首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Obesity is an important risk factor for atrial fibrillation (AF). Leptin is an important adipokine. However, it is not clear whether leptin directly modulates the electrophysiological characteristics of atrial myocytes.

Results

Whole cell patch clamp and indo-1 fluorescence were used to record the action potentials (APs) and ionic currents in isolated rabbit left atrial (LA) myocytes incubated with and without (control) leptin (100 nM) for 1 h to investigate the role of leptin on atrial electrophysiology. Leptin-treated LA myocytes (n = 19) had longer 20% of AP duration (28 ± 3 vs. 21 ± 2 ms, p < 0.05), but similar 50% of AP duration (51 ± 4 vs. 50 ± 3 ms, p > 0.05), and 90% of AP duration (89 ± 5 vs. 94 ± 4 ms, p > 0.05), as compared to the control (n = 22). In the presence of isoproterenol (10 nM), leptin-treated LA myocytes (n = 21) showed a lower incidence (19% vs. 54.2%, p < 0.05) of delayed afterdepolarization (DAD) than the control (n = 24). Leptin-treated LA myocytes showed a larger sodium current, but a smaller ultra-rapid delayed rectifier potassium current, and sodium-calcium exchanger current than the control. Leptin-treated and control LA myocytes exhibited a similar late sodium current, inward rectifier potassium current, transient outward current and L-type calcium current. In addition, the leptin-treated LA myocytes (n = 38) exhibited a smaller intracellular Ca2+ transient (0.21 ± 0.01 vs. 0.26 ± 0.01 R410/485, p < 0.05) and sarcoplasmic reticulum Ca2+ content (0.35 ± 0.02 vs. 0.43 ± 0.03 R410/485, p < 0.05) than the control LA myocytes (n = 42).

Conclusions

Leptin regulates the LA electrophysiological characteristics and attenuates isoproterenol-induced arrhythmogenesis.  相似文献   

2.

Rationale

Smoking-induced chronic obstructive pulmonary disease (COPD) is associated with acquired systemic cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction. Recently, sweat evaporimetry has been shown to efficiently measure β-adrenergic sweat rate and specifically quantify CFTR function in the secretory coil of the sweat gland.

Objectives

To evaluate the presence and severity of systemic CFTR dysfunction in smoking-related lung disease using sweat evaporimetry to determine CFTR-dependent sweat rate.

Methods

We recruited a cohort of patients consisting of healthy never smokers (N = 18), healthy smokers (12), COPD smokers (25), and COPD former smokers (12) and measured β-adrenergic sweat secretion rate with evaporative water loss, sweat chloride, and clinical data (spirometry and symptom questionnaires).

Measurements and main results

β-adrenergic sweat rate was reduced in COPD smokers (41.9 ± 3.4, P < 0.05, ± SEM) and COPD former smokers (39.0 ± 5.4, P < 0.05) compared to healthy controls (53.6 ± 3.4). Similarly, sweat chloride was significantly greater in COPD smokers (32.8 ± 3.3, P < 0.01) and COPD former smokers (37.8 ± 6.0, P < 0.01) vs. healthy controls (19.1 ± 2.5). Univariate analysis revealed a significant association between β-adrenergic sweat rate and female gender (β = 0.26), age (−0.28), FEV1% (0.35), dyspnea (−0.3), and history of smoking (−0.27; each P < 0.05). Stepwise multivariate regression included gender (0.39) and COPD (−0.43) in the final model (R2 = 0.266, P < 0.0001).

Conclusions

β-adrenergic sweat rate was significantly reduced in COPD patients, regardless of smoking status, reflecting acquired CFTR dysfunction and abnormal gland secretion in the skin that can persist despite smoking cessation. β-adrenergic sweat rate and sweat chloride are associated with COPD severity and clinical symptoms, supporting the hypothesis that CFTR decrements have a causative role in COPD pathogenesis.  相似文献   

3.

Introduction

We investigated the effects of intravenous and intratracheal administration of salbutamol on lung morphology and function, expression of ion channels, aquaporin, and markers of inflammation, apoptosis, and alveolar epithelial/endothelial cell damage in experimental pulmonary (p) and extrapulmonary (exp) mild acute respiratory distress syndrome (ARDS).

Methods

In this prospective randomized controlled experimental study, 56 male Wistar rats were randomly assigned to mild ARDS induced by either intratracheal (n = 28, ARDSp) or intraperitoneal (n = 28, ARDSexp) administration of E. coli lipopolysaccharide. Four animals with no lung injury served as controls (NI). After 24 hours, animals were anesthetized, mechanically ventilated in pressure-controlled mode with low tidal volume (6 mL/kg), and randomly assigned to receive salbutamol (SALB) or saline 0.9% (CTRL), intravenously (i.v., 10 μg/kg/h) or intratracheally (bolus, 25 μg). Salbutamol doses were targeted at an increase of ≈ 20% in heart rate. Hemodynamics, lung mechanics, and arterial blood gases were measured before and after (at 30 and 60 min) salbutamol administration. At the end of the experiment, lungs were extracted for analysis of lung histology and molecular biology analysis. Values are expressed as mean ± standard deviation, and fold changes relative to NI, CTRL vs. SALB.

