首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In mice most of the ependymal cells of the subcommissural organ (SCO cells) are densely packed with dilated cisternae of the endoplasmic reticulum (ER) containing either finely granular or flocculent materials. The well developed supra-nuclear Golgi apparatus consists of stacks of flattened saccules and small vesicles; the two or three outer Golgi saccules are moderately dilated and exhibit numerous fenestrations; occasional profiles suggesting the budding of coated vesicles and formation of membrane-bound dense bodies from the ends of the innermost Golgi saccules are seen. A few coated vesicles and membrane-bound dense bodies of various sizes and shapes are also found in the Golgi region.The contents of the dilated ER cisternae are stained with periodic acid-silver methenamine techniques. In the Golgi complex the two or three inner saccules are stained as deeply as the dense bodies, and the outer saccules are only slightly stained. The stained contents of ER cisternae are more electron opaque than those of the outer but less opaque than those of the inner Golgi saccules and the dense bodies.Acid phosphatase activities are localized in the dense bodies, some of the coated vesicles in the Golgi region, and in the one or two inner Golgi saccules.On the basis of these results the following conclusions have been reached: (1) In mouse SCO cells the finely granular and the flocculent materials in the lumen of ER cisternae contain a complex carbohydrate(s) which is secreted into the ventricle to form Reissner's fiber; (2) the secretory substance is assumed to be synthesized by the ER and stored in its cisternae, and the Golgi apparatus might play only a minor role, if any, in the elaboration of the secretory material; (3) most of the dense bodies in the mouse SCO cells are lysosomal in nature instead of being so-called dark secretory granules.Sponsored by the National Science Council, Republic of China.  相似文献   

2.
Wang Y  Wei JH  Bisel B  Tang D  Seemann J 《PloS one》2008,3(2):e1647
The Golgi apparatus in mammalian cells is composed of flattened cisternae that are densely packed to form stacks. We have used the Golgi stacking protein GRASP65 as a tool to modify the stacking state of Golgi cisternae. We established an assay to measure protein transport to the cell surface in post-mitotic cells in which the Golgi was unstacked. Cells with an unstacked Golgi showed a higher transport rate compared to cells with stacked Golgi membranes. Vesicle budding from unstacked cisternae in vitro was significantly increased compared to stacked membranes. These results suggest that Golgi cisternal stacking can directly regulate vesicle formation and thus the rate of protein transport through the Golgi. The results further suggest that at the onset of mitosis, unstacking of cisternae allows extensive and rapid vesiculation of the Golgi in preparation for its subsequent partitioning.  相似文献   

3.
Three-dimensional reconstructions of portions of the Golgi complex from cryofixed, freeze-substituted normal rat kidney cells have been made by dual-axis, high-voltage EM tomography at approximately 7-nm resolution. The reconstruction shown here ( approximately 1 x 1 x 4 microm3) contains two stacks of seven cisternae separated by a noncompact region across which bridges connect some cisternae at equivalent levels, but none at nonequivalent levels. The rest of the noncompact region is filled with both vesicles and polymorphic membranous elements. All cisternae are fenestrated and display coated buds. They all have about the same surface area, but they differ in volume by as much as 50%. The trans-most cisterna produces exclusively clathrin-coated buds, whereas the others display only nonclathrin coated buds. This finding challenges traditional views of where sorting occurs within the Golgi complex. Tubules with budding profiles extend from the margins of both cis and trans cisternae. They pass beyond neighboring cisternae, suggesting that these tubules contribute to traffic to and/or from the Golgi. Vesicle-filled "wells" open to both the cis and lateral sides of the stacks. The stacks of cisternae are positioned between two types of ER, cis and trans. The cis ER lies adjacent to the ER-Golgi intermediate compartment, which consists of discrete polymorphic membranous elements layered in front of the cis-most Golgi cisterna. The extensive trans ER forms close contacts with the two trans-most cisternae; this apposition may permit direct transfer of lipids between ER and Golgi membranes. Within 0.2 microm of the cisternae studied, there are 394 vesicles (8 clathrin coated, 190 nonclathrin coated, and 196 noncoated), indicating considerable vesicular traffic in this Golgi region. Our data place structural constraints on models of trafficking to, through, and from the Golgi complex.  相似文献   

