首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Species distribution models are used for numerous purposes such as predicting changes in species’ ranges and identifying biodiversity hotspots. Although implications of distribution models for conservation are often implicit, few studies use these tools explicitly to inform conservation efforts. Herein, we illustrate how multiple distribution models developed using distinct sets of environmental variables can be integrated to aid in identification sites for use in conservation. We focus on the endangered arroyo toad (Anaxyrus californicus), which relies on open, sandy streams and surrounding floodplains in southern California, USA, and northern Baja California, Mexico. Declines of the species are largely attributed to habitat degradation associated with vegetation encroachment, invasive predators, and altered hydrologic regimes. We had three main goals: 1) develop a model of potential habitat for arroyo toads, based on long-term environmental variables and all available locality data; 2) develop a model of the species’ current habitat by incorporating recent remotely-sensed variables and only using recent locality data; and 3) integrate results of both models to identify sites that may be employed in conservation efforts. We used a machine learning technique, Random Forests, to develop the models, focused on riparian zones in southern California. We identified 14.37% and 10.50% of our study area as potential and current habitat for the arroyo toad, respectively. Generally, inclusion of remotely-sensed variables reduced modeled suitability of sites, thus many areas modeled as potential habitat were not modeled as current habitat. We propose such sites could be made suitable for arroyo toads through active management, increasing current habitat by up to 67.02%. Our general approach can be employed to guide conservation efforts of virtually any species with sufficient data necessary to develop appropriate distribution models.  相似文献   

2.
Abstract: We analyzed 16 years of mark-recapture data to investigate whether a wildfire influenced survival of an arboreal ambush-forager (broad-headed snake [Hoplocephalus bungaroides]) and a terrestrial active forager (small-eyed snake Cryptophis nigrescens). We predicted that wildfire would cause direct mortality and reduce subsequent survival of both snake species. Contrary to this prediction, wildfire did not affect abundance of broad-headed snakes, but abundance of small-eyed snakes decreased by 48% after the wildfire. Estimated annual survival of small-eyed snakes was 37% lower after fire (s=0.47, SE=0.07) than before fire (s=0.74, SE=0.05). Prescribed burning may be a suitable tool for creating open habitat mosaics for the endangered broad-headed snake.  相似文献   

3.
Species distributions are limited by a complex array of abiotic and biotic factors. In general, abiotic (climatic) factors are thought to explain species’ broad geographic distributions, while biotic factors regulate species’ abundance patterns at local scales. We used species distribution models to test the hypothesis that a biotic interaction with a tree, the Colombian oak (Quercus humboldtii), limits the broad-scale distribution of the Acorn Woodpecker (Melanerpes formicivorus) in the Northern Andes of South America. North American populations of Acorn Woodpeckers consume acorns from Quercus oaks and are limited by the presence of Quercus oaks. However, Acorn Woodpeckers in the Northern Andes seldom consume Colombian oak acorns (though may regularly drink sap from oak trees) and have been observed at sites without Colombian oaks, the sole species of Quercus found in South America. We found that climate-only models overpredicted Acorn Woodpecker distribution, suggesting that suitable abiotic conditions (e.g. in northern Ecuador) exist beyond the woodpecker’s southern range margin. In contrast, models that incorporate Colombian oak presence outperformed climate-only models and more accurately predicted the location of the Acorn Woodpecker’s southern range margin in southern Colombia. These findings support the hypothesis that a biotic interaction with Colombian oaks sets Acorn Woodpecker’s broad-scale geographic limit in South America, probably because Acorn Woodpeckers rely on Colombian oaks as a food resource (possibly for the oak’s sap rather than for acorns). Although empirical examples of particular plants limiting tropical birds’ distributions are scarce, we predict that similar biotic interactions may play an important role in structuring the geographic distributions of many species of tropical montane birds with specialized foraging behavior.  相似文献   