Results

The gene expression of ion channels and aquaporin was increased in mild ARDSp, but not ARDSexp. In ARDSp, intravenous salbutamol resulted in higher gene expression of alveolar epithelial sodium channel (0.20 ± 0.07 vs. 0.68 ± 0.24, p < 0.001), aquaporin-1 (0.44 ± 0.09 vs. 0.96 ± 0.12, p < 0.001) aquaporin-3 (0.31 ± 0.12 vs. 0.93 ± 0.20, p < 0.001), and Na-K-ATPase-α (0.39 ± 0.08 vs. 0.92 ± 0.12, p < 0.001), whereas intratracheal salbutamol increased the gene expression of aquaporin-1 (0.46 ± 0.11 vs. 0.92 ± 0.06, p < 0.001) and Na-K-ATPase-α (0.32 ± 0.07 vs. 0.58 ± 0.15, p < 0.001). In ARDSexp, the gene expression of ion channels and aquaporin was not influenced by salbutamol. Morphological and functional variables and edema formation were not affected by salbutamol in any of the ARDS groups, regardless of the route of administration.

Conclusion

Salbutamol administration increased the expression of alveolar epithelial ion channels and aquaporin in mild ARDSp, but not ARDSexp, with no effects on lung morphology and function or edema formation. These results may contribute to explain the negative effects of β2-agonists on clinical outcome in ARDS.  相似文献   

4.

Background

Caffeine is one of the most widely consumed pharmacologically active substances. Its acute effect on myocardial blood flow is widely unknown. Our aim was to assess the acute effect of caffeine in a dose corresponding to two cups of coffee on myocardial blood flow (MBF) in coronary artery disease (CAD).

Methodology/Principal Findings

MBF was measured with 15O-labelled H2O and Positron Emission Tomography (PET) at rest and after supine bicycle exercise in controls (n = 15, mean age 58±13 years) and in CAD patients (n = 15, mean age 61±9 years). In the latter, regional MBF was assessed in segments subtended by stenotic and remote coronary arteries. All measurements were repeated fifty minutes after oral caffeine ingestion (200 mg). Myocardial perfusion reserve (MPR) was calculated as ratio of MBF during bicycle stress divided by MBF at rest. Resting MBF was not affected by caffeine in both groups. Exercise-induced MBF response decreased significantly after caffeine in controls (2.26±0.56 vs. 2.02±0.56, P<0.005), remote (2.40±0.70 vs. 1.78±0.46, P<0.001) and in stenotic segments (1.90±0.41 vs. 1.38±0.30, P<0.001). Caffeine decreased MPR significantly by 14% in controls (P<0.05 vs. baseline). In CAD patients MPR decreased by 18% (P<0.05 vs. baseline) in remote and by 25% in stenotic segments (P<0.01 vs. baseline).

Conclusions

We conclude that caffeine impairs exercise-induced hyperaemic MBF response in patients with CAD to a greater degree than age-matched controls.  相似文献   

5.

Background and Purpose

Maternal glucocorticoid treatment for threatened premature delivery dramatically improves neonatal survival and short-term morbidity; however, its effects on neurodevelopmental outcome are variable. We investigated the effect of maternal glucocorticoid exposure after acute asphyxia on injury in the preterm brain.

Methods

Chronically instrumented singleton fetal sheep at 0.7 of gestation received asphyxia induced by complete umbilical cord occlusion for 25 minutes. 15 minutes after release of occlusion, ewes received a 3 ml i.m. injection of either dexamethasone (12 mg, n = 10) or saline (n = 10). Sheep were killed after 7 days recovery; survival of neurons in the hippocampus and basal ganglia, and oligodendrocytes in periventricular white matter were assessed using an unbiased stereological approach.

Results

Maternal dexamethasone after asphyxia was associated with more severe loss of neurons in the hippocampus (CA3 regions, 290±76 vs 484±98 neurons/mm2, mean±SEM, P<0.05) and basal ganglia (putamen, 538±112 vs 814±34 neurons/mm2, P<0.05) compared to asphyxia-saline, and with greater loss of both total (913±77 vs 1201±75/mm2, P<0.05) and immature/mature myelinating oligodendrocytes in periventricular white matter (66±8 vs 114±12/mm2, P<0.05, vs sham controls 165±10/mm2, P<0.001). This was associated with transient hyperglycemia (peak 3.5±0.2 vs. 1.4±0.2 mmol/L at 6 h, P<0.05) and reduced suppression of EEG power in the first 24 h after occlusion (maximum −1.5±1.2 dB vs. −5.0±1.4 dB in saline controls, P<0.01), but later onset and fewer overt seizures.