4.
Membrane traffic between the endoplasmic reticulum (ER) and Golgi apparatus and through the Golgi apparatus is a highly regulated process controlled by members of the rab GTPase family. The GTP form of rab1 regulates ER to Golgi transport by interaction with the vesicle tethering factor p115 and the cis-Golgi matrix protein GM130, also part of a complex with GRASP65 important for the organization of cis-Golgi cisternae. Here, we find that a novel coiled-coil protein golgin-45 interacts with the medial-Golgi matrix protein GRASP55 and the GTP form of rab2 but not other Golgi rab proteins. Depletion of golgin-45 disrupts the Golgi apparatus and causes a block in secretory protein transport. These results demonstrate that GRASP55 and golgin-45 form a rab2 effector complex on medial-Golgi essential for normal protein transport and Golgi structure.  相似文献   

5.
Multispecific antigen-binding fragments (Fab) from rabbit antisera against rat very low density lipoproteins (VLDL) and Fab against rat low density lipoproteins that were monospecific for the B apoprotein were conjugated to horseradish peroxidase. Conjugates were incubated with 6-mum frozen sections from fresh and perfusion-fixed livers and with tissue chopper sections (40 mum thick) from perfusion-fixed livers. In the light microscope, specific reaction product was present in all hepatocytes of experimental sections as intense brown to black spots whose locations corresponded to the distribution of the Golgi apparatus: along the bile canaliculi, near the nuclei, and between the nuclei and bile canaliculi. Perfusion fixation with formaldehyde produced satisfactory ultrastructural preservation with retention of lipoprotein antigenic determinants. In the electron microscope, patches of cisternae and ribosomes of the rough endoplasmic reticulum (ER) and particularly its smooth-surfaced ends, vesicles located between the rough ER and the Golgi apparatus, the Golgi apparatus and its secretory vesicles and VLDL particles in the space of Disse all bore reaction product. The tubules and vesicles of typical hepatocyte smooth ER did not contain reaction product, nor did the osmiophilic particles contained therin. The localization obtained in this study together with other evidence suggests a sequence for the biosynthesis of VLDL that differs in some respects from that proposed by others: (a) the triglyceride-rich particle originates in smooth ER where triglycerides are synthesized; (b) at the junction of the smooth and rough ER the particle receives apoproteins synthesized in the rough ER; (c) specialized tubules transport the particle, now a nascent lipoprotein, to the Golgi apparatus where concentration occurs in secretory vesicles; (d) secretory vesicles move to the sinusoidal surface where the particles are secreted into the space of Disse by fusion of the vesicular membrane with the plasma membrane of the hepatocyte.  相似文献   

6.
 Golgi apparatus of both plant and animal cells are characterized by an extensive system of approximately 30 nm diameter peripheral tubules. The total surface area of the tubules and associated fenestrae is thought to be approximately equivalent to that of the flattened portions of cisternae. The tubules may extend for considerable distances from the stacks. The tubules are continuous with the peripheral edges of the stacked cisternae, but the way they interconnect differs across the stack. In plant cells, for example, tubules associated with the near-cis and mid cisternae often begin to anastomose close to the peripheral edges of the stacked cisternae, whereas the tubules of the trans cisternae are less likely to anastomose and are more likely to be directly continuous with the peripheral edges of the stacked cisternae. Additionally, the tubules may blend gradually into fenestrae that surround some of the stack cisternae. Because of the large surface area occupied by tubules and fenestrae, it is reasonable to suppose that these components of the Golgi apparatus play a significant role in Golgi apparatus function. Tubules clearly interconnect closely adjacent stacks of the Golgi apparatus and may represent a communication channel to synchronize stack function within the cell. A feasible hypothesis is that tubules may be a potentially static component of the Golgi apparatus in contrast to the stacked cisternal plates which may turn over continuously. The coated buds associated with tubules may represent the means whereby adjacent Golgi apparatus stacks exchange carbohydrate-processing enzymes or where resident Golgi apparatus proteins are introduced into and out of the stack during membrane flow differentiation. The limited gradation of tubules from cis to medial to trans offers additional possibilities for functional specialization of Golgi apparatus in keeping with the hypothesis that tubules are repositories of resident Golgi apparatus proteins protected from turnover during the flow differentiation of the flattened saccules of the Golgi apparatus stack. Accepted: 3 November 1997  相似文献   

