首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fructose 1,6-diphosphate (FDP) is a widely used medicine and is also a precursor of two important three-carbon phosphates – glyceraldehyde 3-phosphate (GA3P) and dihydroxyacetone phosphate (DHAP) for the biosynthesis of numerous fine chemicals. An in vitro synthetic cofactor-free enzymatic pathway comprised of four hyperthermophilic enzymes was designed to produce FDP from starch and pyrophosphate. All of four hyperthermophilic enzymes (i.e., alpha-glucan phosphorylase from Thermotaga maritima, phosphoglucomutase from Thermococcus kodakarensis, glucose 6-phosphate isomerase from Thermus thermophilus, and pyrophosphate phosphofructokinase from T. maritima) were overexpressed in E. coli BL21(DE3) and purified by simple heat precipitation. The optimal pH and temperature of one-pot biosynthesis were 7.2 and 70 °C, respectively. The optimal enzyme ratios of αGP, PGM, PGI and PFK were 2:2:1:2 in terms of units. Via step-wise addition of new substrates, up to 125 ± 4.6 mM FDP was synthesized after 7-h reaction. This de novo ATP-free enzymatic pathway comprised of all hyperthermophilic enzymes could drastically decrease the manufacturing costs of FDP and its derivatives GA3P and DHAP, better than those catalyzed by ATP-regeneration cascade biocatalysis, the use of mesophilic enzymes, whole cell lysates, and microbial cell factories.  相似文献   

2.
One‐step enzyme purification and immobilization were developed based on simple adsorption of a family 3 cellulose‐binding module (CBM)‐tagged protein on the external surface of high‐capacity regenerated amorphous cellulose (RAC). An open reading frame (ORF) Cthe0217 encoding a putative phosphoglucose isomerase (PGI, EC 5.3.1.9) from a thermophilic bacterium Clostridium thermocellum was cloned and the recombinant proteins with or without CBM were over‐expressed in Escherichia coli. The rate constant (kcat) and Michaelis–Menten constant (Km) of CBM‐free PGI at 60°C were 2,765 s?1 and 2.89 mM, respectively. PGI was stable at a high protein concentration of 0.1 g/L but deactivated rapidly at low concentrations. Immobilized CBM (iCBM)‐PGI on RAC was extremely stable at ~60°C, nearly independent of its mass concentration in bulk solution, because its local concentration on the solid support was constant. iCBM‐PGI at a low concentration of 0.001 g/L had a half‐life time of 190 h, approximately 80‐fold of that of free PGI. Total turn‐over number of iCBM‐PGI was as high as 1.1 × 109 mole of product per mole of enzyme at 60°C. These results suggest that a combination of low‐cost enzyme immobilization and thermoenzyme led to an ultra‐stable enzyme building block suitable for cell‐free synthetic pathway biotransformation that can implement complicated biochemical reactions in vitro. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011.  相似文献   

3.
ORF MJ1605, previously annotated as pgi and coding for the putative glucose-6-phosphate isomerase (phosphoglucose isomerase, PGI) of the hyperthermophilic archaeon Methanococcus jannaschii, was cloned and functionally expressed in Escherichia coli. The purified 80-kDa protein consisted of a single subunit of 45 kDa, indicating a homodimeric (2) structure. The K m values for fructose 6-phosphate and glucose 6-phosphate were 0.04 mM and 1 mM, the corresponding V max values were 20 U/mg and 9 U/mg, respectively (at 50 °C). The enzyme had a temperature optimum at 89 °C and showed significant thermostability up to 95 °C. The enzyme was inhibited by 6-phosphogluconate and erythrose-4-phosphate. RT-PCR experiments demonstrated in vivo expression of ORF MJ1618 during lithoautotrophic growth of M. jannaschii on H2/CO2. Phylogenetic analyses indicated that M. jannaschii PGI was obtained from bacteria, presumably from the hyperthermophile Thermotoga maritima.  相似文献   