Conclusions

In preterm fetal sheep, exposure to maternal dexamethasone during recovery from asphyxia exacerbated brain damage.  相似文献   

6.

Background

Higher aluminum (Al) content in infant formula and its effects on neonatal brain development are a cause for concern. This study aimed to evaluate the distribution and concentration of Al in neonatal rat brain following Al treatment, and oxidative stress in brain tissues induced by Al overload.

Methods

Postnatal day 3 (PND 3) rat pups (n =46) received intraperitoneal injection of aluminum chloride (AlCl3), at dosages of 0, 7, and 35 mg/kg body wt (control, low Al (LA), and high Al (HA), respectively), over 14 d.

Results

Aluminum concentrations were significantly higher in the hippocampus (751.0 ± 225.8 ng/g v.s. 294.9 ± 180.8 ng/g; p < 0.05), diencephalon (79.6 ± 20.7 ng/g v.s. 20.4 ± 9.6 ng/g; p < 0.05), and cerebellum (144.8 ± 36.2 ng/g v.s. 83.1 ± 15.2 ng/g; p < 0.05) in the HA group compared to the control. The hippocampus, diencephalon, cerebellum, and brain stem of HA animals displayed significantly higher levels of lipid peroxidative products (TBARS) than the same regions in the controls. However, the average superoxide dismutase (SOD) activities in the cerebral cortex, hippocampus, cerebellum, and brain stem were lower in the HA group compared to the control. The HA animals demonstrated increased catalase activity in the diencephalon, and increased glutathione peroxidase (GPx) activity in the cerebral cortex, hippocampus, cerebellum, and brain stem, compared to controls.

Conclusion

Aluminum overload increases oxidative stress (H2O2) in the hippocampus, diencephalon, cerebellum, and brain stem in neonatal rats.  相似文献   

7.

Background

The outcome of patients suffering from pulmonary arterial hypertension (PAH) are predominantly determined by the response of the right ventricle to the increase afterload secondary to high vascular pulmonary resistance. However, little is known about the effects of the current available or experimental PAH treatments on the heart. Recently, inflammation has been implicated in the pathophysiology of PAH. N-acetylcysteine (NAC), a well-known safe anti-oxidant drug, has immuno-modulatory and cardioprotective properties. We therefore hypothesized that NAC could reduce the severity of pulmonary hypertension (PH) in rats exposed to monocrotaline (MCT), lowering inflammation and preserving pulmonary vascular system and right heart function.

Methods

Saline-treated control, MCT-exposed, MCT-exposed and NAC treated rats (day 14–28) were evaluated at day 28 following MCT for hemodynamic parameters (right ventricular systolic pressure, mean pulmonary arterial pressure and cardiac output), right ventricular hypertrophy, pulmonary vascular morphometry, lung inflammatory cells immunohistochemistry (monocyte/macrophages and dendritic cells), IL-6 expression, cardiomyocyte hypertrophy and cardiac fibrosis.

Results

The treatment with NAC significantly decreased pulmonary vascular remodeling, lung inflammation, and improved total pulmonary resistance (from 0.71 ± 0.05 for MCT group to 0.50 ± 0.06 for MCT + NAC group, p < 0.05). Right ventricular function was also improved with NAC treatment associated with a significant decrease in cardiomyocyte hypertrophy (625 ± 69 vs. 439 ± 21 μm2 for MCT and MCT + NAC group respectively, p < 0.001) and heart fibrosis (14.1 ± 0.8 vs. 8.8 ± 0.1% for MCT and MCT + NAC group respectively, p < 0.001).

Conclusions

Through its immuno-modulatory and cardioprotective properties, NAC has beneficial effect on pulmonary vascular and right heart function in experimental PH.  相似文献   

8.

Objective

To evaluate the effects of study participation per se at the beginning of a sleep extension trial between screening, randomization, and the run-in visit.

Design

Subjects were screened, returned for randomization (Comparison vs. Intervention) after 81 days (median), and attended run-in visit 121 days later.

Setting

Outpatient.

Patients

Obese (N = 125; M/F, 30/95; Blacks/Whites/Other, N = 73/44/8), mean weight 107.6±19.7 kg, <6.5 h sleep/night.

Intervention

Non-pharmacological sleep extension.

Measurements

Sleep duration (diaries and actigraphy watch), sleep quality (Pittsburgh Sleep Quality Index), daily sleepiness (Epworth Sleepiness Scale), fasting glucose, insulin and lipids.

