首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

Although cetuximab and panitumumab show an increased efficacy for patients with KRAS-NRAS-BRAF and PI3KCA wild-type metastatic colorectal cancer, primary resistance occurs in a relevant subset of molecularly enriched populations.

Patients and Methods

We evaluated the outcome of 68 patients with advanced colorectal cancer and RAS, BRAF and PI3KCA status according to ALK gene status (disomic vs. gain of ALK gene copy number – defined as mean of 3 to 5 fusion signals in ≥10% of cells). All consecutive patients received cetuximab and irinotecan or panitumumab alone for chemorefractory disease.

Results

No ALK translocations or amplifications were detected. ALK gene copy number gain was found in 25 (37%) tumors. Response rate was significantly higher in patients with disomic ALK as compared to those with gain of gene copy number (70% vs. 32%; p = 0.0048). Similarly, progression-free survival was significantly different when comparing the two groups (6.7 vs. 5.3 months; p = 0.045). A trend was observed also for overall survival (18.5 vs. 15.6 months; p = 0.885).

Conclusion

Gain of ALK gene copy number might represent a negative prognostic factor in mCRC and may have a role in resistance to anti-EGFR therapy.  相似文献   

2.

Background

The efficacy of combined therapies of oxaliplatin-based chemotherapy and anti-epidermal growth factor receptor (anti-EGFR) monoclonal antibodies (MAbs) remains controversial in colorectal cancer (CRC). The aim of this study is to estimate the efficacy and safety of adding cetuximab or panitumumab to oxaliplatin-based chemotherapy in the first line treatment in KRAS wild type patients with metastatic colorectal cancer (mCRC) through meta-analysis.

Methods

Medline, EMBASE, and Cochrane library, American Society of Clinical Oncology (ASCO) and European Society for Medical Oncology (ESMO) were searched. Eligible studies were randomized controlled trials (RCTs) which evaluated oxaliplatin-based chemotherapy with or without anti-EGFR drugs (cetuximab or panitumumab) in untreated KRAS wild type patients with mCRC. The outcomes included overall survival (OS), progression-free survival (PFS), overall response rate (ORR) and toxicities. Hazard ratios (HR) and risk ratio (RR) were used for the meta-analysis and were expressed with 95% confidence intervals.

Results

This meta-analysis included four RCTs with 1270 patients, and all of the patients were administered oxaliplatin-based chemotherapy regimens with or without anti-EGFR MAbs. The result of heterogeneity of OS was not significant. Compared with chemotherapy alone, the addition of cetuximab or panitumumab didn’t result in significant improvement in OS (HR = 1.00, 95%CI [0.88, 1.13], P = 0.95) or PFS (HR = 0.86, 95%CI [0.71, 1.04], P = 0.13). The subgroup analysis of cetuximab also revealed no significant benefit in OS (HR = 1.02, 95%CI [0.89, 1.18], P = 0.75) or in PFS (HR = 0.87, 95%CI [0.65, 1.17], P = 0.36). Patients who received combined therapy didn’t have a higher ORR (Risk Ratio = 1.08, 95%CI [0.86, 1.36]). Toxicities slightly increased in anti-EGFR drugs group.

Conclusions

The addition of cetuximab or panitumumab to oxaliplatin-based chemotherapy in first-line treatment of mCRC in wild type KRAS population did not improve efficacy in survival benefit and response rate. More RCTs are warranted to evaluate the combination of chemotherapy and targeted therapy.  相似文献   

3.

Background

KRAS mutations occur in 35–45% of metastatic colorectal cancers (mCRC) and preclude responsiveness to EGFR-targeted therapy with cetuximab or panitumumab. However, less than 20% patients displaying wild-type KRAS tumors achieve objective response. Alterations in other effectors downstream of the EGFR, such as BRAF, and deregulation of the PIK3CA/PTEN pathway have independently been found to give rise to resistance. We present a comprehensive analysis of KRAS, BRAF, PIK3CA mutations, and PTEN expression in mCRC patients treated with cetuximab or panitumumab, with the aim of clarifying the relative contribution of these molecular alterations to resistance.

