首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HT Yang  JH Shin  CH Hakim  X Pan  RL Terjung  D Duan 《PloS one》2012,7(9):e44438
Loss of muscle force is a salient feature of Duchenne muscular dystrophy (DMD), a fatal disease caused by dystrophin deficiency. Assessment of force production from a single intact muscle has been considered as the gold standard for studying physiological consequences in murine models of DMD. Unfortunately, equivalent assays have not been established in dystrophic dogs. To fill the gap, we developed a novel in situ protocol to measure force generated by the extensor carpi ulnaris (ECU) muscle of a dog. We also determined the muscle length to fiber length ratio and the pennation angle of the ECU muscle. Muscle pathology and contractility were compared between normal and affected dogs. Absence of dystrophin resulted in marked histological damage in the ECU muscle of affected dogs. Central nucleation was significantly increased and myofiber size distribution was altered in the dystrophic ECU muscle. Muscle weight and physiological cross sectional area (PCSA) showed a trend of reduction in affected dogs although the difference did not reach statistical significance. Force measurement revealed a significant decrease of absolute force, and the PCSA or muscle weight normalized specific forces. To further characterize the physiological defect in affected dog muscle, we conducted eccentric contraction. Dystrophin-null dogs showed a significantly greater force loss following eccentric contraction damage. To our knowledge, this is the first convincing demonstration of force deficit in a single intact muscle in the canine DMD model. The method described here will be of great value to study physiological outcomes following innovative gene and/or cell therapies.  相似文献   

2.
In the translational process of developing innovative therapies for DMD (Duchenne muscular dystrophy), the last preclinical validation step is often carried out in the most relevant animal model of this human disease, namely the GRMD (Golden Retriever muscular dystrophy) dog. The disease in GRMD dogs mimics human DMD in many aspects, including the inter-individual heterogeneity. This last point can be seen as a drawback for an animal model but is inherently related to the disease in GRMD dogs closely resembling that of individuals with DMD. In order to improve the management of this inter-individual heterogeneity, we have screened a combination of biomarkers in sixty-one 2-month-old GRMD dogs at the onset of the disease and a posteriori we addressed their predictive value on the severity of the disease. Three non-invasive biomarkers obtained at early stages of the disease were found to be highly predictive for the loss of ambulation before 6 months of age. An elevation in the number of circulating CD4+CD49dhi T cells and a decreased stride frequency resulting in a reduced spontaneous speed were found to be strongly associated with the severe clinical form of the disease. These factors can be used as predictive tests to screen dogs to separate them into groups with slow or fast disease progression before their inclusion into a therapeutic preclinical trial, and therefore improve the reliability and translational value of the trials carried out on this invaluable large animal model. These same biomarkers have also been described to be predictive for the time to loss of ambulation in boys with DMD, strengthening the relevance of GRMD dogs as preclinical models of this devastating muscle disease.KEY WORDS: GRMD, DMD, Dystrophin, Dog, Predictive biomarker, Lymphocyte, CD49d, Gait analysis, Accelerometry  相似文献   

3.
4.
Golden Retriever Muscular Dystrophy (GRMD) is a dystrophin-deficient canine model genetically homologous to Duchenne Muscular Dystrophy (DMD) in humans. Muscular fibrosis secondary to cycles of degeneration/regeneration of dystrophic muscle tissue and muscular weakness leads to biomechanical adaptation that impairs the quality of gait. Physical therapy (PT) is one of the supportive therapies available for DMD, however, motor PT approaches have controversial recommendations and there is no consensus regarding the type and intensity of physical therapy. In this study we investigated the effect of physical therapy on gait biomechanics and muscular collagen deposition types I and III in dystrophin-deficient dogs. Two dystrophic dogs (treated dogs-TD) underwent a PT protocol of active walking exercise, 3×/week, 40 minutes/day, 12 weeks. Two dystrophic control dogs (CD) maintained their routine of activities of daily living. At t0 (pre) and t1 (post-physical therapy), collagen type I and III were assessed by immunohistochemistry and gait biomechanics were analyzed. Angular displacement of shoulder, elbow, carpal, hip, stifle and tarsal joint and vertical (Fy), mediolateral (Fz) and craniocaudal (Fx) ground reaction forces (GRF) were assessed. Wilcoxon test was used to verify the difference of biomechanical variables between t0 and t1, considering p<.05. Type I collagen of endomysium suffered the influence of PT, as well as gait speed that had decreased from t0 to t1 (p<.000). The PT protocol employed accelerates morphological alterations on dystrophic muscle and promotes a slower velocity of gait. Control dogs which maintained their routine of activities of daily living seem to have found a better balance between movement and preservation of motor function.  相似文献   