Results

Prior to any intervention, marked improvements occurred between screening and randomization. Sleep duration increased (diaries: 357.4 ±51.2 vs. 388.1±48.6 min/night; mean±SD; P<0.001 screening vs. randomization; actigraphy: 344.3 ±41.9 vs. 358.6±48.2 min/night; P<0.001) sleep quality improved (9.1±3.2 vs. 8.2±3.0 PSQI score; P<0.001), sleepiness tended to improve (8.9±4.6 vs. 8.3±4.5 ESS score; P = 0.06), insulin resistance decreased (0.327±0.038 vs. 0.351±0.045; Quicki index; P<0.001), and lipids improved, except for HDL-C. Abnormal fasting glucose (25% vs. 11%; P = 0.007), and metabolic syndrome (42% vs. 29%; P = 0.007) both decreased. In absence of intervention, the earlier metabolic improvements disappeared at the run-in visit.

Limitations

Relatively small sample size.

Conclusions

Improvements in biochemical and behavioral parameters between screening and randomization changed the “true” study baseline, thereby potentially affecting outcome. While regression to the mean and placebo effect were considered, these findings are most consistent with the “Hawthorne effect”, according to which behavior measured in the setting of an experimental study changes in response to the attention received from study investigators. This is the first time that biochemical changes were documented with respect to the Hawthorne effect. The findings have implications for the design and conduct of clinical research.

Trial Registration

ClinicalTrials.gov NCT00261898.  相似文献   

9.

Background

Current evidence suggests that endothelial progenitor cells (EPC) contribute to ischemic tissue repair by both secretion of paracrine factors and incorporation into developing vessels. We tested the hypothesis that cell-free administration of paracrine factors secreted by cultured EPC may achieve an angiogenic effect equivalent to cell therapy.

Methodology/Principal Findings

EPC-derived conditioned medium (EPC-CM) was obtained from culture expanded EPC subjected to 72 hours of hypoxia. In vitro, EPC-CM significantly inhibited apoptosis of mature endothelial cells and promoted angiogenesis in a rat aortic ring assay. The therapeutic potential of EPC-CM as compared to EPC transplantation was evaluated in a rat model of chronic hindlimb ischemia. Serial intramuscular injections of EPC-CM and EPC both significantly increased hindlimb blood flow assessed by laser Doppler (81.2±2.9% and 83.7±3.0% vs. 53.5±2.4% of normal, P<0.01) and improved muscle performance. A significantly increased capillary density (1.62±0.03 and 1.68±0.05/muscle fiber, P<0.05), enhanced vascular maturation (8.6±0.3 and 8.1±0.4/HPF, P<0.05) and muscle viability corroborated the findings of improved hindlimb perfusion and muscle function. Furthermore, EPC-CM transplantation stimulated the mobilization of bone marrow (BM)-derived EPC compared to control (678.7±44.1 vs. 340.0±29.1 CD34+/CD45 cells/1×105 mononuclear cells, P<0.05) and their recruitment to the ischemic muscles (5.9±0.7 vs. 2.6±0.4 CD34+ cells/HPF, P<0.001) 3 days after the last injection.

Conclusions/Significance

Intramuscular injection of EPC-CM is as effective as cell transplantation for promoting tissue revascularization and functional recovery. Owing to the technical and practical limitations of cell therapy, cell free conditioned media may represent a potent alternative for therapeutic angiogenesis in ischemic cardiovascular diseases.  相似文献   

10.

Background

Hematological and biochemical abnormalities are among the most common clinicopathological manifestations of HIV patients on ART. Consequently, the development and assessment of indigenous antiretroviral drugs with minimal abnormalities becomes a necessity. The objective of this investigation was to assess potential haematological and biochemical abnormalities that may be associated with the administration of Winniecure ART in HIV patients undergoing treatment in Nigeria. Fifty (50) confirmed HIV positive ART naïve patients aged 36 ± 10 were observed for haematological and biochemical responses for 12 weeks. Haematological responses were assessed thrice at 6 weeks interval using coulter Ac-T differential analyser and biochemical indicators (bilirubin, creatine, urea, amylase, ALT, ALP, AST, albumin) assayed spectrophotometrically.

Results

The biochemical parameters ALP (P < 0.05), ALT (P < 0.0001), AST (P < 0.001) and amylase (P < 0.05) slightly increased at the 12th week, no significant change was observed in plasma creatinine and urea concentrations while albumin levels decreased non-significantly (P > 0.002). Haematological results showed consistent reduction of ESR, eosinophil, absolute and differential lymphocytes, granulocytes and total WBC in the test subjects throughout the assessment period. Conversely, haemoglobin, platelet and PCV increased significantly (P < 0.05). At the 12th week thrombocytopenia (10.30%) and anaemia (76%) were reduced to 2% and 31% respectively while neutropenia (4.2 to 8%), leucopenia (26.8 to 30%) and lymphopenia (1 to 10%) increased. No cases of neutrophilia, lymphocytosis, eosinophilia and leukocytosis was observed.