7.
J Saraste  E Kuismanen 《Cell》1984,38(2):535-549
The effect of reduced temperature on synchronized transport of SFV membrane proteins from the ER via the Golgi complex to the surface of BHK-21 cells revealed two membrane compartments where transport could be arrested. At 15 degrees C the proteins could leave the ER but failed to enter the Golgi cisternae and accumulated in pre-Golgi vacuolar elements. At 20 degrees C the proteins passed through Golgi stacks but accumulated in trans-Golgi cisternae, vacuoles, and vesicular elements because of a block affecting a distal stage in transport. Both blocks were reversible, allowing study of the synchronous passage of viral membrane proteins through the Golgi complex at high resolution by immunolabeling in electron microscopy. We propose that membrane proteins enter the Golgi stack via tubular extensions of the pre-Golgi vacuolar elements which generate the Golgi cisternae. The proteins pass across the Golgi apparatus following cisternal progression and enter the post-Golgi vacuolar elements to be routed to the cell surface.  相似文献   

8.
This report concerns the effects of Brefeldin A (BFA): i) on the Golgi complex and the ER of retrovirus-transformed murine erythroleukemia (MEL) cells and, ii) on the viral proteins these cells express. Golgi complexes were extensively disorganized by BFA. Within 5 min, most stacked cisternae were converted to vesicles scattered throughout the centrosphere region. By 30 min, the Golgi complexes were completely disassembled. Only clusters of small vesicles ("Golgi remnants") persisted in the vicinity of the centrioles and microtubule-organizing centers. Some of these small vesicles had a simple coat structure on their membranes. Over the next 1 to 2 h of BFA treatment, the number of vesicles in the Golgi area decreased concomitantly with the expansion of a predominantly smooth membrane portion of the ER, consisting of a network of dilated tubules in continuity with regular RER cisternae, annulate lamellae and the nuclear envelope. By electron microscopy, viral glycoproteins appeared to accumulate on the membranes of this network, and immature virions were found to bud preferentially into its cisternal space. Viral accumulations increased with time under BFA. The rest of the RER appeared normal, apparently unaffected by the drug. Preferential virion budding suggests that this expanding network is a chemically differentiated part of the ER. By immunofluorescence, antibodies to viral envelope proteins gave a punctate staining at the surface of control cells, presumably in the areas of virion budding, whereas relatively large intracellular masses of antigens were found in BFA-treated cells. We assume that these masses represent the differentiated parts of the ER. Taken together, these findings suggest that BFA blocks intracellular transport of newly synthesized cellular and viral proteins immediately distal to the distinct compartment of the ER in which virion budding preferentially occurs. BFA effects are rapidly and fully reversible. Within 1 min of the removal of the drug, stacks of Golgi cisternae began to reappear in the vicinity of the centrioles, and by 30 min, Golgi complexes regained their normal structural appearance.  相似文献   