4.
Many endangered species worldwide are found in remnant populations, often within fragmented landscapes. However, when possible, an understanding of the natural extent of population structure and dispersal behaviour of threatened species would assist in their conservation and management. The brush-tailed rock-wallaby (Petrogale penicillata), a once abundant and widespread rock-wallaby species across southeastern Australia, has become nearly extinct across much of the southern part of its range. However, the northern part of the species’ range still sustains many small colonies closely distributed across suitable habitat, providing a rare opportunity to investigate the natural population dynamics of a listed threatened species. We used 12 microsatellite markers to investigate genetic diversity, population structure and gene flow among brush-tailed rock-wallaby colonies within and among two valley regions with continuous habitat in southeast Queensland. We documented high and significant levels of population genetic structure between rock-wallaby colonies embedded in continuous escarpment habitat and forest. We found a strong and significant pattern of isolation-by-distance among colonies indicating restricted gene flow over a small geographic scale ( <10 km) and conclude that gene flow is more likely limited by intrinsic factors rather than environmental factors. In addition, we provide evidence that genetic diversity was significantly lower in colonies located in a more isolated valley region compared to colonies located in a valley region surrounded by continuous habitat. These findings shed light on the processes that have resulted in the endangered status of rock-wallaby species in Australia and they have strong implications for the conservation and management of both the remaining ‘connected’8 brush-tailed rock-wallaby colonies in the northern parts of the species’8 range and the remnant endangered populations in the south.  相似文献   

5.
ABSTRACT: BACKGROUND: To conserve critically endangered predators, we also need to conserve the prey species upon which they depend. Velvet geckos (Oedura lesueurii) are a primary prey for the endangered broad-headed snake (Hoplocephalus bungaroides), which is restricted to sandstone habitats in southeastern Australia. We sequenced the ND2 gene from 179 velvet geckos, to clarify the lizards' phylogeographic history and landscape genetics. We also analysed 260 records from a longterm (3-year) capture-mark-recapture program at three sites, to evaluate dispersal rates of geckos as a function of locality, sex and body size. RESULTS: The genetic analyses revealed three ancient lineages in the north, south and centre of the species' current range. Estimates of gene flow suggest low dispersal rates, constrained by the availability of contiguous rocky habitat. Mark-recapture records confirm that these lizards are highly sedentary, with most animals moving < 30 m from their original capture site even over multi-year periods. CONCLUSION: The low vagility of these lizards suggests that they will be slow to colonise vacant habitat patches; and hence, efforts to restore degraded habitats for broad-headed snakes may need to include translocation of lizards.  相似文献   

6.
ABSTRACT The decline of many snake populations is attributable to habitat loss, and knowledge of habitat use is critical to their conservation. Resource characteristics (e.g., relative availability of different habitat types, soils, and slopes) within a landscape are scale-dependent and may not be equal across multiple spatial scales. Thus, it is important to identify the relevant spatial scales at which resource selection occurs. We conducted a radiotelemetry study of eastern hognose snake (Heterodon platirhinos) home range size and resource use at different hierarchical spatial scales. We present the results for 8 snakes radiotracked during a 2-year study at New Boston Air Force Station (NBAFS) in southern New Hampshire, USA, where the species is listed by the state as endangered. Mean home range size (minimum convex polygon) at NBAFS (51.7 ± 14.7 ha) was similar to that reported in other parts of the species’ range. Radiotracked snakes exhibited different patterns of resource use at different spatial scales. At the landscape scale (selection of locations within the landscape), snakes overutilized old-field and forest edge habitats and underutilized forested habitats and wetlands relative to availability. At this scale, snakes also overutilized areas containing sandy loam soils and areas with lower slope (mean slope = 5.2% at snake locations vs. 6.7% at random locations). We failed to detect some of these patterns of resource use at the home range scale (i.e., within the home range). Our ability to detect resource selection by the snakes only at the landscape scale is likely the result of greater heterogeneity in macrohabitat features at the broader landscape scale. From a management perspective, future studies of habitat selection for rare species should include measurement of available habitat at spatial scales larger than the home range. We suggest that the maintenance of open early successional habitats as a component of forested landscapes will be critical for the persistence of eastern hognose snake populations in the northeastern United States.  相似文献   