Conclusion

The drug has a reduced haematological abnormalities and normal kidney function was unaffected though there were signs of possible abnormal levels of hepatic enzymes beyond 12 weeks of treatment.  相似文献   

11.

Background

The popular methods for evaluating the initial therapeutic effect (ITE) of noninvasive positive pressure ventilation (NPPV) can only roughly reflect the therapeutic outcome of a patient’s ventilation because they are subjective, invasive and time-delayed. In contrast, vibration response imaging (VRI) can monitor the function of a patient’s ventilation over the NPPV therapy in a non-invasive manner. This study aimed to investigate the value of VRI in evaluating the ITE of NPPV for patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD).

Methods

Thirty-six AECOPD patients received VRI at three time points: before NPPV treatment (T1), at 15 min of NPPV treatment (T2), and at 15 min after the end of NPPV treatment (T4). Blood gas analysis was also performed at T1 and at 2 hours of NPPV treatment (T3). Thirty-nine healthy volunteers also received VRI at T1 and T2. VRI examination at the time point T2 in either the patients or volunteers did not require any interruption of the on-going NPPV. The clinical indices at each time point were compared between the two groups. Moreover, correlations between the PaCO2 changes (T3 vs T1) and abnormal VRI scores (AVRIS) changes (T2 vs T1) were analyzed.

Results

No significant AVRIS differences were found between T1 and T2 in the healthy controls (8.51 ± 3.36 vs. 8.53 ± 3.57, P > 0.05). The AVRIS, dynamic score, MEF score and EVP score showed a significant decrease in AECOPD patients at T2 compared with T1 (P < 0.05), but a significant increase at T4 compared with T2 (P < 0.05). We also found a positive correlation (R2 = 0.6399) between the PaCO2 changes (T3 vs T1) and AVRIS changes (T2 vs T1).

Conclusions

VRI is a promising noninvasive tool for evaluating the initial therapeutic effects of NPPV in AECOPD patients and predicting the success of NPPV in the early stage.  相似文献   

12.

Background

The anesthetic management of patients undergoing endovascular treatment of cerebral aneurysms in the interventional neuroradiology suite can be challenged by hypothermia because of low ambient temperature for operating and maintaining its equipments. We evaluated the efficacy of skin surface warming prior to induction of anesthesia to prevent the decrease in core temperature and reduce the incidence of hypothermia.

Methods

Seventy-two patients were randomized to pre-warmed and control group. The patients in pre-warmed group were warmed 30 minutes before induction with a forced-air warming blanket set at 38°C. Pre-induction tympanic temperature (Tpre) was measured using an infrared tympanic thermometer and core temperature was measured at the esophagus immediately after intubation (T0) and recorded at 20 minutes intervals (T20, T40, T60, T80, T100, and T120). The number of patients who became hypothermic at each time was recorded.

Results

Tpre in the control and pre-warmed group were 36.4 ± 0.4°C and 36.6 ± 0.3°C, whereas T0 were 36.5 ± 0.4°C and 36.6 ± 0.2°C. Core temperatures in the pre-warmed group were significantly higher than the control group at T20, T40, T60, T80, T100, and T120 (P < 0.001). Compared to T0, core temperatures at each time were significantly lower in both two groups (P = 0.007 at T20 in pre-warmed group, P < 0.001 at the other times in both groups). The incidence of hypothermia was significantly lower in the pre-warmed group than the control group from T20 to T120 (P = 0.002 at T20, P < 0.001 at the other times).

Conclusion

Pre-warming for 30 minutes at 38°C did not modify the trends of the temperature decrease seen in the INR suite. It just slightly elevated the beginning post intubation base temperature. The rate of decrease was similar from T20 to T120. However, pre-warming considerably reduced the risk of intraprocedural hypothermia.

Trial registration

Clinical Research Information Service (CRiS) Identifier: KCT0001320. Registered December 19th, 2014.  相似文献   

13.

Background

Exercise training is of benefit for patients with restrictive lung disease. However, it tends to be intolerable for those with severe disease. We examined whether providing ventilatory assistance by using negative pressure ventilators (NPV) during exercise training is feasible for such patients and the effects of training.