9.
Brefeldin A (BFA) has previously been shown to block protein transport from the endoplasmic reticulum (ER), to cause the redistribution of Golgi components to the ER, and to change profoundly the morphology of the Golgi apparatus. In order to quantitate the effects of this drug on the morphology of the ER and the Golgi apparatus in HeLa cells, the numerical, surface and volume densities of these organelles were determined by stereological means. We found that in cells treated with BFA (5 micrograms/ml) clusters of vesicles and tubules, often located near transitional elements of the ER, replaced the Golgi apparatus. The numerical density of these clusters in cells treated with BFA for 30 min or 4.5 h is similar to that of Golgi complexes and Golgi-related clusters in control cells. The surface density of the vesicles and tubules contained in these clusters is about 50% of that represented by Golgi elements in control cells. Concomitantly, a corresponding increase in the surface density of the ER-Golgi hybrid compartment was observed. This hybrid compartment contained Golgi-specific enzymes effecting modifications of N-linked oligosaccharides and the transfer of O-linked sugars. Antibodies recognizing different subcompartments of the Golgi apparatus or the intermediate compartment, labeled vesicles and tubules of the Golgi-related clusters. Applying low doses of BFA allowed for the dissection of the disassembly of the Golgi apparatus into at least two phases. At very low doses (10-20 ng/ml) the numerical density of vesicles in the clusters increased up to 4-fold above control, while the surface density did not markedly change, suggesting that vesiculation of the Golgi cisternae had occurred. Fusion of Golgi elements with the ER seemed to occur only at doses of BFA higher than 20 ng/ml. Contrary to observations on other cell types, removal of BFA from HeLa cell cultures resulted in a rather slow reformation (1-2 h) of the Golgi complex, which allowed us to observe several intermediate stages in this process. During this time period an ER was restored which no longer contained Golgi-specific O-glycosylation functions. Our results demonstrate that BFA does not simply cause the disappearance of the Golgi apparatus by fusion with the ER, but instead clusters of vesicles and tubules remain that contain Golgi-specific markers.  相似文献   

10.
 Tubules constitute an integral part of the Golgi apparatus and have been shown to form a complex and dynamic network at its trans side. We have studied in detail structural features of the trans Golgi network and its relationship with the cisternal stack in thin sections of Lowicryl K4M embedded human absorptive enterocytes by immunolectron microscopy. Immunoreactive sites for α1,3 N-acetylgalactosaminyltransferase and blood group A substance were detectable troughout the cisternal stack and the entire trans Golgi network. Furthermore, the entire trans Golgi network was reactive for CMPase activity. Evidence for two kinds of tubules at the trans side of the Golgi apparatus was found: tubules that laterally connect adjacent and distant cisternal stacks, and others extending from central and lateral portions of trans cisternae to form the complex and extensive trans Golgi network. Trans cisternae showed often the peeling-off phenomenon and were continuous with the trans Golgi network. Both, trans cisternae and tubules of the trans Golgi network exhibited regionally buds and vesicles with a lace-like, non clathrin coat, previously reported by others in NRK cells, which contained glycoproteins with terminal N-acetylgalactosamine residues. These buds and vesicle are therefore involved in constitutive exocytosis. Accepted: 12 January 1998  相似文献   

11.
To delineate the traffic route through the Golgi apparatus followed by newly synthesized lysosomal enzymes, we subfractionated the Golgi apparatus of rat liver by preparative free-flow electrophoresis into cisternae fractions of increasing content of trans face markers and decreasing contents of markers for the cis face. NADPase was used to mark median cisternae. Beta-Hexosaminidase, the high mannose oligosaccharide processing enzyme, alpha-mannosidase II, the two enzymes involved in the biosynthesis of the phosphomannosyl recognition marker, and the phosphomannosyl receptor itself decreased in specific activity or amount from cis to trans. Additionally, these activities were observed in a fraction consisting predominantly of cisternae, vesicles and tubules derived from trans-most Golgi apparatus elements. These results, along with preliminary pulse-labeling kinetic data for the phosphomannosyl receptor, suggest that lysosomal enzymes enter the Golgi apparatus at the cis face, are phosphorylated, and appear in trans face vesicles by a route whereby the phosphomannosyl receptor bypasses at least some median and/or trans Golgi apparatus cisternae.  相似文献   