7.
The warming climate will expose alpine species adapted to a highly seasonal, harsh environment to novel environmental conditions. A species can shift their distribution, acclimate, or adapt in response to a new climate. Alpine species have little suitable habitat to shift their distribution, and the limits of acclimation will likely be tested by climate change in the long-term. Adaptive genetic variation may provide the raw material for species to adapt to this changing environment. Here, we use a genomic approach to describe adaptive divergence in an alpine-obligate species, the white-tailed ptarmigan (Lagopus leucura), a species distributed from Alaska to New Mexico, across an environmentally variable geographic range. Previous work has identified genetic structure and morphological, behavioral, and physiological differences across the species’ range; however, those studies were unable to determine the degree to which adaptive divergence is correlated with local variation in environmental conditions. We used a genome-wide dataset generated from 95 white-tailed ptarmigan distributed throughout the species’ range and genotype–environment association analyses to identify the genetic signature and environmental drivers of local adaptation. We detected associations between multiple environmental gradients and candidate adaptive loci, suggesting ptarmigan populations may be locally adapted to the plant community composition, elevation, local climate, and to the seasonality of the environment. Overall, our results suggest there may be groups within the species’ range with genetic variation that could be essential for adapting to a changing climate and helpful in guiding conservation action.Subject terms: Ecological genetics, Evolutionary ecology  相似文献   

8.
Genetic structuring of wild populations is dependent on environmental, ecological, and life‐history factors. The specific role environmental context plays in genetic structuring is important to conservation practitioners working with rare species across areas with varying degrees of fragmentation. We investigated fine‐scale genetic patterns of the federally threatened Eastern Massasauga Rattlesnake (Sistrurus catenatus) on a relatively undisturbed island in northern Michigan, USA. This species often persists in habitat islands throughout much of its distribution due to extensive habitat loss and distance‐limited dispersal. We found that the entire island population exhibited weak genetic structuring with spatially segregated variation in effective migration and genetic diversity. The low level of genetic structuring contrasts with previous studies in the southern part of the species’ range at comparable fine scales (~7 km), in which much higher levels of structuring were documented. The island population''s genetic structuring more closely resembles that of populations from Ontario, Canada, that occupy similarly intact habitats. Intrapopulation variation in effective migration and genetic diversity likely corresponds to the presence of large inland lakes acting as barriers and more human activity in the southern portion of the island. The observed genetic structuring in this intact landscape suggests that the Eastern Massasauga is capable of sufficient interpatch movements to reduce overall genetic structuring and colonize new habitats. Landscape mosaics with multiple habitat patches and localized barriers (e.g., large water bodies or roads) will promote gene flow and natural colonization for this declining species.  相似文献   

9.
Species distribution modeling is widely applied to predict invasive species distributions and species range shifts under climate change. Accurate predictions depend upon meeting the assumption that ecological niches are conserved, i.e., spatially or temporally transferable. Here we present a multi-taxon comparative analysis of niche conservatism using biological invasion events well documented in natural history museum collections. Our goal is to assess spatial transferability of the climatic niche of a range of noxious terrestrial invasive species using two complementary approaches. First we compare species’ native versus invasive ranges in environmental space using two distinct methods, Principal Components Analysis and Mahalanobis distance. Second we compare species’ native versus invaded ranges in geographic space as estimated using the species distribution modeling technique Maxent and the comparative index Hellinger’s I. We find that species exhibit a range of responses, from almost complete transferability, in which the invaded niches completely overlap with the native niches, to a complete dissociation between native and invaded ranges. Intermediate responses included expansion of dimension attributable to either temperature or precipitation derived variables, as well as niche expansion in multiple dimensions. We conclude that the ecological niche in the native range is generally a poor predictor of invaded range and, by analogy, the ecological niche may be a poor predictor of range shifts under climate change. We suggest that assessing dimensions of niche transferability prior to standard species distribution modeling may improve the understanding of species’ dynamics in the invaded range.  相似文献   