5.
Duchenne muscular dystrophy (DMD) is a severe and the most prevalent form of muscular dystrophy, characterized by rapid progression of muscle degeneration. Antisense-mediated exon skipping is currently one of the most promising therapeutic options for DMD. However, unmodified antisense oligos such as morpholinos require frequent (weekly or bi-weekly) injections. Recently, new generation morpholinos such as vivo-morpholinos are reported to lead to extensive and prolonged dystrophin expression in the dystrophic mdx mouse, an animal model of DMD. The vivo-morpholino contains a cell-penetrating moiety, octa-guanidine dendrimer. Here, we sought to test the efficacy of multiple exon skipping of exons 6-8 with vivo-morpholinos in the canine X-linked muscular dystrophy, which harbors a splice site mutation at the boundary of intron 6 and exon 7. We designed and optimized novel antisense cocktail sequences and combinations for exon 8 skipping and demonstrated effective exon skipping in dystrophic dogs in vivo. Intramuscular injections with newly designed cocktail oligos led to high levels of dystrophin expression, with some samples similar to wild-type levels. This is the first report of successful rescue of dystrophin expression with morpholino conjugates in dystrophic dogs. Our results show the potential of phosphorodiamidate morpholino oligomer conjugates as therapeutic agents for DMD.  相似文献   

6.
Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disorder characterized by primary muscle degeneration. Therapeutic strategies for DMD have been extensively explored, and some are in the stage of human clinical trials. Along with the development of new therapies, sensitive outcome measures are needed to monitor the effects of new treatments. Therefore, we investigated outcome measures such as biomarkers and motor function evaluation in a dystrophic model of beagle dogs, canine X-linked muscular dystrophy in Japan (CXMDJ). Osteopontin (OPN), a myogenic inflammatory cytokine, was explored as a potential biomarker in dystrophic dogs over the disease course. The serum OPN levels of CXMDJ dystrophic dogs were elevated, even in the early disease phase, and this could be related to the presence of regenerating muscle fibers; as such, OPN would be a promising biomarker for muscle regeneration. Next, accelerometry, which is an efficient method to quantify performance in validated tasks, was used to evaluate motor function longitudinally in dystrophic dogs. We measured three-axis acceleration and angular velocity with wireless hybrid sensors during gait evaluations. Multiple parameters of acceleration and angular velocity showed notedly lower values in dystrophic dogs compared with wild-type dogs, even at the onset of muscle weakness. These parameters accordingly decreased with exacerbation of clinical manifestations along with the disease course. Multiple parameters also indicated gait abnormalities in dystrophic dogs, such as a waddling gait. These outcome measures could be applicable in clinical trials of patients with DMD or other muscle disorders.  相似文献   

7.
BackgroundSeveral adult stem cell populations exhibit myogenic regenerative potential, thus representing attractive candidates for therapeutic approaches of neuromuscular diseases such as Duchenne Muscular Dystrophy (DMD). We have recently shown that systemic delivery of MuStem cells, skeletal muscle-resident stem cells isolated in healthy dog, generates the remodelling of muscle tissue and gives rise to striking clinical benefits in Golden Retriever Muscular Dystrophy (GRMD) dog. This global effect, which is observed in the clinically relevant DMD animal model, leads us to question here the molecular pathways that are impacted by MuStem cell transplantation. To address this issue, we compare the global gene expression profile between healthy, GRMD and MuStem cell treated GRMD dog muscle, four months after allogenic MuStem cell transplantation.ResultsIn the dystrophic context of the GRMD dog, disease-related deregulation is observed in the case of 282 genes related to various processes such as inflammatory response, regeneration, calcium ion binding, extracellular matrix organization, metabolism and apoptosis regulation. Importantly, we reveal the impact of MuStem cell transplantation on several molecular and cellular pathways based on a selection of 31 genes displaying signals specifically modulated by the treatment. Concomitant with a diffuse dystrophin expression, a histological remodelling and a stabilization of GRMD dog clinical status, we show that cell delivery is associated with an up-regulation of genes reflecting a sustained enhancement of muscle regeneration. We also identify a decreased mRNA expression of a set of genes having metabolic functions associated with lipid homeostasis and energy. Interestingly, ubiquitin-mediated protein degradation is highly enhanced in GRMD dog muscle after systemic delivery of MuStem cells.ConclusionsOverall, our results provide the first high-throughput characterization of GRMD dog muscle and throw new light on the complex molecular/cellular effects associated with muscle repair and the clinical efficacy of MuStem cell-based therapy.  相似文献   