12.
During mitosis the interconnected Golgi complex of animal cells breaks down to produce both finely dispersed elements and discrete vesiculotubular structures. The endoplasmic reticulum (ER) plays a controversial role in generating these partitioning intermediates and here we highlight the importance of mitotic ER export arrest in this process. We show that experimental inhibition of ER export (by microinjecting dominant negative Sar1 mutant proteins) is sufficient to induce and maintain transformation of Golgi cisternae to vesiculotubular remnants during interphase and telophase, respectively. We also show that buds on the ER, ER exit sites and COPII vesicles are markedly depleted in mitotic cells and COPII components Sec23p, Sec24p, Sec13p and Sec31p redistribute into the cytosol, indicating ER export is inhibited at an early stage. Finally, we find a markedly uneven distribution of Golgi residents over residual exit sites of metaphase cells, consistent with tubulovesicular Golgi remnants arising by fragmentation rather than redistribution via the ER. Together, these results suggest selective recycling of Golgi residents, combined with prebudding cessation of ER export, induces transformation of Golgi cisternae to vesiculotubular remnants in mitotic cells. The vesiculotubular Golgi remnants, containing populations of slow or nonrecycling Golgi components, arise by fragmentation of a depleted Golgi ribbon independently from the ER.  相似文献   

13.
CHLAMYDOMONAS NOCTIGAMA has a non-motile Golgi apparatus consisting of several Golgi stacks adjacent to transitional ER. These domains are characterized by vesicle-budding profiles and the lack of ribosomes on the side of the ER proximal to the Golgi stacks. Immunogold labelling confirms the presence of COPI-proteins at the periphery of the Golgi stacks, and COPII-proteins at the ER-Golgi interface. After addition of BFA (10 microg/ml) a marked increase in the number of vesicular profiles lying between the ER and the Golgi stacks is seen. Serial sections of cells do not provide any evidence for the existence of tubular connections between the ER and the Golgi stacks, supporting the notion that COPI- but not COPII-vesicle production is affected by BFA. The fusion of COPII-vesicles at the CIS-Golgi apparatus apparently requires the presence of retrograde COPI-vesicles. After 15 min the cisternae of neighbouring Golgi stacks begin to fuse forming "mega-Golgis", which gradually curl before fragmenting into clusters of vesicles and tubules. These are surrounded by the transitional ER on which vesicle-budding profiles are still occasionally visible. Golgi remnants continue to survive for several hours and do not completely disappear. Washing out BFA leads to a very rapid reassembly of Golgi cisternae. At first, clusters of vesicles are seen adjacent to transitional ER, then "mini Golgis" are seen whose cisternae grow in length and number to produce "mega Golgis". These structures then divide by vertical fission to produce Golgi stacks of normal size and morphology roughly 60 min after drug wash-out.  相似文献   

14.
Trafficking of secretory proteins between the endoplasmic reticulum (ER) and the Golgi apparatus depends on coat protein complexes I (COPI) and II (COPII) machineries. To date, full characterization of the distribution and dynamics of these machineries in plant cells remains elusive. Furthermore, except for a presumed linkage between COPI and COPII for the maintenance of ER protein export, the mechanisms by which COPI influences COPII-mediated protein transport from the ER in plant cells are largely uncharacterized. Here we dissect the dynamics of COPI in intact cells using live-cell imaging and fluorescence recovery after photobleaching analyses to provide insights into the distribution of COPI and COPII machineries and the mechanisms by which COPI influences COPII-mediated protein export from the ER. We found that Arf1 and coatomer are dynamically associated with the Golgi apparatus and that the COPII coat proteins Sec24 and Sec23 localize at ER export sites that track with the Golgi apparatus in tobacco leaf epidermal cells. Arf1 is also localized at additional structures that originate from the Golgi apparatus but that lack coatomer, supporting the model that Arf1 also has a coatomer-independent role for post-Golgi protein transport in plants. When ER to Golgi protein transport is inhibited by mutations that hamper Arf1-GTPase activity without directly disrupting the COPII machinery for ER protein export, Golgi markers are localized in the ER and the punctate distribution of Sec24 and Sec23 at the ER export sites is lost. These findings suggest that Golgi membrane protein distribution is maintained by the balanced action of COPI and COPII systems, and that Arf1-coatomer is most likely indirectly required for forward trafficking out of the ER due to its role in recycling components that are essential for differentiation of the ER export domains formed by the Sar1-COPII system.  相似文献   