10.
Action to reduce anthropogenic impact on the environment and species within it will be most effective when targeted towards activities that have the greatest impact on biodiversity. To do this effectively we need to better understand the relative importance of different activities and how they drive changes in species’ populations. Here, we present a novel, flexible framework that reviews evidence for the relative importance of these drivers of change and uses it to explain recent alterations in species’ populations. We review drivers of change across four hundred species sampled from a broad range of taxonomic groups in the UK. We found that species’ population change (~1970–2012) has been most strongly impacted by intensive management of agricultural land and by climatic change. The impact of the former was primarily deleterious, whereas the impact of climatic change to date has been more mixed. Findings were similar across the three major taxonomic groups assessed (insects, vascular plants and vertebrates). In general, the way a habitat was managed had a greater impact than changes in its extent, which accords with the relatively small changes in the areas occupied by different habitats during our study period, compared to substantial changes in habitat management. Of the drivers classified as conservation measures, low-intensity management of agricultural land and habitat creation had the greatest impact. Our framework could be used to assess the relative importance of drivers at a range of scales to better inform our policy and management decisions. Furthermore, by scoring the quality of evidence, this framework helps us identify research gaps and needs.  相似文献   

11.
In evaluating conservation and management options for species, practitioners might consider surrogate habitats at multiple scales when estimating available habitat or modeling species’ potential distributions based on suitable habitats, especially when native environments are rare. Species’ dependence on surrogates likely increases as optimal habitat is degraded and lost due to anthropogenic landscape change, and thus surrogate habitats may be vital for an imperiled species’ survival in highly modified landscapes. We used spatial habitat models to examine a potential surrogate habitat for an imperiled ambush predator (eastern diamondback rattlesnake, Crotalus adamanteus; EDB) at two scales. The EDB is an apex predator indigenous to imperiled longleaf pine ecosystems (Pinus palustris) of the southeastern United States. Loss of native open-canopy pine savannas and woodlands has been suggested as the principal cause of the species’ extensive decline. We examined EDB habitat selection in the Coastal Plain tidewater region to evaluate the role of marsh as a potential surrogate habitat and to further quantify the species’ habitat requirements at two scales: home range (HR) and within the home range (WHR). We studied EDBs using radiotelemetry and employed an information-theoretic approach and logistic regression to model habitat selection as use vs. availability. We failed to detect a positive association with marsh as a surrogate habitat at the HR scale; rather, EDBs exhibited significantly negative associations with all landscape patches except pine savanna. Within home range selection was characterized by a negative association with forest and a positive association with ground cover, which suggests that EDBs may use surrogate habitats of similar structure, including marsh, within their home ranges. While our HR analysis did not support tidal marsh as a surrogate habitat, marsh may still provide resources for EDBs at smaller scales.  相似文献   