8.
Golden retriever muscular dystrophy (GRMD) provides the best animal model for characterizing the disease progress of the human disorder, Duchenne muscular dystrophy (DMD). The purpose of this study was to determine steroid hormone concentration profiles in healthy golden retriever dogs (control group - CtGR) versus GRMD-gene carrier (CaGR) and affected female dogs (AfCR). Therefore, a sensitive and specific analytical method was developed and validated to determine the estradiol, progesterone, cortisol, and testosterone levels in the canine serum by isotope dilution liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). To more accurately understand the dynamic nature of the serum steroid profile, the fluctuating levels of these four steroid hormones over the estrous cycle were compared across the three experimental groups using a multivariate statistical analysis. The concentration profiles of estradiol, cortisol, progesterone, and testosterone revealed a characteristic pattern for each studied group at each specific estrous phase. Additionally, several important changes in the serum concentrations of cortisol and estradiol in the CaGR and AfCR groups seem to be correlated with the status and progression of the muscular dystrophy. A comprehensive and quantitative monitoring of steroid profiles throughout the estrous cycle of normal and GRMD dogs were achieved. Significant differences in these profiles were observed between GRMD and healthy animals, most notably for estradiol. These findings contribute to a better understanding of both dog reproduction and the muscular dystrophy pathology. Our data open new venues for hormonal behavior studies in dystrophinopathies and that may affect the quality of life of DMD patients.  相似文献   

9.
In Duchenne muscular dystrophy (DMD), a genetic disruption of dystrophin protein expression results in repeated muscle injury and chronic inflammation. Magnetic resonance imaging shows promise as a surrogate outcome measure in both DMD and rehabilitation medicine that is capable of predicting clinical benefit years in advance of functional outcome measures. The mdx mouse reproduces the dystrophin deficiency that causes DMD and is routinely used for preclinical drug testing. There is a need to develop sensitive, non-invasive outcome measures in the mdx model that can be readily translatable to human clinical trials. Here we report the use of magnetic resonance imaging and spectroscopy techniques for the non-invasive monitoring of muscle damage in mdx mice. Using these techniques, we studied dystrophic mdx muscle in mice from 6 to 12 weeks of age, examining both the peak disease phase and natural recovery phase of the mdx disease course. T2 and fat-suppressed imaging revealed significant levels of tissue with elevated signal intensity in mdx hindlimb muscles at all ages; spectroscopy revealed a significant deficiency of energy metabolites in 6-week-old mdx mice. As the mdx mice progressed from the peak disease stage to the recovery stage of disease, each of these phenotypes was either eliminated or reduced, and the cross-sectional area of the mdx muscle was significantly increased when compared to that of wild-type mice. Histology indicates that hyper-intense MRI foci correspond to areas of dystrophic lesions containing inflammation as well as regenerating, degenerating and hypertrophied myofibers. Statistical sample size calculations provide several robust measures with the ability to detect intervention effects using small numbers of animals. These data establish a framework for further imaging or preclinical studies, and they support the development of MRI as a sensitive, non-invasive outcome measure for muscular dystrophy.  相似文献   