Methodology/Principal Findings

We retrospectively analyzed objective tumor response, progression-free (PFS) and overall survival (OS) together with the mutational status of KRAS, BRAF, PIK3CA and expression of PTEN in 132 tumors from cetuximab or panitumumab treated mCRC patients. Among the 106 non-responsive patients, 74 (70%) had tumors with at least one molecular alteration in the four markers. The probability of response was 51% (22/43) among patients with no alterations, 4% (2/47) among patients with 1 alteration, and 0% (0/24) for patients with ≥2 alterations (p<0.0001). Accordingly, PFS and OS were increasingly worse for patients with tumors harboring none, 1, or ≥2 molecular alteration(s) (p<0.001).

Conclusions/Significance

When expression of PTEN and mutations of KRAS, BRAF and PIK3CA are concomitantly ascertained, up to 70% of mCRC patients unlikely to respond to anti-EGFR therapies can be identified. We propose to define as ‘quadruple negative’, the CRCs lacking alterations in KRAS, BRAF, PTEN and PIK3CA. Comprehensive molecular dissection of the EGFR signaling pathways should be considered to select mCRC patients for cetuximab- or panitumumab-based therapies.  相似文献   

4.

Objective

Characterize the flux of platelet-endothelial cell adhesion molecule (PECAM-1) antibody-coated superparamagnetic iron oxide nanoparticles (IONPs) across the blood-brain barrier (BBB) and its biodistribution in vitro and in vivo.

Methods

Anti-PECAM-1 IONPs and IgG IONPs were prepared and characterized in house. The binding affinity of these nanoparticles was investigated using human cortical microvascular endothelial cells (hCMEC/D3). Flux assays were performed using a hCMEC/D3 BBB model. To test their immunospecificity index and biodistribution, nanoparticles were given to Sprague Dawley rats by intra-carotid infusion. The capillary depletion method was used to elucidate their distribution between the BBB and brain parenchyma.

Results

Anti-PECAM-1 IONPs were ∼130 nm. The extent of nanoparticle antibody surface coverage was 63.6±8.4%. Only 6.39±1.22% of labeled antibody dissociated from IONPs in heparin-treated whole blood over 4 h. The binding affinity of PECAM-1 antibody (KD) was 32 nM with a maximal binding (Bmax) of 17×105 antibody molecules/cell. Anti-PECAM-1 IONP flux across a hCMEC/D3 monolayer was significantly higher than IgG IONP''s with 31% of anti-PECAM-1 IONPs in the receiving chamber after 6 h. Anti-PECAM-1 IONPs showed higher concentrations in lung and brain, but not liver or spleen, than IgG IONPs after infusion. The capillary depletion method showed that 17±12% of the anti-PECAM-1 IONPs crossed the BBB into the brain ten minutes after infusion.

Conclusions

PECAM-1 antibody coating significantly increased IONP flux across the hCMEC/D3 monolayer. In vivo results showed that the PECAM-1 antibody enhanced BBB association and brain parenchymal accumulation of IONPs compared to IgG. This research demonstrates the benefit of anti-PECAM-1 IONPs for association and flux across the BBB into the brain in relation to its biodistribution in peripheral organs. The results provide insight into potential application and toxicity concerns of anti-PECAM-1 IONPs in the central nervous system.  相似文献   

5.

Background

The assessment of anticancer agents to treat leukemia needs to have animal models closer to the human pathology such as implantation in immunodeficient mice of leukemic cells from patient samples. A sensitive and early detection of tumor cells in these orthotopic models is a prerequisite for monitoring engraftment of leukemic cells and their dissemination in mice. Therefore, we developed a fluorescent antibody based strategy to detect leukemic foci in mice bearing patient-derived leukemic cells using fluorescence reflectance imaging (FRI) to determine when to start treatments with novel antitumor agents.