Methods

36 patients with restrictive lung disease were prospectively enrolled for a 12-week multidisciplinary rehabilitation program. During this program, half of them (n:18; 60.3 ± 11.6 years; 6 men; FVC: 32.5 ± 11.7% predicted ) received regular sessions of exercise training under NPV, whilst the 18 others (59.6 ± 12.3 years; 8 men; FVC: 37.7 ± 10.2% predicted) did not. Exercise capacity, pulmonary function, dyspnea and quality of life were measured. The primary endpoint was the between-group difference in change of 6 minute-walk distance (6MWD) after 12 weeks of rehabilitation.

Results

All patients in the NPV-exercise group were able to tolerate and completed the program. The between-group differences were significantly better in the NPV-exercise group in changes of 6MWD (34.1 ± 12.7 m vs. -32.5 ± 17.5 m; P = 0.011) and St George Score (−14.5 ± 3.6 vs. 11.8 ± 6.0; P < 0.01). There was an improvement in dyspnea sensation (Borg’s scale, from 1.4 ± 1.5 point to 0.8 ± 1.3 point, P = 0.049) and a small increase in FVC (from 0.85 ± 0.09 L to 0.91 ± 0.08 L, P = 0.029) in the NPV-exercise group compared to the control group.

Conclusion

Exercise training with NPV support is feasible for patients with severe restrictive lung diseases, and improves exercise capacity and health-related quality of life.  相似文献   

14.

Aims

Currently, there is no effective resuscitative adjunct to fluid and blood products to limit tissue injury for traumatic hemorrhagic shock. The objective of this study was to investigate the role of inhaled carbon monoxide (CO) to limit inflammation and tissue injury, and specifically mitochondrial damage, in experimental models of hemorrhage and resuscitation.

Results

Inhaled CO (250 ppm for 30 minutes) protected against mortality in severe murine hemorrhagic shock and resuscitation (HS/R) (20% vs. 80%; P<0.01). Additionally, CO limited the development of shock as determined by arterial blood pH (7.25±0.06 vs. 7.05±0.05; P<0.05), lactate levels (7.2±5.1 vs 13.3±6.0; P<0.05), and base deficit (13±3.0 vs 24±3.1; P<0.05). A dose response of CO (25–500 ppm) demonstrated protection against HS/R lung and liver injury as determined by MPO activity and serum ALT, respectively. CO limited HS/R-induced increases in serum tumor necrosis factor-α and interleukin-6 levels as determined by ELISA (P<0.05 for doses of 100–500ppm). Furthermore, inhaled CO limited HS/R induced oxidative stress as determined by hepatic oxidized glutathione:reduced glutathione levels and lipid peroxidation. In porcine HS/R, CO did not influence hemodynamics. However, CO limited HS/R-induced skeletal muscle and platelet mitochondrial injury as determined by respiratory control ratio (muscle) and ATP-linked respiration and mitochondrial reserve capacity (platelets).

Conclusion

These preclinical studies suggest that inhaled CO can be a protective therapy in HS/R; however, further clinical studies are warranted.  相似文献   

15.
Atrial fibrillation (AF) is associated with short-term mortality after ST-elevation myocardial infarction (STEMI), but there is limited data on the temporal association between AF and mortality after STEMI. A total of 830 patients were included (age: 62 ± 12 years, 76 % male). Patients with new-onset AF < 30 days after STEMI were divided among three subgroups: AF on the day of admission, AF 24–72 h and AF > 72 h after admission. Thirty-day mortality was assessed by telephone and via the municipal population registry. Twenty patients died < 30 days after admission. In 41 patients, AF was detected on the day of admission, in 14 patients 24–72 h after admission and in 18 patients > 72 h after admission. Mortality was higher in patients with AF on the day of admission (7.3 vs 2.2 %, p = 0.036) and 24–72 h after admission (14.3 vs 1.4 %, p < 0.001), but not in patients with AF > 72 h after admission (0 vs 1.1 %, p > 0.999). Age (odds ratio (OR) 1.123, p < 0.001), Killip class (adjusted OR 8.341, p < 0.001), AF on the day of admission (OR 3.585, p = 0.049) and 24–72 h after admission (OR 11.515, p = 0.003) were, amongst other variables, associated with an increased 30-day mortality. In conclusion, only new-onset incident AF during the first 72 h after admission was associated with 30-day mortality in STEMI patients.

Electronic supplementary material

The online version of this article (doi:10.1007/s12471-015-0709-2) contains supplementary material, which is available to authorized users.  相似文献   

16.

Background

The study was conducted to evaluate the in vitro thrombolytic activity, and in vivo analgesic, anti-inflammatory and antipyretic potentials of different hydrocarbon soluble extracts of Litsea glutinosa leaves for the first time widely used in the folkloric treatments in Bangladesh. This work aimed to create new insights on the fundamental mechanisms of the plant extracts involved in these activities.