12.
Harboring a large number of endemic species, the Alps and the Western Carpathians are considered as major centers of biodiversity. Nonetheless, the general opinion until the turn of the millennium was that both Central European mountain regions did not provide suitable habitat during the Last Glacial Maximum, but were colonized later from southern refuges. However, recent molecular genetic studies provide new evidence for peripheral Alpine refuges. We studied the phylogeography of the calciphilous land snail O. dolium across its distribution in the Alps and the Western Carpathians to assess the amount of intraspecific differentiation and to detect potential glacial refuges. A partial sequence of the mitochondrial COI was analyzed in 373 specimens from 135 sampling sites, and for a subset of individuals, partial sequences of the mitochondrial 16S and the nuclear histone H3 and H4 were sequenced. A molecular clock analysis was combined with a reconstruction of the species’ geographic range history to estimate how its lineages spread in the course of time. In order to obtain further information on the species’ past distribution, we also screened its extensive Pleistocene fossil record. The reconstruction of geographic range history suggests that O. dolium is of Western Carpathian origin and diversified already around the Miocene-Pliocene boundary. The fossil record supports the species’ presence at more than 40 sites during the last glacial and earlier cold periods, most of them in the Western Carpathians and the Pannonian Basin. The populations of O. dolium display a high genetic diversity with maximum intraspecific p-distances of 18.4% (COI) and 14.4% (16S). The existence of various diverged clades suggests the survival in several geographically separated refuges. Moreover, the sequence patterns provide evidence of multiple migrations between the Alps and the Western Carpathians. The results indicate that the Southern Calcareous Alps were probably colonized only during the Holocene.  相似文献   

13.
We used mitochondrial DNA sequence comparisons to assess range-wide population structure and historical patterns of differentiation among populations of the bog turtle (Glyptemys muhlenbergii). This species is one of North America’s smallest and most endangered pond turtles, and is currently found in three largely disjunct groups of populations: in the southern U.S., in the northeast, and in the Finger Lakes and Lake Ontario Plains region of western and central New York State. All the New York sites and most of the northeastern sites were glaciated during the Pleistocene. We surveyed 2793 bases pairs of mitochondrial DNA spanning three genes (cytb, nd4, and d-loop) in 41 individuals from 21 populations throughout most of the bog turtle’s distribution. We found surprisingly low levels of divergence among populations, even in southern populations that have been hypothesized as refugia during times of climate change. Our data suggest populations of bog turtle’s suffered a bottleneck, followed by a rapid post-Pleistocene expansion into northern segments of the species’ range. We discuss historical changes in habitat availability and climate that may have influenced the historical deployment of lineages in this species, and possible life history traits and habitat dynamics that might also contribute to the overall low genetic diversity across its range.  相似文献   

14.
Genetic studies are increasingly detecting cryptic taxa that likely represent a significant component of global biodiversity. However, cryptic taxa are often criticized because they are typically detected serendipitously and may not receive the follow‐up study required to verify their geographic or evolutionary limits. Here, we follow‐up a study of Eucalyptus salubris that unexpectedly detected two divergent lineages but was not sampled sufficiently to make clear interpretations. We undertook comprehensive sampling for an independent genomic analysis (3,605 SNPs) to investigate whether the two purported lineages remain discrete genetic entities or if they intergrade throughout the species’ range. We also assessed morphological and ecological traits, and sequenced chloroplast DNA. SNP results showed strong genome‐wide divergence (F ST = 0.252) between two discrete lineages: one dominated the north and one the southern regions of the species’ range. Within lineages, gene flow was high, with low differentiation (mean F ST = 0.056) spanning hundreds of kilometers. In the central region, the lineages were interspersed but maintained their genomic distinctiveness: an indirect demonstration of reproductive isolation. Populations of the southern lineage exhibited significantly lower specific leaf area and occurred on soils with lower phosphorus relative to the northern lineage. Finally, two major chloroplast haplotypes were associated with each lineage but were shared between lineages in the central distribution. Together, these results suggest that these lineages have non‐contemporary origins and that ecotypic adaptive processes strengthened their divergence more recently. We conclude that these lineages warrant taxonomic recognition as separate species and provide fascinating insight into eucalypt speciation.  相似文献   