10.
Efficient targeting of actions to reduce the spread of invasive alien species relies on understanding the spatial, temporal, and individual variation of movement, in particular related to dispersal. Such patterns may differ between individuals at the invasion front compared to individuals in established and dense populations due to differences in environmental and ecological conditions such as abundance of conspecifics or sex‐specific dispersal affecting the encounter rate of potential mates. We assessed seasonal and diurnal variation in movement pattern (step length and turning angle) of adult male and female raccoon dog at their invasion front in northern Sweden using data from Global Positioning System (GPS)‐marked adult individuals and assessed whether male and female raccoon dog differed in their movement behavior. There were few consistent sex differences in movement. The rate of dispersal was rather similar over the months, suggesting that both male and female raccoon dog disperse during most of the year, but with higher speed during spring and summer. There were diurnal movement patterns in both sexes with more directional and faster movement during the dark hours. However, the short summer nights may limit such movement patterns, and long‐distance displacement was best explained by fine‐scale movement patterns from 18:00 to 05:00, rather than by movement patterns only from twilight and night. Simulation of dispersing raccoon dogs suggested a higher frequency of male–female encounters that were further away from the source population for the empirical data compared to a scenario with sex differences in movement pattern. The lack of sex differences in movement pattern at the invasion front results in an increased likelihood for reproductive events far from the source population. Animals outside the source population should be considered potential reproducing individuals, and a high effort to capture such individuals is needed throughout the year to prevent further spread.  相似文献   

11.
Developmental constraints on limb growth in domestic and some wild canids   总被引:1,自引:0,他引:1  
Robert K.  Wayne 《Journal of Zoology》1986,210(3):381-397
The domestic dog varies remarkably in limb size. Presumably, such differences in limb size stem from inequities in postnatal specific growth rate. I test this hypothesis by examining the postnatal growth of limb bones (40–250 days post-partum) in four dog breeds of dramatically different adult size; Lhasa Apso, Cocker Spaniel, Labrador Retriever and Great Dane. The results show that the limb bones of these four breeds have similar specific growth rates throughout most of postnatal development. Thus, proportionate differences in limb bone length are established during perinatal growth (0–40 days post-partum) or before birth.
Comparisons of postnatal growth in the Great Dane and two wild canids of dramatically different leg length, the Bush dog ( Speothos venaticus ) and the Maned wolf ( Chrysocyon brachyurus ) also show a near congruency of specific growth rate curves. However, despite these similarities, the adult limb proportions of small dogs and small wild canids are different. Dogs also differ from wild canids in the relative variability of gestation time. All dogs have a similar gestation period of 60–63 days which is independent of birth weight, whereas the two are directly related in wild canids. I suggest that small dogs may differ in limb proportions from small wild canids because the latter have a shorter gestation period. Thus, the relative invariability of gestation time in domestic dogs may act as a fundamental constraint on their morphologic variability.  相似文献   

12.
First Person is a series of interviews with the first authors of a selection of papers published in Disease Models & Mechanisms, helping early-career researchers promote themselves alongside their papers. Chady Hakim is first author on ‘ Extensor carpi ulnaris muscle shows unexpected slow-to-fast fiber-type switch in Duchenne muscular dystrophy dogs’, published in DMM. Chady is a Research Assistant Professor in the lab of Dongsheng Duan at the University of Missouri, Colombia, MO, USA, investigating the preclinical development of gene therapy for Duchenne muscular dystrophy (DMD), with a particular interest in using the canine DMD model.