4.
Phosphoglucose isomerase negative mutant of mucoid Pseudomonas aeruginosa accumulated relatively higher concentration of fructose 1,6-bisphosphate (Fru-1,6-P2) when mannitol induced cells were incubated with this sugar alcohol. Also the toluene-treated cells of fructose 1,6-bisphosphate aldolase negative mutant of this organism produced Fru-1,6-P2 from fructose 6-phosphate in presence of ATP, but not from 6-phosphogluconate. The results together suggested the presence of an ATP-dependent fructose 6-phosphate kinase (EC 2.7.1.11) in mucoid P. aeruginosa.Abbreviations ALD Fru-1,6-P2 aldolse - DHAP dihydroxyacetone phosphate - F6P fructose 6-phosphate - G6P glucose 6-phosphate - Gly3P glyceraldehyde 3-phosphate - KDPG 2-keto 3-deoxy 6-phosphogluconate - PFK fructose 6-phosphate kinase - PGI phosphoglucose isomerase - 6PG 6-phosphogluconate  相似文献   

5.
Banerjee  S.  Archana  A.  Satyanarayana  T. 《Current microbiology》1994,29(6):349-352
The thermophilic mouldMalbranchea pulchella var.sulfurea TMD-8 produced extracellular xylanases in wheat straw hemicellulose as well as wheat straw. This mould utilized xylose less efficiently than glucose. Mycelial extracts contained xylose isomerase, xylose reductase, and xylitol dehydrogenase. Xylose isomerase was less thermostable than that from other microorganisms. However, xylitol dehydrogenase and xylose reductase were relatively more thermostable in comparison with these enzymes from other microorganisms. The affinity of xylose isomerase for xylose was very high (Km 10mM), while that of xylose reductase was low (Km 23.5mM). The xylitol dehydrogenase exhibited relatively high affinity for xylitol (Km 0.02mM). The activity of this enzyme, however, declined steeply, in the alkaline range. This is the first report on the occurrence of three intracellular enzymes, xylose isomerase, xylose reductase, and xylitol dehydrogenase in a thermophilic mould, which play an important role in xylose metabolism.  相似文献   

6.
Lactobacillus panis PM1 belongs to the group III heterofermentative lactobacilli that use the 6-phosphogluconate/phosphoketolase (6-PG/PK) pathway as their central metabolic pathway and are reportedly unable to grow on fructose as a sole carbon source. We isolated a variant PM1 strain capable of sporadic growth on fructose medium and observed its distinctive characteristics of fructose metabolism. The end product pattern was different from what is expected in typical group III lactobacilli using the 6-PG/PK pathway (i.e., more lactate, less acetate, and no mannitol). In addition, in silico analysis revealed the presence of genes encoding most of critical enzymes in the Embden-Meyerhof (EM) pathway. These observations indicated that fructose was metabolized via two pathways. Fructose metabolism in the PM1 strain was influenced by the activities of two enzymes, triosephosphate isomerase (TPI) and glucose 6-phosphate isomerase (PGI). A lack of TPI resulted in the intracellular accumulation of dihydroxyacetone phosphate (DHAP) in PM1, the toxicity of which caused early growth cessation during fructose fermentation. The activity of PGI was enhanced by the presence of glyceraldehyde 3-phosphate (GAP), which allowed additional fructose to enter into the 6-PG/PK pathway to avoid toxicity by DHAP. Exogenous TPI gene expression shifted fructose metabolism from heterolactic to homolactic fermentation, indicating that TPI enabled the PM1 strain to mainly use the EM pathway for fructose fermentation. These findings clearly demonstrate that the balance in the accumulation of GAP and DHAP determines the fate of fructose metabolism and the activity of TPI plays a critical role during fructose fermentation via the EM pathway in L. panis PM1.  相似文献   

