首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.

Background and Aim

High tidal volume (VT) ventilation during resuscitation of preterm lambs results in brain injury evident histologically within hours after birth. We aimed to investigate whether magnetic resonance spectroscopy (MRS) and/or diffusion tensor imaging (DTI) can be used for early in vivo detection of ventilation-induced brain injury in preterm lambs.

Methods

Newborn lambs (0.85 gestation) were stabilized with a “protective ventilation” strategy (PROT, n = 7: prophylactic Curosurf, sustained inflation, VT 7 mL/kg, positive end expiratory pressure (PEEP) 5 cmH2O) or an initial 15 minutes of “injurious ventilation” (INJ, n = 10: VT 12 mL/kg, no PEEP, late Curosurf) followed by PROT ventilation for the remainder of the experiment. At 1 hour, lambs underwent structural magnetic resonance imaging (Siemens, 3 Tesla). For measures of mean/axial/radial diffusivity (MD, AD, RD) and fractional anisotropy (FA), 30 direction DTI was performed. Regions of interests encompassed the thalamus, internal capsule, periventricular white matter and the cerebellar vermis. MRS was performed using a localized single-voxel (15×15×20 mm3, echo time 270 ms) encompassing suptratentorial deep nuclear grey matter and central white matter. Peak-area ratios for lactate (Lac) relative to N-acetylaspartate (NAA), choline (Cho) and creatine (Cr) were calculated. Groups were compared using 2-way RM-ANOVA, Mann-Whitney U-test and Spearman''s correlations.

Results

No cerebral injury was seen on structural MR images. Lambs in the INJ group had higher mean FA and lower mean RD in the thalamus compared to PROT lambs, but not in the other regions of interest. Peak-area lactate ratios >1.0 was only seen in INJ lambs. A trend of higher mean peak-area ratios for Lac/Cr and Lac/Cho was seen, which correlated with lower pH in both groups.

Conclusion

Acute changes in brain diffusion measures and metabolite peak-area ratios were observed after injurious ventilation. Early MRS/DTI is able to detect the initiation of ventilation-induced brain injury.  相似文献   

2.

Introduction

Fast in-vivo high resolution diffusion tensor imaging (DTI) of the mouse brain has recently been shown to enable cohort studies by the combination of appropriate pulse sequences and cryogenically cooled resonators (CCR). The objective of this study was to apply this DTI approach at the group level to β-amyloid precursor protein (APP) transgenic mice.

Methods

Twelve mice (5 wild type, 7 APP transgenic tg2576) underwent DTI examination at 1562×250 µm3 spatial resolution with a CCR at ultrahigh field (11.7 T). Diffusion images were acquired along 30 gradient directions plus 5 references without diffusion encoding with a total acquisition time of 35 minutes. Fractional anisotropy (FA) maps were statistically compared by whole brain-based spatial statistics (WBSS) at the group level vs. wild type controls.

Results

FA-map comparison showed characteristic regional patterns of differences between the groups with localizations associated with Alzheimer’s disease in humans, such as the hippocampus, the entorhinal cortex, and the caudoputamen.

Conclusion

In this proof-of-principle study, regions associated with amyloid-β deposition could be identified by WBSS of FA maps in APP transgenic mice vs. wild type mice. Thus, DTI in the mouse brain acquired at 11.7 T by use of a CCR was demonstrated to be feasible for cohort studies.  相似文献   

3.

Purpose

To develop a diffusion-tensor-imaging (DTI) protocol that is sensitive to the complex diffusion and perfusion properties of the healthy and malignant pancreas tissues.

Materials and Methods

Twenty-eight healthy volunteers and nine patients with pancreatic-ductal-adenocacinoma (PDAC), were scanned at 3T with T2-weighted and DTI sequences. Healthy volunteers were also scanned with multi-b diffusion-weighted-imaging (DWI), whereas a standard clinical protocol complemented the PDAC patients’ scans. Image processing at pixel resolution yielded parametric maps of three directional diffusion coefficients λ1, λ2, λ3, apparent diffusion coefficient (ADC), and fractional anisotropy (FA), as well as a λ1-vector map, and a main diffusion-direction map.