15.
We have analyzed the distribution of the endoplasmic reticulum (ER) within isolated rat skeletal muscle flexor digitorum brevis myofibers. Studies with confocal microscopy indicated that the resident ER proteins displayed a perinuclear and cross-striated distribution that extended over the I band areas. Interestingly, two discrete distribution patterns were observed when different receptor or viral marker proteins were blocked in the ER. Accordingly, the vesicular stomatitis virus G protein that lost its efficient export through the Golgi apparatus during myogenesis preferentially marked the A-I junctional areas. The proteins that retained their Golgi processing after myogenesis, on the contrary, concentrated around the myonuclei and over the Z lines. Furthermore, the ER exit site marker sec23 located to Z lines but not to A-I junctions. To analyze the ultrastructural organization of the ER, we infected myofibers with recombinant virus expressing KDEL-tagged peroxidase that is translocated into the ER. With transmission electron microscopy, peroxidase activity was found in perinuclear and Z line-flanking tubular structures, but also within the terminal cisternae of the sarcoplasmic reticulum. The translocon-associated protein exhibited a similar localization. Taken together, the terminal cisternae contained unevenly distributed rough ER structures apparently lacking the export function. The exporting ER comprised perinuclear and Z line-flanking structures.  相似文献   

16.
Golgi apparatus were released without fixatives from rat hepatocytes by gentle homogenization, concentrated by differential centrifugation, and purified by sucrose gradient centrifugation. Examination of sections of purified fractions by electron microscopy showed fields of morphologically intact units of Golgi apparatus consisting of stacks of parallel flattened cisternae, secretory vesicles, and small vesicular profiles. Negative staining of unfixed pellets revealed a complex network of anastomotic tubules continuous with platelike structures and secretory vesicles. These structures corresponded, respectively, to the small vesicular profiles and parallel flattened cisternae with attached secretory vesicles of sectioned material. Small fragments of granular endoplasmic reticulum were often closely associated with the peripheral tubules, suggesting sites of continuity in intact hepatocytes.  相似文献   

17.
Incubating cells at 20 degrees C blocks transport out of the Golgi complex and amplifies the exit compartments. We have used the 20 degrees C block, followed by EM tomography and serial section reconstruction, to study the structure of Golgi exit sites in NRK cells. The dominant feature of Golgi structure in temperature-blocked cells is the presence of large bulging domains on the three trans-most cisternae. These domains extend laterally from the stack and are continuous with "cisternal" domains that maintain normal thickness and alignment with the other stacked Golgi cisternae. The bulging domains do not resemble the perpendicularly extending tubules associated with the trans-cisternae of control cells. Such tubules are completely absent in temperature-blocked cells. The three cisternae with bulging domains can be identified as trans by their association with specialized ER and the presence of clathrin-coated buds on the trans-most cisterna only. Immunogold labeling and immunoblots show a significant degradation of a medial- and a trans-Golgi marker with no evidence for their redistribution within the Golgi or to other organelles. These data suggest that exit from the Golgi occurs directly from three trans-cisternae and that specialized ER plays a significant role in trans-Golgi function.  相似文献   