7.
Phosphoglucose isomerase (PGI) catalyzes the interconversion between glucose 6-phosphate and fructose 6-phosphate in the glycolysis pathway. In mammals, the enzyme is also identical to the extracellular proteins neuroleukin, tumor-secreted autocrine motility factor (AMF) and differentiation and maturation mediator for myeloid leukemia. Hereditary deficiency of the enzyme causes non-spherocytic hemolytic anemia in human. In the present study, a novel interaction between GTP and human PGI was corroborated by UV-induced crosslinking, affinity purification and kinetic study. GTP not only inhibits the isomerization activity but also compromises the AMF function of the enzyme. Kinetic studies, including the Yonetani-Theorell method, suggest that GTP is a competitive inhibitor with a Ki value of 63 μM and the GTP-binding site partially overlaps with the catalytic site. In addition, GTP stabilizes the structure of human PGI against heat- and detergent-induced denaturation. Molecular modelling and dynamic simulation suggest that GTP is bound in a syn-conformation with the γ-phosphate group located near the phosphate-binding loop and the ribose moiety positioned away from the active-site residues.  相似文献   

8.
Glucose isomerase (GI), an enzyme with deserved high potential in the world market. GI plays a major role in high Fructose Corn Syrup Production (HFCS). HFCS is used as a sweetener in food and pharmaceutical industries. Streptomyces are well-known producers of various industrially valuable enzymes, including Glucose isomerase. Currently, recombinant strains have been available for the production of various enzymes, but it has limitation in the large scale production. Therefore, identifying effective streptomyces strains have emerged. The current study, the novel S. lividans RSU26 was isolated from a marine source and optimized its potential to produce glucose isomerase at different physical and chemical conditions. The optimum pH and temperature for GI and biomass production were 7.5 and 35 °C, respectively at 96 h. Characterization study revealed that the approximate molar mass of GI was 43 kDa for monomeric and 170 kDa for tetrameric forms. Kinetic behavior exhibits Km, and Vmax values for the conversion of fructose to glucose conversion were 48.8 mM and 2.54 U mg−1 at 50 °C and glucose to fructose were 29.4 mM and 2.38 U mg−1 at 65 °C protein, respectively. Therefore, the present study suggested that the wild–type S. lividans RSU26 has strong potential to produce glucose isomerase for various industrial applications.  相似文献   

9.
Xylulokinase (XK, E.C. 2.7.1.17) is one of the key enzymes in xylose metabolism and it is essential for the activation of pentoses for the sustainable production of biocommodities from biomass sugars. The open reading frame (TM0116) from the hyperthermophilic bacterium Thermotoga maritima MSB8 encoding a putative xylulokinase were cloned and expressed in Escherichia coli BL21 Star (DE3) in the Luria–Bertani and auto-inducing high-cell-density media. The basic biochemical properties of this thermophilic XK were characterized. This XK has the optimal temperature of 85 °C. Under a suboptimal condition of 60 °C, the k cat was 83 s?1, and the K m values for xylulose and ATP were 1.24 and 0.71 mM, respectively. We hypothesized that this XK could work on polyphosphate possibly because this ancestral thermophilic microorganism utilizes polyphosphate to regulate the Embden–Meyerhof pathway and its substrate-binding residues are somewhat similar to those of other ATP/polyphosphate-dependent kinases. This XK was found to work on low-cost polyphosphate, exhibiting 41 % of its specific activity on ATP. This first ATP/polyphosphate XK could have a great potential for xylose utilization in thermophilic ethanol-producing microorganisms and cell-free biosystems for low-cost biomanufacturing without the use of ATP.  相似文献   