Results

DTI measurements of healthy pancreatic tissue at b-values 0,500 s/mm2yielded: λ1 = (2.65±0.35)×10−3, λ2 = (1.87±0.22)×10−3, λ3 = (1.20±0.18)×10−3, ADC = (1.91±0.22)×10−3 (all in mm2/s units) and FA = 0.38±0.06. Using b-values of 100,500 s/mm2 led to a significant reduction in λ1, λ2, λ3 and ADC (p<.0001) and a significant increase (p<0.0001) in FA. The reduction in the diffusion coefficients suggested a contribution of a fast intra-voxel-incoherent-motion (IVIM) component at b≤100 s/mm2, which was confirmed by the multi-b DWI results. In PDACs, λ1, λ2, λ3 and ADC in both 0,500 s/mm2 and 100,500 s/mm2 b-values sets, as well as the reduction in these diffusion coefficients between the two sets, were significantly lower in comparison to the distal normal pancreatic tissue, suggesting higher cellularity and diminution of the fast-IVIM component in the cancer tissue.

Conclusion

DTI using two reference b-values 0 and 100 s/mm2 enabled characterization of the water diffusion and anisotropy of the healthy pancreas, taking into account a contribution of IVIM. The reduction in the diffusion coefficients of PDAC, as compared to normal pancreatic tissue, and the smaller change in these coefficients in PDAC when the reference b-value was modified from 0 to 100 s/mm2, helped identifying the presence of malignancy.  相似文献   

4.
The changes in 16 cerebral metabolites produced by cardiac arrest and subsequent room temperature autolysis were studied using high-resolution proton nuclear magnetic resonance spectroscopy. Biopsies of rabbit cerebral cortex, cerebral white matter, and cerebellum were quantitatively analyzed for acetate, alanine, gamma-aminobutyric acid, creatine, glutamate, glycine, inositol, lactate, N-acetylaspartate, phosphocreatine, succinate, taurine, and threonine. Of these, N-acetylaspartate and the total creatine pool are the best candidates for use as concentration reference standards linking in vitro to in vivo 1H nuclear magnetic resonance measurements. Both changed little immediately after death, and they varied in a distinctive way among cortex, white matter, and cerebellum.  相似文献   

5.
Proton Nuclear Magnetic Resonance Spectroscopy of Rabbit Brain Homogenate   总被引:2,自引:2,他引:0  
Abstract: Proton nuclear magnetic resonance (1H NMR) spectroscopy in conjunction with the inversion-recovery spin-echo pulse sequence was used to obtain spectra from rabbit brain homogenate. The instrumental parameters required for the acquisition of spectra together with the assignment of major peaks are given. The rationale and prospectus for the use of this technique for the study of neurochemistry is outlined.  相似文献   

6.
Nocturnal enuresis is a common developmental disorder in children; primary monosymptomatic nocturnal enuresis (PMNE) is the dominant subtype. Previous literature has suggested that the prefrontal cortex and the pons are both involved in micturition control. This study aimed to investigate the metabolic levels of the left prefrontal cortex and the pons in children with PMNE by proton magnetic resonance spectroscopy (1H-MRS). Twenty-five children with PMNE and 25 healthy children took part in our experiments. Magnetic resonance examinations were performed on a Siemens 3T Trio Tim scanner. For each subject, localized 1H-MRS was acquired from the left prefrontal cortex (mainly in brodmann area 9) and the pons with a point-resolved spectroscopy sequence with repetition time 2,000 ms, echo time 30 ms and 64 averages. The LCModel software package was used to analyze the MRS raw data, and two-sample t tests were used to determine significant differences between the two groups. The results revealed a significant reduction in metabolite to total creatine ratios of N-acetylaspartate (NAA/tCr) in the left prefrontal cortex and the pons for children with PMNE compared to healthy children. Our study suggests that metabolism is disturbed in the prefrontal cortex and the pons in children with PMNE, which may be associated with the symptoms of enuresis.  相似文献   

7.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels.In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.  相似文献   

8.

Introduction

In-vivo high resolution diffusion tensor imaging (DTI) of the mouse brain is often limited by the low signal to noise ratio (SNR) resulting from the required small voxel sizes. Recently, cryogenically cooled resonators (CCR) have demonstrated significant increase of the effective SNR. It is the objective of this study to enable fast DTI of the mouse brain. In this context, CCRs appear attractive for SNR improvement.