Methods

Two mAbs against the CD44 human myeloid marker or the CD45 human leukocyte marker were labeled with Alexa Fluor 750 and administered to leukemia-bearing mice after having verified the immunoreactivity in vitro. Bioluminescent leukemic cells (HL60-Luc) were used to compare the colocalization of the fluorescent mAb with these cells. The impact of the labeled antibodies on disease progression was further determined. Finally, the fluorescent hCD45 mAb was tested in mice engrafted with human leukemic cells.

Results

The probe labeling did not modify the immunoreactivity of the mAbs. There was a satisfactory correlation between bioluminescence imaging (BLI) and FRI and low doses of mAb were sufficient to detect leukemic foci. However, anti-hCD44 mAb had a strong impact on the tumor proliferation contrary to anti-hCD45 mAb. The use of anti-hCD45 mAb allowed the detection of leukemic patient cells engrafted onto NOD/SCID mice.

Conclusions

A mAb labeled with a near infrared fluorochrome is useful to detect leukemic foci in disseminated models provided that its potential impact on tumor proliferation has been thoroughly documented.  相似文献   

6.

Purpose

Amplification of the HER2/neu gene and/or overexpression of the corresponding protein have been identified in approximately 20% of invasive breast carcinomas. Assessment of HER2 expression in vivo would advance development of new HER2-targeted therapeutic agents and, potentially, facilitate choice of the proper treatment strategy offered to the individual patient. We present novel HER2-specific probes for in vivo evaluation of the receptor status by near-infrared (NIR) optical imaging.

Experimental Design

Affibody molecules were expressed, purified, and labeled with NIR-fluorescent dyes. The binding affinity and specificity of the obtained probe were tested in vitro. For in vivo validation, the relationship of the measured NIR signal and HER2 expression was characterized in four breast cancer xenograft models, expressing different levels of HER2. Accumulation of Affibody molecules in tumor tissue was further confirmed by ex vivo analysis.

Results

Affibody-DyLight conjugates showed high affinity to HER2 (KD = 3.66±0.26). No acute toxicity resulted from injection of the probes (up to 0.5 mg/kg) into mice. Pharmacokinetic studies revealed a relatively short (37.53±2.8 min) half-life of the tracer in blood. Fluorescence accumulation in HER2-positive BT-474 xenografts was evident as soon as a few minutes post injection and reached its maximum at 90 minutes. On the other hand, no signal retention was observed in HER2-negative MDA-MB-468 xenografts. Immunostaining of extracted tumor tissue confirmed penetration of the tracer into tumor tissue.

Conclusions

The results of our studies suggest that Affibody-DyLight-750 conjugate is a powerful tool to monitor HER2 status in a preclinical setting. Following clinical validation, it might provide complementary means for assessment of HER2 expression in breast cancer patients (assuming availability of proper NIR scanners) and/or be used to facilitate detection of HER2-positive metastatic lesions during NIR-assisted surgery.  相似文献   

7.

Background

To compare the infection rates between cetuximab-treated patients with head and neck cancers (HNC) and untreated patients.

Methodology

A national cohort of 1083 HNC patients identified in 2010 from the Taiwan National Health Insurance Research Database was established. After patients were followed for one year, propensity score analysis and instrumental variable analysis were performed to assess the association between cetuximab therapy and the infection rates.

Results

HNC patients receiving cetuximab (n = 158) were older, had lower SES, and resided more frequently in rural areas as compared to those without cetuximab therapy. 125 patients, 32 (20.3%) in the group using cetuximab and 93 (10.1%) in the group not using it presented infections. The propensity score analysis revealed a 2.3-fold (adjusted odds ratio [OR] = 2.27; 95% CI, 1.46–3.54; P = 0.001) increased risk for infection in HNC patients treated with cetuximab. However, using IVA, the average treatment effect of cetuximab was not statistically associated with increased risk of infection (OR, 0.87; 95% CI, 0.61–1.14).

Conclusions

Cetuximab therapy was not statistically associated with infection rate in HNC patients. However, older HNC patients using cetuximab may incur up to 33% infection rate during one year. Particular attention should be given to older HNC patients treated with cetuximab.  相似文献   

8.