10.
The sensitivities of three enzymes of the β-ketoadipate pathway to inactivation by N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) were determined in vivo and in vitro under conditions compatible with mutagenesis.One enzyme, β-ketoadipate enol-lactone hydrolase, is very sensitive to inactivation by low concentrations of MNNG. This enzyme is also sensitive to inactivation by N-ethylmaleimide and mercurial reagents. The free sulfhydryl content of native enol-lactone hydrolase was determined to be two moles free sulfhydryl per mole of enzyme. A 95% inactivation of enol-lactone hydrolase by MNNG results in a masking of slightly more than one mole sulfhydryl per mole enzyme.Muconate lactonizing enzyme is moderately sensitive to inactivation by low concentrations of MNNG, but is not inactivated by sulfhydryl reagents. Muconolactone isomerase is resistant to inactivation by low concentrations of MNNG and is not inactivated by sulfhydryl reagents. Upon exposure to high concentrations of MNNG, muconolactone isomerase is rapidly inactivated. Spectrophotometric evidence indicates the lysine residues are nitroguanidinated proportionally with a loss in the enzymatic activity.These data indicate that the exposure of cells to low concentrations of MNNG should affect the activity of enzymes with essential sulfhydryl groups.  相似文献   

11.
An alkaliphilic, thermophilic Bacillus sp. (NCIM 59) produced extracellular xylose isomerase at pH 10 and 50°C by using xylose or wheat bran as the carbon source. The distribution of xylose isomerase as a function of growth in comparison with distributions of extra- and intracellular marker enzymes such as xylanase and β-galactosidase revealed that xylose isomerase was truly secreted as an extracellular enzyme and was not released because of sporulation or lysis. The enzyme was purified to homogeneity by ammonium sulfate precipitation followed by gel filtration, preparative polyacrylamide gel electrophoresis, and ion-exchange chromatography. The molecular weight of xylose isomerase was estimated to be 160,000 by gel filtration and 50,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating the presence of three subunits. The enzyme is most active at pH 8.0 and with incubation at 85°C for 20 min. Divalent metal ions Mg2+, Co2+, and Mn2+ were required for maximum activity of the enzyme. The Km values for D-xylose and D-glucose at 80°C and pH 7.5 were 6.66 and 142 mM, respectively, while Kcat values were 2.3 × 102 s-1 and 0.5 × 102 s-1, respectively.  相似文献   

12.
The de novo biosynthesis of arginine in microorganisms and plants is accomplished via several enzymatic steps. The enzyme N-acetyl glutamate kinase (NAGK) catalyzes the phosphorylation of the γ-COO? group of N-acetyl-l-glutamate (NAG) by adenosine triphosphate (ATP) which is the second rate limiting step in arginine biosynthesis pathway. Here we report the crystal structure of putative N-acetyl glutamate kinase (NAGK) from Thermus thermophilus HB8 (TtNAGK) determined at 1.92 Å resolution. The structural analysis of TtNAGK suggests that the dimeric quaternary state of the enzyme and arginine insensitive nature are similar to mesophilic Escherichia coli NAGK. These features are significantly different from its thermophilic homolog Thermatoga maritima NAGK which is hexameric and arginine-sensitive. TtNAGK is devoid of its substrates but contains two sulfates at the active site. Very interestingly the active site of the enzyme adopts a conformation which is not completely open or closed and likely represents an intermediate stage in the catalytic cycle unlike its structural homologs, which all exist either in the open or closed conformation. Engineering arginine biosynthesis pathway enzymes for the production of l-arginine is an important industrial application. The structural comparison of TtNAGK with EcNAGK revealed the structural basis of thermostability of TtNAGK and this information could be very useful to generate mutants of NAGK with increased overall stability.  相似文献   