Methods

Three mice underwent a DTI examination at 1562×250 µm3 spatial resolution with a CCR at ultrahigh field (11.7T). Diffusion images were acquired along 30 gradient directions plus 5 references without diffusion encoding, resulting in a total acquisition time of 35 minutes. For comparison, mice additionally underwent a standardized 110 minutes acquisition protocol published earlier. Fractional anisotropy (FA) and fiber tracking (FT) results including quantitative tractwise fractional anisotropy statistics (TFAS) were qualitatively and quantitatively compared.

Results

Qualitative and quantitative assessment of the calculated fractional anisotropy maps and fibre tracking results showed coinciding outcome comparing 35 minute scans to the standardized 110 minute scan. Coefficients of variation for ROI-based FA-comparison as well as for TFAS revealed comparable results for the different scanning protocols.

Conclusion

Mouse DTI at 11.7 T was performed with an acquisition time of approximately 30 minutes, which is considered feasible for cohort studies. The rapid acquisition protocol reveals reliable and reproducible FA-values and FT reconstructions, thus allowing an experimental setup for in-vivo large scale whole brain murine DTI cohort studies.  相似文献   

9.
质子磁共振波谱分析在脑挫裂伤中的研究及应用前景   总被引:1,自引:0,他引:1  
脑挫裂伤(brain contusion and laceration,BCL)是最常见的颅脑损伤之一,由于伤情不一,临床上对其早期全面诊断及预后判断较困难.质子磁共振波谱(proton magnetic resonance spectroscopy,1H-MRS)是新兴无创性检测脑生化代谢的技术,能从分子水平反映脑挫裂伤组织的病理生理变化.本文综述了脑挫裂伤的发生机制、病理学特点及1H-MRS在这一领域的研究和应用.  相似文献   

10.
Newly emerging theories suggest that the brain does not function as a cohesive unit in autism, and this discordance is reflected in the behavioral symptoms displayed by individuals with autism. While structural neuroimaging findings have provided some insights into brain abnormalities in autism, the consistency of such findings is questionable. Functional neuroimaging, on the other hand, has been more fruitful in this regard because autism is a disorder of dynamic processing and allows examination of communication between cortical networks, which appears to be where the underlying problem occurs in autism. Functional connectivity is defined as the temporal correlation of spatially separate neurological events1. Findings from a number of recent fMRI studies have supported the idea that there is weaker coordination between different parts of the brain that should be working together to accomplish complex social or language problems2,3,4,5,6. One of the mysteries of autism is the coexistence of deficits in several domains along with relatively intact, sometimes enhanced, abilities. Such complex manifestation of autism calls for a global and comprehensive examination of the disorder at the neural level. A compelling recent account of the brain functioning in autism, the cortical underconnectivity theory,2,7 provides an integrating framework for the neurobiological bases of autism. The cortical underconnectivity theory of autism suggests that any language, social, or psychological function that is dependent on the integration of multiple brain regions is susceptible to disruption as the processing demand increases. In autism, the underfunctioning of integrative circuitry in the brain may cause widespread underconnectivity. In other words, people with autism may interpret information in a piecemeal fashion at the expense of the whole. Since cortical underconnectivity among brain regions, especially the frontal cortex and more posterior areas 3,6, has now been relatively well established, we can begin to further understand brain connectivity as a critical component of autism symptomatology.A logical next step in this direction is to examine the anatomical connections that may mediate the functional connections mentioned above. Diffusion Tensor Imaging (DTI) is a relatively novel neuroimaging technique that helps probe the diffusion of water in the brain to infer the integrity of white matter fibers. In this technique, water diffusion in the brain is examined in several directions using diffusion gradients. While functional connectivity provides information about the synchronization of brain activation across different brain areas during a task or during rest, DTI helps in understanding the underlying axonal organization which may facilitate the cross-talk among brain areas. This paper will describe these techniques as valuable tools in understanding the brain in autism and the challenges involved in this line of research. Download video file.(73M, mov)  相似文献   