Chady Hakim How would you explain the main findings of your paper to non-scientific family and friends? DMD is a severe muscle disease caused by dystrophin deficiency. Loss of dystrophin leads to muscle degeneration and remodeling, and eventually to muscle death and replacement by fatty and fibrotic tissues. The canine DMD model shares clinical and pathophysiological similarities to that of human patients. Therefore, studies performed with the canine model provide critical insight into understanding muscle disease in DMD. In this study, we were first interested in developing a force assay platform to evaluate the contractile force and characterize the kinetic properties of a single muscle in the canine DMD model. We focused on the extensor carpi ulnaris (ECU) muscle from the forelimb muscle group. As expected, we saw a loss of muscle force in affected dogs. Surprisingly, we observed an unexpected contractile kinetic profile. It has been well established that the dystrophic muscle undergoes a fast-to-slow fiber-type switch. This led us to predict that the affected muscle would exhibit slow contraction and relaxation. Surprisingly, we saw just the opposite. There was a decrease in the time taken to reach peak tension and relax the affected ECU muscle, indicating a faster contraction and relaxation. Additional characterization of myofiber-type composition in the normal and affected ECU muscle confirmed the kinetic assay results.
“[…] studies performed with the canine model provide critical insight into understanding muscle disease in DMD.”
What are the potential implications of these results for your field of research? The unexpected slow-to-fast myofiber-type switch highlights the complexity of muscle remodeling in dystrophic large mammals and paves the way for better utilizing dystrophic canines as a preclinical model in the study of DMD pathogenesis. Additionally, the fiber-type switch phenomenon offers a unique entry point for (1) investigating the molecular mechanism(s) that lead to this phenomenon and how it directly correlates to the loss of dystrophin, and (2) evaluating the pathophysiological implications for muscle strength and in determining whether this is unique to canine muscle. Most importantly, these results have significant implications for therapeutic approaches to DMD, such as gene replacement and editing, and evaluating their efficacy in correcting the fiber-type switch. What are the main advantages and drawbacks of the model system you have used as it relates to the disease you are investigating? When initiating this study, our goal was to evaluate muscle strength in the affected dogs. To achieve this goal, we developed an all-in-one automated in situ force assay platform. This novel platform has several advantages. First, we designed all the components to be adjustable to meet the need for studying muscles at different anatomic locations or with different sizes. Our design was also made with the consideration to adopt the platform to accommodate other large animal models besides the canine. Second, we developed a detailed protocol to optimize the stimulation parameters, allowing the muscle to reach its optimal force during contraction. This allowed the comprehensive evaluation of the contractile and kinetic properties of a single muscle. Together, this novel platform offers a unique ability to correlate the physiological findings with the molecular, cellular, biochemical and histological changes in a single muscle. This ability is critical for evaluating preclinical intervention studies. Unfortunately, this is a terminal assay, limiting the investigators to follow disease progression and therapeutic response in the same animal over time. What has surprised you the most while conducting your research? It is well established that the dystrophic muscle undergoes a fast-to-slow, rather than a slow-to-fast, transition in fiber type. In this study, we observed the opposite in affected canine muscles as they were mainly composed of the fast fiber type. The underlying mechanism of this fiber-type switch needs to be further investigated so it can be determined whether it is unique to canine muscle. Furthermore, muscles that are mainly composed of the fast fiber type are characterized by a higher force, higher contraction and relaxation rate, and less time needed to achieve full contraction and relaxation. In affected dogs, we noticed a reduction in the time taken for contraction and relaxation. Surprisingly, the force, contraction rate and relaxation rate were significantly reduced in the affected muscle compared to the normal muscle. Open in a separate windowRepresentative myosin heavy chain isoform immunostaining photomicrographs of a normal (left) and an affected (right) ECU muscle. Blue, type I myofiber; red, type IIa myofiber; magenta, type I/IIa hybrid myofiber; green, laminin immunostaining Describe what you think is the most significant challenge impacting your research at this time and how will this be addressed over the next 10 years? Unlike other genetic diseases, DMD is very challenging to treat. First, it is caused by mutations in the second largest gene in the body. The large size of the dystrophin gene makes it impossible to replace it through the gene replacement approach unless a truncated gene with a similar function to the full-length gene is used. Second, DMD affects every muscle type in the body, making a whole-body treatment necessary to achieve a complete cure. Gene therapy using adeno-associated virus (AAV)-mediated CRISPR/Cas9 gene editing shows much promise for treating DMD. It allows for the restoration of a near full-length dystrophin protein without the need for using a highly truncated microgene that can only result in limited function rescue (Hakim et al. 2018). We recently showed that AAV CRISPR therapy resulted in efficient dystrophin restoration in affected dogs but resulted in a Cas9-specific immune response that eliminated the edited cell. This unfortunate response is a critical barrier to advancing CRISPR therapy into clinics. With further advances in gene therapy, combined with advances in the understanding of CRISPR genome editing and how to evade the Cas9-specific T-cell response, AAV CRISPR therapy will be suitable for treating DMD. What changes do you think could improve the professional lives of early-career scientists? I believe it is critical for early-career scientists to collaborate and interact with other related research fields. This empowers and extends their knowledge, and also has a positive influence on their research focus. Before I started my PhD, I had gained some knowledge about muscle physiology. I wanted to extend this knowledge in my PhD studies by building a bridge between muscle physiology and molecular biology, and the perfect application was the field of DMD gene therapy. Through my previous experience, I was able to develop tools, such as the platform presented in this study, to answer critical molecular questions in the field of gene therapy. As a matter of fact, the outcome observation of the fiber-type switch was a result of analyzing the kinetic properties of the affected muscle force. This observation will now become an important biomarker in the evaluation of the efficacy of novel therapy.
“I believe it is critical for early-career scientists to collaborate and interact with other related research fields.”
What''s next for you? With the novelty of the data presented in this study, I''m excited about finding out whether gene therapy approaches would correct the fiber-type switch and reverse the remodeling observed in the affected canine muscle. I''m currently working with my mentor Dr Dongsheng Duan to evaluate fiber-type composition-affected canine muscles treated with gene therapy.  相似文献   