Background

Rabies is known to be lethal in human. Treatment with passive immunity for the rabies is effective only when the patients have not shown the central nerve system (CNS) signs. The blood–brain barrier (BBB) is a complex functional barrier that may compromise the therapeutic development in neurological diseases. The goal of this study is to determine the change of BBB integrity and to assess the therapeutic possibility of enhancing BBB permeability combined with passive immunity in the late stage of rabies virus infection.

Methods

The integrity of BBB permeability in rats was measured by quantitative ELISA for total IgG and albumin levels in the cerebrospinal fluid (CSF) and by exogenously applying Evans blue as a tracer. Western blotting of occludin and ZO-1, two tight junction proteins, was used to assess the molecular change of BBB structure.The breakdown of BBB with hypertonic arabinose, recombinant tumor necrosis factor-alpha (rTNF-γ), and focused ultrasound (FUS) were used to compare the extent of BBB disruption with rabies virus infection. Specific humoral immunity was analyzed by immunofluorescent assay and rapid fluorescent focus inhibition test. Virus-neutralizing monoclonal antibody (mAb) 8-10E was administered to rats with hypertonic breakdown of BBB as a passive immunotherapy to prevent the death from rabies.

Results

The BBB permeability was altered on day 7 post-infection. Increased BBB permeability induced by rabies virus infection was observed primarily in the cerebellum and spinal cord. Occludin was significantly decreased in both the cerebral cortex and cerebellum. The rabies virus-specific antibody was not strongly elicited even in the presence of clinical signs. Disruption of BBB had no direct association with the lethal outcome of rabies. Passive immunotherapy with virus-neutralizing mAb 8-10E with the hypertonic breakdown of BBB prolonged the survival of rabies virus-infected rats.

Conclusions

We demonstrated that the BBB permeability was altered in a rat model with rabies virus inoculation. Delivery of neutralizing mAb to the infected site in brain combined with effective breakdown of BBB could be an aggressive but feasible therapeutic mode in rabies when the CNS infection has been established.  相似文献   

9.
《PloS one》2013,8(7)

Purpose

Rapid advances in the understanding of cancer biology have transformed drug development thus leading to the approval of targeted therapies and to the development of molecular tests to select patients that will respond to treatments. KRAS status has emerged as a negative predictor of clinical benefit from anti-EGFR antibodies in colorectal cancer, and anti-EGFR antibodies use was limited to KRAS wild type tumors. In order to ensure wide access to tumor molecular profiling, the French National Cancer Institute (INCa) has set up a national network of 28 regional molecular genetics centers. Concurrently, a nationwide external quality assessment for KRAS testing (MOKAECM) was granted to analyze reproducibility and costs.

Methods

96 cell-line DNAs and 24 DNA samples from paraffin embedded tumor tissues were sent to 40 French laboratories. A total of 5448 KRAS results were collected and analyzed and a micro-costing study was performed on sites for 5 common methods by an independent team of health economists.

Results

This work provided a baseline picture of the accuracy and reliability of KRAS analysis in routine testing conditions at a nationwide level. Inter-laboratory Kappa values were >0.8 for KRAS results despite differences detection methods and the use of in-house technologies. Specificity was excellent with only one false positive in 1128 FFPE data, and sensitivity was higher for targeted techniques as compared to Sanger sequencing based methods that were dependent upon local expertise. Estimated reagent costs per patient ranged from €5.5 to €19.0.

Conclusion

The INCa has set-up a network of public laboratories dedicated to molecular oncology tests. Our results showed almost perfect agreements in KRAS testing at a nationwide level despite different testing methods ensuring a cost-effective equal access to personalized colorectal cancer treatment.  相似文献   

10.

Introduction

Numerous anti-angiogenic agents are currently developed to limit tumor growth and metastasis. While these drugs offer hope for cancer patients, their transient effect on tumor vasculature is difficult to assess in clinical settings. Confocal laser endomicroscopy (CLE) is a novel endoscopic imaging technology that enables histological examination of the gastrointestinal mucosa. The aim of the present study was to evaluate the feasibility of using CLE to image the vascular network in fresh biopsies of human colorectal tissue. For this purpose we have imaged normal and malignant biopsy tissue samples and compared the vascular network parameters obtained with CLE with established histopathology techniques.