15.
The spatial structure of species richness is often characterized by the species-area relationship (SAR). However, the SAR approach rarely considers the spatial variability of individual plants that arises from species interactions and species’ habitat associations. Here, we explored how the interactions of individual plants of target species influence SAR patterns at a range of neighborhood distances. We analyzed the data of 113,988 woody plants of 110 species from the Fushan Forest Dynamics Plot (25 ha), northern Taiwan, which is a subtropical rainforest heavily influenced by typhoons. We classified 34 dominant species into 3 species types (i.e., accumulator, repeller, or no effect) by testing how the individual species-area relationship (i.e., statistics describing how neighborhood species richness changes around individuals) of target species departs (i.e., positively, negatively, or with no obvious trend) from a null model that accounts for habitat association. Deviation from the null model suggests that the net effect of species’ interactions increases (accumulate) or decreases (repel) neighborhood species richness. We found that (i) accumulators were dominant at small interaction distances (<10–30 m); (ii) the detection of accumulator species was lower at large interaction distances (>30 m); (iii) repellers were rarely detected; and (iv) large-sized and abundant species tended to be accumulators. The findings suggest that positive species interactions have the potential to accumulate neighborhood species richness, particularly through size- and density-dependent mechanisms. We hypothesized that the frequently disturbed environment of this subtropical rainforest (e.g., typhoon-driven natural disturbances such as landslides, soil erosion, flooding, and windthrow) might create the spatial heterogeneity of species richness and promote positive species interactions.  相似文献   

16.
Populations of the endangered giant kangaroo rat, Dipodomys ingens (Heteromyidae), have suffered increasing fragmentation and isolation over the recent past, and the distribution of this unique rodent has become restricted to 3% of its historical range. Such changes in population structure can significantly affect effective population size and dispersal, and ultimately increase the risk of extinction for endangered species. To assess the fine-scale population structure, gene flow, and genetic diversity of remnant populations of Dipodomys ingens, we examined variation at six microsatellite DNA loci in 95 animals from six populations. Genetic subdivision was significant for both the northern and southern part of the kangaroo rat’s range although there was considerable gene flow among southern populations. While regional gene diversity was relatively high for this endangered species, hierarchical F-statistics of northern populations in Fresno and San Benito counties suggested non-random mating and genetic drift within subpopulations. We conclude that effective dispersal, and therefore genetic distances between populations, is better predicted by ecological conditions and topography of the environment than linear geographic distance between populations. Our results are consistent with and complimentary to previous findings based on mtDNA variation of giant kangaroo rats. We suggest that management plans for this endangered rodent focus on protection of suitable habitat, maintenance of connectivity, and enhancement of effective dispersal between populations either through suitable dispersal corridors or translocations.  相似文献   

17.
Many publications make use of opportunistic data, such as citizen science observation data, to infer large‐scale properties of species’ distributions. However, the few publications that use opportunistic citizen science data to study animal ecology at a habitat level do so without accounting for spatial biases in opportunistic records or using methods that are difficult to generalize. In this study, we explore the biases that exist in opportunistic observations and suggest an approach to correct for them. We first examined the extent of the biases in opportunistic citizen science observations of three wild ungulate species in Norway by comparing them to data from GPS telemetry. We then quantified the extent of the biases by specifying a model of the biases. From the bias model, we sampled available locations within the species’ home range. Along with opportunistic observations, we used the corrected availability locations to estimate a resource selection function (RSF). We tested this method with simulations and empirical datasets for the three species. We compared the results of our correction method to RSFs obtained using opportunistic observations without correction and to RSFs using GPS‐telemetry data. Finally, we compared habitat suitability maps obtained using each of these models. Opportunistic observations are more affected by human access and visibility than locations derived from GPS telemetry. This has consequences for drawing inferences about species’ ecology. Models naïvely using opportunistic observations in habitat‐use studies can result in spurious inferences. However, sampling availability locations based on the spatial biases in opportunistic data improves the estimation of the species’ RSFs and predicted habitat suitability maps in some cases. This study highlights the challenges and opportunities of using opportunistic observations in habitat‐use studies. While our method is not foolproof it is a first step toward unlocking the potential of opportunistic citizen science data for habitat‐use studies.  相似文献   