13.
14.

Background

Duchenne muscular dystrophy (DMD) is the most common fatal form of muscular dystrophy characterized by striated muscle wasting and dysfunction. Patients with DMD have a very high incidence of heart failure, which is increasingly the cause of death in DMD patients. We hypothesize that in the in vivo system, the dystrophic cardiac muscle displays bioenergetic deficits prior to any functional or structural deficits. To address this we developed a complete non invasive 31P magnetic resonance spectroscopy (31P MRS) approach to measure myocardial bioenergetics in the heart in vivo.

Methods and Results

Six control and nine mdx mice at 5 months of age were used for the study. A standard 3D -Image Selected In vivo Spectroscopy (3D-ISIS) sequence was used to provide complete gradient controlled three-dimensional localization for heart 31P MRS. These studies demonstrated dystrophic hearts have a significant reduction in PCr/ATP ratio compare to normal (1.59±0.13 vs 2.37±0.25, p<0.05).

Conclusion

Our present study provides the direct evidence of significant cardiac bioenergetic deficits in the in vivo dystrophic mouse. These data suggest that energetic defects precede the development of significant hemodynamic or structural changes. The methods provide a clinically relevant approach to use myocardial energetics as an early marker of disease in the dystrophic heart. The new method in detecting the in vivo bioenergetics abnormality as an early non-invasive marker of emerging dystrophic cardiomyopathy is critical in management of patients with DMD, and optimized therapies aimed at slowing or reversing the cardiomyopathy.  相似文献   

15.
In Duchenne muscular dystrophy (DMD) and in the mdx mouse model of DMD, the lack of dystrophin is related to enhanced calcium influx and muscle degeneration. Stretch-activated channels (SACs) might be directly involved in the pathology of DMD, and transient receptor potential cation channels have been proposed as likely candidates of SACs. We investigated the levels of transient receptor potential canonical channel 1 (TRPC1) and the effects of streptomycin, a SAC blocker, in muscles showing different degrees of the dystrophic phenotype. Mdx mice (18 days old, n = 16) received daily intraperitoneal injections of streptomycin (182 mg/kg body wt) for 18 days, followed by removal of the diaphragm, sternomastoid (STN), biceps brachii, and tibialis anterior muscles. Control mdx mice (n = 37) were injected with saline. Western blot analysis showed higher levels of TRPC1 in diaphragm muscle compared with STN and limb muscles. Streptomycin reduced creatine kinase and prevented exercise-induced increases of total calcium and Evans blue dye uptake in diaphragm and in STN muscles. It is suggested that different levels of the stretch-activated calcium channel protein TRPC1 may contribute to the different degrees of the dystrophic phenotype seen in mdx mice. Early treatment designed to regulate the activity of these channels may ameliorate the progression of dystrophy in the most affected muscle, the diaphragm.  相似文献   