11.
Explosive blast-related injuries are one of the hallmark injuries of veterans returning from recent wars, but the effects of a blast overpressure on the brain are poorly understood. In this study, we used in vivo diffusion kurtosis imaging (DKI) and proton magnetic resonance spectroscopy (MRS) to investigate tissue microstructure and metabolic changes in a novel, direct cranial blast traumatic brain injury (dc-bTBI) rat model. Imaging was performed on rats before injury and 1, 7, 14 and 28 days after blast exposure (~517 kPa peak overpressure to the dorsum of the head). No brain parenchyma abnormalities were visible on conventional T2-weighted MRI, but microstructural and metabolic changes were observed with DKI and proton MRS, respectively. Increased mean kurtosis, which peaked at 21 days post injury, was observed in the hippocampus and the internal capsule. Concomitant increases in myo-Inositol (Ins) and Taurine (Tau) were also observed in the hippocampus, while early changes at 1 day in the Glutamine (Gln) were observed in the internal capsule, all indicating glial abnormality in these regions. Neurofunctional testing on a separate but similarly treated group of rats showed early disturbances in vestibulomotor functions (days 1–14), which were associated with imaging changes in the internal capsule. Delayed impairments in spatial memory and in rapid learning, as assessed by Morris Water Maze paradigms (days 14–19), were associated with delayed changes in the hippocampus. Significant microglial activation and neurodegeneration were observed at 28 days in the hippocampus. Overall, our findings indicate delayed neurofunctional and pathological abnormalities following dc-bTBI that are silent on conventional T2-weighted imaging, but are detectable using DKI and proton MRS.  相似文献   

12.

Background

Corneal hypoesthesia is the landmark of HSV and VZV keratitis and can lead to neurotrophic keratitis. Diffusion tensor imaging (DTI) is a new magnetic resonance imaging (MRI) derived technique, which offers possibilities to study axonal architecture. We aimed at assessing the potential impact of recurrent HSV or VZV-related keratitis on the axonal architecture of trigeminal nerves using DTI.

Design

Prospective non-interventional study.

Participants

Twelve patients and 24 controls.

Methods

DTI using MRI of the trigeminal fibers and corneal esthesiometry using the Cochet-Bonnet esthesiometer were acquired for patients affected by unilateral and recurrent HSV or VZV-related keratitis (3 months after the last corneal inflammatory event), and control subjects with no history of ocular or neuronal disease affecting the trigeminal pathways.

Main Outcome Measures

Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were compared between the 2 eyes of both patients and controls, and correlated with corneal esthesiometry.

Results

FA was lower in the trigeminal fibers ipsilateral to the affected eye compared to the non-affected side (0.39±0.02 versus 0.46±0.04, P=0.03). This difference was more important than the intra-individual variability observed in controls. Concomitantly, the asymmetry in ADC results was significantly correlated with the loss of corneal sensitivity in the affected eye.

Conclusions

Corneal hypoesthesia related to HSV and VZV keratitis is associated with persistent modifications in the architecture and functionality of the trigeminal fibers. These results add further explanation to the pathogenesis of HSV and VZV-induced neurotrophic keratitis, which may occur despite an apparent quiescence of the disease.  相似文献   

13.
The present study investigated the neural correlates of cognitive fatigue in Multiple Sclerosis (MS), looking specifically at the relationship between self-reported fatigue and objective measures of cognitive fatigue. In Experiment 1, functional magnetic resonance imaging (fMRI) was used to examine where in the brain BOLD activity covaried with “state” fatigue, assessed during performance of a task designed to induce cognitive fatigue while in the scanner. In Experiment 2, diffusion tensor imaging (DTI) was used to examine where in the brain white matter damage correlated with increased “trait” fatigue in individuals with MS, assessed by the Fatigue Severity Scale (FSS) completed outside the scanning session. During the cognitively fatiguing task, the MS group had increased brain activity associated with fatigue in the caudate as compared with HCs. DTI findings revealed that reduced fractional anisotropy in the anterior internal capsule was associated with increased self-reported fatigue on the FSS. Results are discussed in terms of identifying a “fatigue-network” in MS.  相似文献   

14.