Results

In thrombolytic activity assay, a significant clot disruption was observed at dose of 1 mg/mL for each of the extracts (volume 100 μL) when compared to the standard drug streptokinase. The n-hexane, ethyl acetate, chloroform, and crude methanolic extracts showed 32.23 ± 0.26, 37.67 ± 1.31, 43.13 ± 0.85, and 46.78 ± 0.9% clot lysis, respectively, whereas the positive control streptokinase showed 93.35 ± 0.35% disruption at the dose of 30,000 I.U. In hot plate method, the highest pain inhibitory activity was found at a dose of 500 mg/kg of crude extract (15.54 ± 0.37 sec) which differed significantly (P <0.01 and P <0.001) with that of the standard drug ketorolac (16.38 ± 0.27 sec). In acetic acid induced writhing test, the crude methanolic extract showed significant (P <0.01 and P <0.001) analgesic potential at doses 250 and 500 mg/kg body weight (45.98 and 56.32% inhibition, respectively), where ketorolac showed 64.36% inhibition. In anti-inflammatory activity test, the crude methanolic extract showed significant (P <0.001) potential at doses 250 and 500 mg/kg body weight (1.51 ± 0.04 and 1.47 ± 0.03 mm paw edema, respectively), where ketorolac showed 1.64 ± 0.05 mm edema after 3 h of carrageenan injection. In antipyretic activity assay, the crude extract showed notable reduction in body temperature (32.78 ± 0.46°C) at dose of 500 mg/kg-body weight, when the standard (at dose 150 mg/kg-body weight) exerted 33.32 ± 0.67°C temperature after 3 h of administration.

Conclusions

Our results yield that the crude hydroalcoholic extract has better effects than the other in all trials. In the context, it can be said that the leaves of L. glutinosa possess remarkable pharmacological effects, and justify its traditional use as analgesic, antipyretic, anti-inflammatory, and thrombolytic agent.  相似文献   

17.

Background

Vitamin D has effects on the innate and adaptive immune system. In asthmatic children low vitamin D levels are associated with poor asthma control, reduced lung function, increased medication intake, and exacerbations. Little is known about vitamin D in adult asthma patients or its association with asthma severity and control.

Methods

Clinical parameters of asthma control and 25-hydroxyvitamin D (25(OH)D) serum concentrations were evaluated in 280 adult asthma patients (mean ± SD: 45.0 ± 13.8 yrs., 40% male, FEV1 74.9 ± 23.4%, 55% severe, 51% uncontrolled).

Results

25(OH)D concentrations in adult asthmatics were low (25.6 ±11.8 ng/ml) and vitamin D insufficiency or deficiency (vitamin D <30 ng/ml) was common (67%). 25(OH)D levels were related to asthma severity (intermittent: 31.1 ± 13.0 ng/ml, mild: 27.3 ± 11.9 ng/ml, moderate: 26.5 ± 12.0 ng/ml, severe: 24.0 ± 11.8 ng/ml, p = 0.046) and control (controlled: 29.5 ± 12.5 ng/ml, partly controlled 25.9 ± 10.8 ng/ml, uncontrolled: 24.2 ± 11.8 ng/ml, p = 0.030). The frequency of vitamin D insufficiency or deficiency was significantly higher in patients with severe or uncontrolled asthma and was associated with a lower FEV1 (vitamin D <30 vs. ≥30 ng/ml 2.3 ± 0.9 L vs. 2.7 ± 1.0 L, p = 0.006), higher levels of exhaled NO (45 ± 46 ppb vs. 31 ± 37 ppb, p = 0.023), a higher BMI (28.3 ± 6.2 vs. 25.1 ± 3.9, p < 0.001), and sputum eosinophilia (5.1 ± 11.8% vs. 0.5 ± 1.0%, p = 0.005). The use of oral corticosteroids or sputum eosinophilia was associated with a 20% or 40% higher risk of vitamin D insufficiency or deficiency.

Conclusions

25(OH)D levels below 30 ng/ml are common in adult asthma and most pronounced in patients with severe and/or uncontrolled asthma, supporting the hypothesis that improving suboptimal vitamin D status might be effective in prevention and treatment of asthma.  相似文献   