16.
Duchenne muscular Dystrophy (DMD) is an inherited disease caused by mutations in the dystrophin gene that disrupt the open reading frame, while in frame mutations result in Becker muscular dystrophy (BMD). Ullrich congenital muscular dystrophy (UCMD) is due to mutations affecting collagen VI genes. Specific muscle miRNAs (dystromirs) are potential non-invasive biomarkers for monitoring the outcome of therapeutic interventions and disease progression. We quantified miR-1, miR-133a,b, miR-206 and miR-31 in serum from patients with DMD, BMD, UCMD and healthy controls. MiR-1, miR-133a,b and miR-206 were upregulated in DMD, but unchanged in UCMD compared to controls. Milder DMD patients had higher levels of dystromirs than more severely affected patients. Patients with low forced vital capacity (FVC) values, indicating respiratory muscle weakness, had low levels of serum miR-1 and miR-133b. There was no significant difference in the level of the dystromirs in BMD compared to controls.We also assessed the effect of dystrophin restoration on the expression of the five dystromirs in serum of DMD patients treated systemically for 12 weeks with antisense oligomer eteplirsen that induces skipping of exon 51 in the dystrophin gene. The dystromirs were also analysed in muscle biopsies of DMD patients included in a single dose intramuscular eteplirsen clinical trial. Our analysis detected a trend towards normalization of these miRNA between the pre- and post-treatment samples of the systemic trial, which however failed to reach statistical significance. This could possibly be due to the small number of patients and the short duration of these clinical trials.Although longer term studies are needed to clarify the relationship between dystrophin restoration following therapeutic intervention and the level of circulating miRNAs, our results indicate that miR-1 and miR-133 can be considered as exploratory biomarkers for monitoring the progression of muscle weakness and indirectly the remaining muscle mass in DMD.  相似文献   

17.
Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disorder for which there is currently no effective treatment. This disorder is caused by mutations or deletions in the gene encoding dystrophin that prevent expression of dystrophin at the sarcolemma. A promising pharmacological treatment for DMD aims to increase levels of utrophin, a homolog of dystrophin, in muscle fibers of affected patients to compensate for the absence of dystrophin. Here, we review recent developments in our understanding of the regulatory pathways that govern utrophin expression, and highlight studies that have used activators of these pathways to alleviate the dystrophic symptoms in DMD animal models. The results of these preclinical studies are promising and bring us closer to implementing appropriate utrophin-based drug therapies for DMD patients.  相似文献   

18.
Golden retriever muscular dystrophy (GRMD) is a spontaneous, X-linked, progressively fatal disease of dogs and is also a homologue of Duchenne muscular dystrophy (DMD). Two-thirds of DMD patients carry detectable deletions in their dystrophin gene. The defect underlying the remaining one-third of DMD patients is undetermined. Analysis of the canine dystrophin gene in normal and GRMD dogs has failed to demonstrate any detectable loss of exons. Here, we have demonstrated a RNA processing error in GRMD that results from a single base change in the 3' consensus splice site of intron 6. The seventh exon is then skipped, which predicts a termination of the dystrophin reading frame within its N-terminal domain in exon 8. This is the first example of dystrophin deficiency caused by a splice-site mutation.  相似文献   

19.
Biomechanical hypotheses are often invoked to explain the characteristic scaling of limb proportions. Patterns of static allometry and morphologic diversity, however, may also reflect the developmental mechanisms underlying morphologic change. In this study I document the importance of such developmental influences on the evolution of limb morphology in the extremely polymorphic domestic dog and in wild canid species. I use bivariate and discriminant function analyses to compare the limb morphology of adult dogs and wild canid species. I then compare ontogenetic allometry of four dog breeds with static allometry of domestic and wild canids. Results reveal, first, that there is considerable similarity between dogs and wild canid species; many wolf-like canids cannot be distinguished from domestic dogs of equivalent size. However, all dogs are consistently separated from fox-sized, wild canids by subtle but evolutionarily significant differences in olecranon, metapodial, and scapula morphology. Second, in domestic dogs the pattern of static allometry is nearly identical to that of ontogenetic allometry. This finding can be attributed to simple heterochronic alterations of postnatal growth rates. Apparently the diversity of limb proportions among adult domestic dogs and the observed difference between dogs and wild canids are somewhat predetermined, as they directly reflect the diversity of limb proportions evident during development of the domestic dog.  相似文献   

20.
Based on the amino acid sequence of bovine rhodopsin, five peptides corresponding to the carboxyl terminus and one loop region have been synthesized. Rabbit antisera to these peptides recognize rhodopsin in whole bovine and dog retinas. Antisera were used to detect differences in specific regions of rhodopsin in dystrophic vs normal dog retinas. As detected on both "dot blots" and Western blots, rhodopsin from retinas of dystrophic dogs has a reduced reaction with antisera to peptides, Rhod-4 and Rhod-10 (# 341-348 and 232-239, respectively). Since these sites on rhodopsin are possible binding sites for transducin and rhodopsin kinase, an alteration in these regions would have profound effects in the dystrophic state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号