the sensitivity of CCA cells to Gem.

Methods

Microarray analysis was used to determine the miRNA expression profiles of two CCA cell lines, HuH28 and HuCCT1. To determine the effect of candidate miRNAs on Gem sensitivity, expression of each candidate miRNA was modified via either transfection of a miRNA mimic or transfection of an anti-oligonucleotide. Ontology-based programs were used to identify potential target genes of candidate miRNAs that were confirmed to affect the Gem sensitivity of CCA cells.

Results

HuCCT1 cells were more sensitive to Gem than were HuH28 cells, and 18 miRNAs were differentially expressed whose ratios over ± 2log2 between HuH28 and HuCCT1. Among these 18 miRNAs, ectopic overexpression of each of three downregulated miRNAs in HuH28 (miR-29b, miR-205, miR-221) restored Gem sensitivity to HuH28. Suppression of one upregulated miRNA in HuH28, miR-125a-5p, inhibited HuH28 cell proliferation independently to Gem treatment. Selective siRNA-mediated downregulation of either of two software-predicted targets, PIK3R1 (target of miR-29b and miR-221) or MMP-2 (target of miR-29b), also conferred Gem sensitivity to HuH28.

Conclusions

miRNA expression profiling was used to identify key miRNAs that regulate Gem sensitivity in CCA cells, and software that predicts miRNA targets was used to identify promising target genes for anti-tumor therapies.  相似文献   

16.
17.
18.

Background

To evaluate interleukin (IL)-2 and interferon (IFN)-γ secreting T-cells in parallel for the differentiation of latent infection with Mycobacterium tuberculosis infection (LTBI) from active tuberculosis.

Methods

Following ex-vivo stimulation of peripheral blood mononuclear cells (PBMC) with M. tuberculosis-specific antigens early secretory antigenic target (ESAT)-6 and culture filtrate protein (CFP)-10, immune responses were assessed by enzyme-linked immunospot IFN-γ release assay (EliSpot-IGRA) and a novel dual cytokine detecting fluorescence-linked immunospot (FluoroSpot) in 18 patients with pulmonary tuberculosis, 10 persons with previously cured tuberculosis, 25 individuals with LTBI and 16 healthy controls.

Results

Correlation of IFN- γ+ spot-forming cells in EliSpot-IGRA and FluoroSpot were R2 = 0.67 for ESAT-6 and R2 = 0.73 for CFP-10. The number of IL-2- IFN- γ+ producing cells was higher in patients with tuberculosis compared with past tuberculosis (CFP-10-induced p = 0.0068) or individuals with LTBI (ESAT-6-induced p = 0.0136). A cutoff value of >16 CFP-10-induced IFN-γ+ secreting cells/200.000 PBMC in the EliSpot-IGRA discriminated with highest sensitivity and specificity (89% and 76%, respectively). However, overlap in cytokine responses precludes distinction between the cohorts on an individual basis.

Conclusions

Combined analysis of IFN-γ and IL-2 secretion by antigen specific T-cells does not allow a reliable differentiation between different states of M. tuberculosis infection in clinical practice.  相似文献   

19.
20.
Mycobacterium bovis bacille Calmette-Guérin (BCG) is the most widely used live attenuated vaccine. However, the correlates of protection and waning of its immunity against tuberculosis is poorly understood. In this study, we correlated the longitudinal changes in the magnitude and functional quality of CD4+ and CD8+ T-cell response over a period of two years after mucosal or parenteral BCG vaccination with the strength of protection against Mycobacterium tuberculosis in mice. The BCG vaccination-induced CD4+ and CD8+ T cells exhibited comparable response kinetics but distinct functional attributes in-terms of IFN-γ, IL-2 and TNF-α co-production and CD62L memory marker expression. Despite a near life-long BCG persistence and the induction of enduring CD4+ T-cell responses characterized by IFN-γ and/or TNF-α production with comparable protection, the protective efficacy waned regardless of the route of vaccination. The progressive decline in the multifactorial functional abilities of CD4+ and CD8+ T cells in-terms of type-1 cytokine production, proliferation and cytolytic potential corresponded with the waning of protection against M. tuberculosis infection. In addition, simultaneous increase in the dysfunctional and terminally-differentiated T cells expressing CTLA-4, KLRG-1 and IL-10 during the contraction phase of BCG-induced response coincided with the loss of protection. Our results question the empirical development of BCG-booster vaccines and emphasize the pursuit of strategies that maintain superior T-cell functional capacity. Furthermore, our results underscore the importance of understanding the comprehensive functional dynamics of antigen-specific T-cell responses in addition to cytokine polyfunctionality in BCG-vaccinated hosts while optimizing novel vaccination strategies against tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号