Materials and Methods

Fresh non-fixed biopsy samples of both normal and malignant colorectal mucosa were stained with fluorescently labeled anti-CD31 antibodies and imaged by CLE using a dedicated endomicroscopy system. Corresponding biopsy samples underwent immunohistochemical staining for CD31, assessing the microvessel density (MVD) and vascular areas for comparison with CLE data, which were measured offline using specific software.

Results

The vessels were imaged by CLE in both normal and tumor samples. The average diameter of normal vessels was 8.5±0.9 µm whereas in tumor samples it was 13.5±0.7 µm (p = 0.0049). Vascular density was 188.7±24.9 vessels/mm2 in the normal tissue vs. 242.4±16.1 vessels/mm2 in the colorectal cancer samples (p = 0.1201). In the immunohistochemistry samples, the MVD was 211.2±42.9/mm2 and 351.3±39.6/mm2 for normal and malignant mucosa, respectively. The vascular area was 2.9±0.5% of total tissue area for the normal mucosa and 8.5±2.1% for primary colorectal cancer tissue.

Conclusion

Selective imaging of blood vessels with CLE is feasible in normal and tumor colorectal tissue by using fluorescently labeled antibodies targeted against an endothelial marker. The method could be translated into the clinical setting for monitoring of anti-angiogenic therapy.  相似文献   

11.

Background

Rapid pre-clinical evaluation of chemotherapeutic agents against brain cancers and other neurological disorders remains largely unattained due to the presence of the blood-brain barrier (BBB), which limits transport of most therapeutic compounds to the brain. A synthetic peptide carrier, K16ApoE, was previously developed that enabled transport of target proteins to the brain by mimicking a ligand-receptor system. The peptide carrier was found to generate transient BBB permeability, which was utilized for non-covalent delivery of cisplatin, methotrexate and other compounds to the brain.

Approach

Brain delivery of the chemotherapeutics and other agents was achieved either by injecting the carrier peptide and the drugs separately or as a mixture, to the femoral vein. A modification of the method comprised injection of K16ApoE pre-mixed with cetuximab, followed by injection of a ‘small-molecule’ drug.

Principal findings

Seven-of-seven different small molecules were successfully delivered to the brain via K16ApoE. Depending on the method, brain uptake with K16ApoE was 0.72–1.1% for cisplatin and 0.58–0.92% for methotrexate (34-50-fold and 54–92 fold greater for cisplatin and methotrexate, respectively, with K16ApoE than without). Visually intense brain-uptake of Evans Blue, Light Green SF and Crocein scarlet was also achieved. Direct intracranial injection of EB show locally restricted distribution of the dye in the brain, whereas K16ApoE-mediated intravenous injection of EB resulted in the distribution of the dye throughout the brain. Experiments with insulin suggest that ligand-receptor signaling intrinsic to the BBB provides a natural means for passive transport of some molecules across the BBB.

Significance

The results suggest that the carrier peptide can non-covalently transport various chemotherapeutic agents to the brain. Thus, the method offers an avenue for pre-clinical evaluation of various small and large therapeutic molecules against brain tumors and other neurological disorders.  相似文献   

12.

Background

Recognizing EGFR as key orchestrator of the metastatic process in colorectal cancer, but also the substantial heterogeneity of responses to anti-EGFR therapy, we examined the pattern of composite tumor kinase activities governed by EGFR-mediated signaling that might be implicated in development of metastatic disease.

Patients and Methods

Point mutations in KRAS, BRAF, and PIK3CA and ERBB2 amplification were determined in primary tumors from 63 patients with locally advanced rectal cancer scheduled for radical treatment. Using peptide arrays with tyrosine kinase substrates, ex vivo phosphopeptide profiles were generated from the same baseline tumor samples and correlated to metastasis-free survival.