13.
The D-glucose/D-xylose isomerase was purified from a thermophilic bacterium, Geobacillus thermodenitrificans TH2, by precipitating with heat shock and using Q-Sepharose ion exchange column chromatography, and then characterized. The purified enzyme had a single band having molecular weight of 49 kDa on SDS-PAGE. In the presence of D-glucose as a substrate, the optimum temperature and pH of the enzyme were found to be 80°C and 7.5, respectively. The purified xylose isomerase of G. thermodenitrificans TH2 was extremely stable at pH 7.5 after 96 h incubation at 4°C and 50°C. When the thermal stability profile was analyzed, it was determined that the purified enzyme was extremely stable during incubation periods of 4 months and 4 days at 4°C and 50°C, respectively. The K m and V max values of the purified xylose isomerase from G. thermodenitrificans TH2 were calculated as 32 mM and 4.68 μmol/min per mg of protein, respectively. Additionally, it was detected that some metal ions affected the enzyme activity at different ratios. The enzyme was active and stable at high temperatures and nearly neutral pHs which are desirable for the usage in the food and ethanol industry.  相似文献   

14.
Glycolysis and gluconeogenesis are central pathways of metabolism across all domains of life. A prominent enzyme in these pathways is phosphoglucose isomerase (PGI), which mediates the interconversion of glucose-6-phosphate and fructose-6-phosphate. The predatory bacterium Bdellovibrio bacteriovorus leads a complex life cycle, switching between intraperiplasmic replicative and extracellular ‘hunter’ attack-phase stages. Passage through this complex life cycle involves different metabolic states. Here we present the unliganded and substrate-bound structures of the B. bacteriovorus PGI, solved to 1.74 Å and 1.67 Å, respectively. These structures reveal that an induced-fit conformational change within the active site is not a prerequisite for the binding of substrates in some PGIs. Crucially, we suggest a phenylalanine residue, conserved across most PGI enzymes but substituted for glycine in B. bacteriovorus and other select organisms, is central to the induced-fit mode of substrate recognition for PGIs. This enzyme also represents the smallest conventional PGI characterized to date and probably represents the minimal requirements for a functional PGI.  相似文献   

15.
Summary The PGI1 gene of Saccharomyces cerevisiae coding for the glycolytic enzyme phosphoglucose isomerase has been cloned by complementation of a mutant strain (pgi1) with a strongly reduced phosphoglucose isomerase activity. A genomic library constructed in the yeast multicopy vector YEp13 (Nasmyth and Tatchell 1980) was used. Four plasmids containing an overlapping region of 4.1 kb were isolated and characterized by restriction endonuclease mapping. Southern analysis of genomic digests prepared with different restriction enzymes confirmed the same pattern for the chromosomal sequences. Transformants with the isolated plasmids had a phosphoglucose isomerase activity increased by a factor of 7. The cloned sequence hybridized to a constitutively synthesized 2.2 kb RNA in Northern analysis. The coding region includes a 2.05 kb EcoRI fragment common to all four inserts. A fragment including part of the PGI1 region was subcloned into vector YRp7 and used to induce integration at the PGI1 locus. Genetical and Southern analysis of stable transformants showed that single as well as tandem integration took place at this locus. This showed that the PGI1 gene had been isolated. Finally, and in contrast to the results of Kempe et al. (1974a, b) who reported three isoenzymes in yeasts, only one copy of the PGI1 gene per genome was found in several laboratory strains tested by Southern analysis.  相似文献   

16.
The ability to convert d-galactose into d-tagatose was compared among a number of bacterial l-arabinose isomerases (araA). One of the most efficient enzymes, from the anaerobic thermophilic bacterium Thermoanaerobacter mathranii, was produced heterologously in Escherichia coli and characterised. Amino acid sequence comparisons indicated that this enzyme is only distantly related to the group of previously known araA sequences in which the sequence similarity is evident. The substrate specificity and the Michaelis–Menten constants of the enzyme determined with l-arabinose, d-galactose and d-fucose also indicated that this enzyme is an unusual, versatile l-arabinose isomerase which is able to isomerise structurally related sugars. The enzyme was immobilised and used for production of d-tagatose at 65 °C. Starting from a 30% solution of d-galactose, the yield of d-tagatose was 42% and no sugars other than d-tagatose and d-galactose were detected. Direct conversion of lactose to d-tagatose in a single reactor was demonstrated using a thermostable -galactosidase together with the thermostable l-arabinose isomerase. The two enzymes were also successfully combined with a commercially available glucose isomerase for conversion of lactose into a sweetening mixture comprising lactose, glucose, galactose, fructose and tagatose.  相似文献   