18.
Croak BM  Pike DA  Webb JK  Shine R 《PloS one》2012,7(6):e37982
Organisms selecting retreat sites may evaluate not only the quality of the specific shelter, but also the proximity of that site to resources in the surrounding area. Distinguishing between habitat selection at these two spatial scales is complicated by co-variation among microhabitat factors (i.e., the attributes of individual retreat sites often correlate with their proximity to landscape features). Disentangling this co-variation may facilitate the restoration or conservation of threatened systems. To experimentally examine the role of landscape attributes in determining retreat-site quality for saxicolous ectotherms, we deployed 198 identical artificial rocks in open (sun-exposed) sites on sandstone outcrops in southeastern Australia, and recorded faunal usage of those retreat sites over the next 29 months. Several landscape-scale attributes were associated with occupancy of experimental rocks, but different features were important for different species. For example, endangered broad-headed snakes (Hoplocephalus bungaroides) preferred retreat sites close to cliff edges, flat rock spiders (Hemicloea major) preferred small outcrops, and velvet geckos (Oedura lesueurii) preferred rocks close to the cliff edge with higher-than-average sun exposure. Standardized retreat sites can provide robust experimental data on the effects of landscape-scale attributes on retreat site selection, revealing interspecific divergences among sympatric taxa that use similar habitats.  相似文献   

19.
Coastal ecosystem modifications have contributed to the spread of introduced species through alterations of historic disturbance regimes and resource availability, and increased propagule pressure. Frequency of occurrence of the Manila clam (Venerupis phillipinarum, Veneridae) in Southern California estuaries has increased from absent or sparse to common since the mid-1990s. Potential invasion vectors include seafood sales and aquaculture, and spread from established northern populations over decades. The clam’s post-settlement habitat preferences are, however, uncertain in this region. Our project aimed to identify factors associated with established patches of the clam within a bay toward the southern end of this introduced range. During summer 2013, we sampled 10 tidal flat sites in Mission Bay, San Diego; each containing an area with and without hard structure (e.g., riprap, boulders). We measured likely environmental influences (e.g., sediment variables, distance to ocean). Manila clam densities across the bay were most strongly associated with site, where highest densities were located in the northern and/or back halves of the bay; and weakly correlated with lower porewater salinities. Within sites, Manila clam density was enhanced in the presence of hard structure in most sites. Prevailing currents and salinity regimes likely contribute to bay wide distributions, while hard structures may provide suitable microhabitats (refuge from predators and physical stress) and larval entrapment within sites. Results provide insights into decisions about future shoreline management efforts. Finally, we identify directions for future study to better understand and therefore predict patterns of establishment of the Manila clam in the southern portion of its introduced range.  相似文献   

20.
Human-induced climate change is considered a conspicuous threat to biodiversity in the 21st century. Species’ response to climate change depends on their exposition, sensitivity and ability to adapt to novel climates. Exposure to climate change is however uneven within species’ range, so that some populations may be more at risk than others. Identifying the regions most exposed to climate change is therefore a first and pivotal step on determining species’ vulnerability across their geographic ranges. Here, we aimed at quantifying mammal local exposure to climate change across species’ ranges. We identified areas in the Brazilian Amazon where mammals will be critically exposed to non-analogue climates in the future with different variables predicted by 15 global circulation climate forecasts. We also built a null model to assess the effectiveness of the Amazon protected areas in buffering the effects of climate change on mammals, using an innovative and more realistic approach. We found that 85% of species are likely to be exposed to non-analogue climatic conditions in more than 80% of their ranges by 2070. That percentage is even higher for endemic mammals; almost all endemic species are predicted to be exposed in more than 80% of their range. Exposure patterns also varied with different climatic variables and seem to be geographically structured. Western and northern Amazon species are more likely to experience temperature anomalies while northeastern species will be more affected by rainfall abnormality. We also observed an increase in the number of critically-exposed species from 2050 to 2070. Overall, our results indicate that mammals might face high exposure to climate change and that protected areas will probably not be efficient enough to avert those impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号