Objectives

To present a method for generating reference maps of typical brain characteristics of groups of subjects using a novel combination of rapid quantitative Magnetic Resonance Imaging (qMRI) and brain normalization. The reference maps can be used to detect significant tissue differences in patients, both locally and globally.

Materials and Methods

A rapid qMRI method was used to obtain the longitudinal relaxation rate (R1), the transverse relaxation rate (R2) and the proton density (PD). These three tissue properties were measured in the brains of 32 healthy subjects and in one patient diagnosed with Multiple Sclerosis (MS). The maps were normalized to a standard brain template using a linear affine registration. The differences of the mean value ofR1, R2 and PD of 31 healthy subjects in comparison to the oldest healthy subject and in comparison to an MS patient were calculated. Larger anatomical structures were characterized using a standard atlas. The vector sum of the normalized differences was used to show significant tissue differences.

Results

The coefficient of variation of the reference maps was high at the edges of the brain and the ventricles, moderate in the cortical grey matter and low in white matter and the deep grey matter structures. The elderly subject mainly showed significantly lower R1 and R2 and higher PD values along all sulci. The MS patient showed significantly lower R1 and R2 and higher PD values at the edges of the ventricular system as well as throughout the periventricular white matter, at the internal and external capsules and at each of the MS lesions.

Conclusion

Brain normalization of rapid qMRI is a promising new method to generate reference maps of typical brain characteristics and to automatically detect deviating tissue properties in the brain.  相似文献   

15.

Purpose

To evaluate proton magnetic resonance spectroscopy (1H-MRS) in a study of cross-modal plasticity in the visual cortex of binocular blindness macaque monkeys.

Materials and Methods

Four healthy neonatal macaque monkeys were randomly divided into 2 groups, with 2 in each group. Optic nerve transection was performed in both monkeys in the experimental group (group B) to obtain binocular blindness. Two healthy macaque monkeys served as a control group (group A). After sixteen months post-procedure, 1H-MRS was performed in the visual cortex of all monkeys. We compared the peak areas of NAA, Cr, Cho, Glx and Ins and the ratios of NAA/Cr, Cho/Cr, Glx/Cr and Ins/Cr of each monkey in group B with group A.

Results

The peak area of NAA and the NAA/Cr ratio in the visual cortex of monkey 4 in group B were found to be dramatically decreased, the peak area of NAA slightly decreased and the NAA/Cr ratio clearly decreased in visual cortex of monkey 3 in group B than those in group A. The peak area of Ins and the Ins/Cr ratio in the visual cortex of monkey 4 in group B slightly increased. The peak area of Cho and the Cho/Cr ratio in the visual cortex of all monkeys in group B dramatically increased compared with group A. The peak area of Glx in the visual cortex of all monkeys in group B slightly increased compared with group A.

Conclusions

1H-MRS could detect biochemical and metabolic changes in the visual cortex and therefore this technique can be used to provide valuable information for investigating the mechanisms of cross-modal plasticity of binocular blindness in a macaque monkey model.  相似文献   

16.
The objective of this research was to describe the organization, connectivity and microstructure of the corpus callosum of the spider monkey (Ateles geoffroyi). Non-invasive magnetic resonance imaging and diffusion-tensor imaging were obtained from three subjects using a 3T Philips scanner. We hypothesized that the arrangement of fibers in spider monkeys would be similar to that observed in other non-human primates. A repeated measure (n = 3) of fractional anisotropy values was obtained of each subject and for each callosal subdivision. Measurements of the diffusion properties of corpus callosum fibers exhibited a similar pattern to those reported in the literature for humans and chimpanzees. No statistical difference was reached when comparing this parameter between the different CC regions (p = 0.066). The highest fractional anisotropy values corresponded to regions projecting from the corpus callosum to the posterior cortical association areas, premotor and supplementary motor cortices. The lowest fractional anisotropy corresponded to projections to motor and sensory cortical areas. Analyses indicated that approximately 57% of the fibers projects to the frontal cortex and 43% to the post-central cortex. While this study had a small sample size, the results provided important information concerning the organization of the corpus callosum in spider monkeys.  相似文献   

17.
18.

Objective

To assess the feasibility of renal proton magnetic resonance spectroscopy for quantification of triglyceride content and to compare spectral quality and reproducibility without and with respiratory motion compensation in vivo.