17.
The beneficial biological properties of l-fucose have extended its commercial application potential in pharmaceutical, cosmetic, and food industries. Enzymatic production of l-fucose with l-fucose isomerase (l-FucI) is considered a selective, green, and efficient strategy. Efficient sugar production requires thermophilic enzymes with increased reaction rate, reduced risk of microbial contamination, and high sugar solubility. No study has evaluated the applicability of thermophilic l-FucI for l-fucose production. In this study, we explored the biochemical properties of a thermostable l-FucI from Thermanaeromonas toyohensis (TtFucI) using l-fuculose as a substrate. The recombinant TtFucI exhibited thermophilicity and optimum activity at 70 °C. The specific activity, Km, and kcat toward l-fuculose were 199.8 U/mg, 33.4 mM, and 901.7 s−1, respectively. Mn2+ ions increased the activity of the enzyme by ∼10 times and enhanced its thermal stability. Our study, on l-fucose synthesis by thermostable l-FucI, suggests the potential application of this enzyme for the industrial production of l-fucose.  相似文献   

18.
The protein subunit of RNase P from a thermophilic bacterium, Thermotoga maritima, was overexpressed in and purified from Escherichia coli. The cloned protein was reconstituted with the RNA subunit transcribed in vitro. The temperature optimum of the holoenzyme is near 50°C, with no enzymatic activity at 65°C or above. This finding is in sharp contrast to the optimal growth temperature of T.maritima, which is near 80°C. However, in heterologous reconstitution experiments in vitro with RNase P subunits from other species, we found that the protein subunit from T.maritima was responsible for the comparative thermal stability of such complexes.  相似文献   

19.
Functional Effects of Pgi Allozymes in ESCHERICHIA COLI   总被引:2,自引:1,他引:1  
Five alleles representing three electromorphs of phosphoglucose isomerase (PGI) have been transferred from natural isolates of E. coli into the genetic background of E. coli K12 and examined for their effect on growth rate in chemostats limited for glucose or fructose. With glucose limitation, all alleles are selectively neutral or nearly neutral within the limit of resolution of the technique, whether the genetic background is nonmutant or whether it contains a deletion of the locus of glucose-6-phosphate dehydrogenase, the enzyme that provides an alternative metabolic pathway for the substrate of PGI. With fructose limitation, one of the naturally occurring alleles has a small but reproducible detrimental effect on growth rate. A kinetic difference in this detrimental allozyme, apparently relating to an inhibition constant, has been observed in some, but not all, lots of substrate, and a similar difference has also been noted in one of the rare electromorphs that could not be transferred into E. coli K12. These results support a model of genetic variation in which the alleles are neutral or nearly neutral in the prevailing environment but have a potential for selection that can be expressed under the appropriate conditions of environment or genetic background. This hypothesis is discussed in the context of allozyme polymorphisms observed in other organisms.  相似文献   

20.
Aspartate carbamoyltransferase genes from the extreme thermophilic eubacteria Ta. maritima and T. aquaticus were cloned by complementation in E. coli.

Sequencing of the Ta. maritima pyrB gene, the aberrant behaviour of the enzyme product in E. coli, and comparison of the derived amino acid sequence with mesophilic ATCases suggest that the gene was disrupted in the process of cloning and that Thermotoga ATCase belongs to an unusual class of aspartate carbamoyltransferases.

Analysis of the proximal part of the T. aquaticus pyr operon and characterization of the ATCase gene products formed in E. coli and in the original host led to the proposal that the T. aquaticus aspartate carbamoyltransferase and dihydroorotase enzymes associate to form a stable multienzyme complex, regulated by UTP.

Some indications of how the thermophilic ATCase genes could be expressed in E. coli were also obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号