18.
The Golgi apparatus contains multiple classes of cisternae that differ in structure, composition, and function, but there is no consensus about the number and definition of these classes. A useful way to classify Golgi cisternae is according to the trafficking pathways by which the cisternae import and export components. By this criterion, we propose that Golgi cisternae can be divided into three classes that correspond to functional stages of maturation. First, cisternae at the cisternal assembly stage receive COPII vesicles from the ER and recycle components to the ER in COPI vesicles. At this stage, new cisternae are generated. Second, cisternae at the carbohydrate synthesis stage exchange material with one another via COPI vesicles. At this stage, most of the glycosylation and polysaccharide synthesis reactions occur. Third, cisternae at the carrier formation stage produce clathrin-coated vesicles and exchange material with endosomes. At this stage, biosynthetic cargo proteins are packaged into various transport carriers, and the cisternae ultimately disassemble. Discrete transitions occur as a cisterna matures from one stage to the next. Within each stage, the structure and composition of a cisterna can evolve, but the trafficking pathways remain unchanged. This model offers a unified framework for understanding the properties of the Golgi in diverse organisms.  相似文献   

19.
Fine structure and stereo-images of the Golgi apparatus and endoplasmic reticulum (ER) in the subcommissural organ (SCO) cells were visualized by the application of zinc-iodide osmium tetroxide (ZIO) impregnation, conventional electron microscopy and high voltage electron microscopy (HVEM). The Golgi apparatus in the SCO cells of rats, gerbils and hamsters consisted of flattened saccules stacked in parallel array. It showed a selective staining toward ZIO mixture and might form a complex network of tubular structures because of the presence of numerous fenestrations in the flattened Golgi saccules. The cytoplasm of the SCO cells in the rat and gerbil was crowded by dilated cisternae of the ER with a few flattened profiles. In the hamster SCO cells, however, the dilated cisternae of the ER were not observed. Flattened cisternae of ER in all species studied showed a positivity for ZIO impregnation and formed a complex tubular network, whereas dilated cisternae of the ER in the rats and gerbils did not show any reactivity. It was thus determined that the observation of thin and thick sections selectively stained with appropriate reagent for defined cellular organelles under conventional electron microscopy and HVEM offered valuable information about three-dimensional organization of the cell. A definite species-specific variation of SCO ultrastructure and cytochemistry was also demonstrated.  相似文献   

20.
Cholesterol loading induces a block in the exit of VSVG from the TGN   总被引:2,自引:1,他引:1  
Recent work from our laboratory demonstrated that increased cellular cholesterol content affects the structure of the Golgi apparatus. We have now investigated the functional consequences of the cholesterol-induced vesiculation of the Golgi apparatus and the role of actin for these changes. The results showed that cholesterol-induced vesiculation and dispersion of the Golgi apparatus is a reversible process and that reversal can be inhibited by cytochalasin D, an actin-disrupting reagent. Furthermore, electron microscopy revealed that jasplakinolide, which stabilizes actin filaments, prevented the dispersion, but not the vesiculation of the Golgi cisternae. Importantly, the different Golgi markers seemed to be separated even after vesiculation. To investigate whether transport through the different steps of the exocytic pathway was affected in cholesterol-treated cells, we visualized ER to plasma membrane transport by using ts045-VSVG-GFP. In COS-1 cells expressing ts045-VSVG-GFP increased cholesterol levels did not affect transport of VSVG into the vesiculated Golgi apparatus. However, increased levels of cholesterol resulted in retention of the nascent G protein in vesicles with the TGN-marker TGN46. Biotinylation of cell surface molecules to quantify arrival of VSVG at the plasma membrane confirmed that cholesterol treatment inhibited export of the VSVG protein. In conclusion, the data show that transport of VSVG into/through a vesiculated Golgi is feasible, but that cholesterol loading inhibits exit of VSVG from the vesicles containing TGN markers. Furthermore, the data illustrate the importance of actin filaments for Golgi structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号