Materials and Methods

The Institutional Review Board of our institution approved the study protocol, and written informed consent was obtained. After technical optimization, a total of 20 healthy volunteers underwent renal proton magnetic resonance spectroscopy of the renal cortex both without and with respiratory motion compensation and volume tracking. After the first session the subjects were repositioned and the protocol was repeated to assess reproducibility. Spectral quality (linewidth of the water signal) and triglyceride content were quantified. Bland-Altman analyses and a test by Pitman were performed.

Results

Linewidth changed from 11.5±0.4 Hz to 10.7±0.4 Hz (all data pooled, p<0.05), without and with respiratory motion compensation respectively. Mean % triglyceride content in the first and second session without respiratory motion compensation were respectively 0.58±0.12% and 0.51±0.14% (P = NS). Mean % triglyceride content in the first and second session with respiratory motion compensation were respectively 0.44±0.10% and 0.43±0.10% (P = NS between sessions and P = NS compared to measurements with respiratory motion compensation). Bland-Altman analyses showed narrower limits of agreement and a significant difference in the correlated variances (correlation of −0.59, P<0.05).

Conclusion

Metabolic imaging of the human kidney using renal proton magnetic resonance spectroscopy is a feasible tool to assess cortical triglyceride content in humans in vivo and the use of respiratory motion compensation significantly improves spectral quality and reproducibility. Therefore, respiratory motion compensation seems a necessity for metabolic imaging of renal triglyceride content in vivo.  相似文献   

19.
目的:评估磁共振波谱成像(Proton Magnetic Resonance Spectroscopy,1H-MRS)联合磁共振扩散加权成像(Diffusion Weighted Imaging,DWI)在鉴别脑胶质瘤及孤立的脑转移瘤中的作用。方法:应用3.0T磁共振扫描仪,对临床手术确诊及组织病理学诊断证实的49例脑肿瘤患者(35例多形性胶质母细胞瘤,14例脑转移瘤)进行常规磁共振成像、磁共振波谱成像及磁共振扩散加权成像,并并对获得的数据进一步测量瘤内及瘤周区的代谢比、N-乙酰天门冬氨酸(NAA)、胆碱(Cho)、肌酸(Cr)值以及表观弥散系数(ADC值),分析两肿瘤组之间不同参数的统计学差异。此外,我们研究了感兴趣区域(ROI)的大小对肿瘤区域的病变扩散性能潜在影响。结果:胶质母细胞瘤瘤周N-乙酰天门冬氨酸(NAA)、肌酸(Cr),胆碱(Cho)/Cr,Cho/NAA和r CBV显著高于颅内转移瘤(P0.05);ADC值在两肿瘤组之间无显著差异(P0.05)。结论:在瘤周区1H-MRS有助于鉴别胶质母细胞瘤与单发的脑转移瘤。在瘤内扩散性的定量特性依赖ROI大小的设置。  相似文献   

20.
Breast cancer is the most common cause of cancer among women worldwide. Early detection of breast cancer has a critical role in improving the quality of life and survival of breast cancer patients. In this paper a new approach for the detection of breast cancer is described, based on tracking the mammary architectural elements using diffusion tensor imaging (DTI). The paper focuses on the scanning protocols and image processing algorithms and software that were designed to fit the diffusion properties of the mammary fibroglandular tissue and its changes during malignant transformation. The final output yields pixel by pixel vector maps that track the architecture of the entire mammary ductal glandular trees and parametric maps of the diffusion tensor coefficients and anisotropy indices. The efficiency of the method to detect breast cancer was tested by scanning women volunteers including 68 patients with breast cancer confirmed by histopathology findings. Regions with cancer cells exhibited a marked reduction in the diffusion coefficients and in the maximal anisotropy index as compared to the normal breast tissue, providing an intrinsic contrast for delineating the boundaries of malignant growth. Overall, the sensitivity of the DTI parameters to detect breast cancer was found to be high, particularly in dense breasts, and comparable to the current standard breast MRI method that requires injection of a contrast agent. Thus, this method offers a completely non-invasive, safe and sensitive tool for breast cancer detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号