18.
A proposed intervention for newborn infants in countries with suspected vitamin A (VA) deficiency is to administer 50,000 IU retinyl palmitate at birth to reduce mortality risk. However, no studies have investigated birth weight effects. In this study, low birth weight (LBW; <1 kg, n = 18) and healthy birth weight (HBW) piglets (>1.5 kg, n = 18) from VA-depleted sows were dosed with 25,000 or 50,000 IU retinyl palmitate (26.2 or 52.4 µmol retinol equivalents) at birth to compare VA reserves. Blood was collected at varying times (n = 3–5/time/dose), and piglets were killed at 12 or 24 h for blood, liver, kidneys, spleen, lungs, adrenal gland, and intestinal contents. HBW piglets had significantly higher birth, death, and organ weights than LBW (P < 0.0001 for all). HBW and LBW piglets, which received VA, had higher liver and kidney VA concentrations (0.18 ± 0.09, 0.24 ± 0.10 µmol/g liver and 13.4 ± 4.1, 14.2 ± 4.5 nmol/g kidney, respectively) than controls (n = 10) (0.051 ± 0.01 µmol/g liver and 1.01 ± 0.43 nmol/g kidney) (P = 0.0061 and < 0.0001, respectively). Total liver (9.75 ± 5.16 µmol) and kidney retinol (204 ± 79.1 nmol) were higher in HBW than LBW piglets (P < 0.0001). Extrahepatic tissues, except lung, had higher VA concentration than controls (P < 0.0001). Serum retinol and ester concentrations were higher in treated than control piglets (P = 0.0028, P < 0.0001, respectively), and significantly changed during the times sampled (P = 0.022, P = 0.011, respectively). Peak serum retinyl ester concentrations, which occurred at 3 h, were higher in piglets that received 50,000 IU (4.2 ± 4.4 µmol/L) than 25,000 IU (2.7 ± 2.3 µmol/L) (P = 0.031). Regardless of dose amount, HBW piglets stored more supplemental VA than LBW piglets when administered at birth.  相似文献   

19.

Background

The analysis of heart rate variability (HRV) has been shown as a promising non-invasive technique for assessing the cardiac autonomic modulation in trauma. The aim of this study was to evaluate HRV during hemorrhagic shock and fluid resuscitation, comparing to traditional hemodynamic and metabolic parameters.

Methods

Twenty anesthetized and mechanically ventilated pigs were submitted to hemorrhagic shock (60% of estimated blood volume) and evaluated for 60 minutes without fluid replacement. Surviving animals were treated with Ringer solution and evaluated for an additional period of 180 minutes. HRV metrics (time and frequency domain) as well as hemodynamic and metabolic parameters were evaluated in survivors and non-survivors animals.

Results

Seven of the 20 animals died during hemorrhage and initial fluid resuscitation. All animals presented an increase in time-domain HRV measures during haemorrhage and fluid resuscitation restored baseline values. Although not significantly, normalized low-frequency and LF/HF ratio decreased during early stages of haemorrhage, recovering baseline values later during hemorrhagic shock, and increased after fluid resuscitation. Non-surviving animals presented significantly lower mean arterial pressure (43±7vs57±9 mmHg, P<0.05) and cardiac index (1.7±0.2vs2.6±0.5 L/min/m2, P<0.05), and higher levels of plasma lactate (7.2±2.4vs3.7±1.4 mmol/L, P<0.05), base excess (-6.8±3.3vs-2.3±2.8 mmol/L, P<0.05) and potassium (5.3±0.6vs4.2±0.3 mmol/L, P<0.05) at 30 minutes after hemorrhagic shock compared with surviving animals.

Conclusions

The HRV increased early during hemorrhage but none of the evaluated HRV metrics was able to discriminate survivors from non-survivors during hemorrhagic shock. Moreover, metabolic and hemodynamic variables were more reliable to reflect hemorrhagic shock severity than HRV metrics.  相似文献   

20.

Background

Wearing an activity monitor as a motivational tool and incorporating a behavior-based reward system or a computerized game element might have a synergistic effect on an increase in daily physical activity, thereby inducing body fat reduction. This pilot crossover study aimed to examine the effects of a short-term lifestyle intervention using an activity monitor with computerized game functions on physical activity and body composition.

Methods

Twenty healthy volunteers (31 ± 3 years) participated in a 12-week crossover study. The participants were randomly assigned to either Group A (a 6-week game intervention followed by a 6-week normal intervention) or Group B (a 6-week normal intervention followed by a 6-week game intervention). The participants wore both a normal activity monitor (Lifecorder EX) and an activity monitor with computerized game functions (Yuuhokei) during the game intervention, whereas they only wore a normal activity monitor during the normal intervention. Before, during, and after the intervention, body composition was assessed.

Results

Significantly more daily steps were recorded for the game intervention than for the normal intervention (10,520 ± 562 versus 8,711 ± 523 steps/day, P < 0.01). The participants performed significantly more physical activity at an intensity of ≥ 3 metabolic equivalents (METs) in the game intervention than in the normal intervention (3.1 ± 0.2 versus 2.4 ± 0.2 METs · hour/day, P < 0.01). Although body mass and fat were significantly reduced in both periods (P < 0.01), the difference in body fat reduction was significantly greater in the game intervention than in the normal intervention (P < 0.05).

Conclusions

A short-term intervention using an activity monitor with computerized game functions increases physical activity and reduces body fat more effectively than an intervention using a standard activity monitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号