Results

Unsupervised clustering analysis of the resulting phosphorylation of 102 array substrates defined two tumor classes, both consisting of cases with and without KRAS/BRAF mutations. The smaller cluster group of patients, with tumors generating high ex vivo phosphorylation of phosphatidylinositol-3-kinase-related substrates, had a particularly aggressive disease course, with almost a half of patients developing metastatic disease within one year of follow-up.

Conclusion

High phosphatidylinositol-3-kinase-mediated signaling activity of the primary tumor, rather than KRAS/BRAF mutation status, was identified as a hallmark of poor metastasis-free survival in patients with locally advanced rectal cancer undergoing radical treatment of the pelvic cavity.  相似文献   

13.
14.

Purpose

To develop a tri-modality image fusion method for better target delineation in image-guided radiotherapy for patients with brain tumors.

Methods

A new method of tri-modality image fusion was developed, which can fuse and display all image sets in one panel and one operation. And a feasibility study in gross tumor volume (GTV) delineation using data from three patients with brain tumors was conducted, which included images of simulation CT, MRI, and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) examinations before radiotherapy. Tri-modality image fusion was implemented after image registrations of CT+PET and CT+MRI, and the transparency weight of each modality could be adjusted and set by users. Three radiation oncologists delineated GTVs for all patients using dual-modality (MRI/CT) and tri-modality (MRI/CT/PET) image fusion respectively. Inter-observer variation was assessed by the coefficient of variation (COV), the average distance between surface and centroid (ADSC), and the local standard deviation (SDlocal). Analysis of COV was also performed to evaluate intra-observer volume variation.

Results

The inter-observer variation analysis showed that, the mean COV was 0.14(±0.09) and 0.07(±0.01) for dual-modality and tri-modality respectively; the standard deviation of ADSC was significantly reduced (p<0.05) with tri-modality; SDlocal averaged over median GTV surface was reduced in patient 2 (from 0.57 cm to 0.39 cm) and patient 3 (from 0.42 cm to 0.36 cm) with the new method. The intra-observer volume variation was also significantly reduced (p = 0.00) with the tri-modality method as compared with using the dual-modality method.

Conclusion

With the new tri-modality image fusion method smaller inter- and intra-observer variation in GTV definition for the brain tumors can be achieved, which improves the consistency and accuracy for target delineation in individualized radiotherapy.  相似文献   

15.

Objective

Bone-marrow derived endothelial progenitor cells (EPCs) play an important role in tumor neovasculature. Due to their tumor homing property, EPCs are regarded as promising targeted vectors for delivering therapeutic agents in cancer treatment. Consequently, non-invasive confirmation of targeted delivery via imaging is urgently needed. This study shows the development and application of a novel dual-modality probe for in vivo non-invasively tracking of the migration, homing and differentiation of EPCs.

Methods

The paramagnetic/near-infrared fluorescence probe Conjugate 1 labeled EPCs were systemically transplanted into mice bearing human breast MDA-MB-231 tumor xenografts. Magnetic resonance imaging (MRI) and near-infrared (NIR) fluorescence optical imaging were performed at different stages of tumor development. The homing of EPCs and the tumor neovascularization were further evaluated by immunofluorescence.

Results

Conjugate 1 labeled EPCs can be monitored in vivo by MRI and NIR fluorescence optical imaging without altering tumor growth for up to three weeks after the systemic transplantation. Histopathological examination confirmed that EPCs were recruited into the tumor bed and then incorporated into new vessels two weeks after the transplantation. Tumor size and microvessel density was not influenced by EPCs transplantation in the first three weeks.

Conclusions

This preclinical study shows the feasibility of using a MRI and NIR fluorescence optical imaging detectable probe to non-invasively monitor transplanted EPCs and also provides strong evidence that EPCs are involved in the development of endothelial cells during the tumor neovascularization.  相似文献   

16.

Background and Purpose

The purpose of our study was to utilize a molecular imaging technology based on the retrograde axonal transport mechanism (neurography), to determine if oxaliplatin-induced neurotoxicity affects retrograde axonal transport in an animal model.

Materials and Methods

Mice (n = 8/group) were injected with a cumulative dose of 30 mg/kg oxaliplatin (sufficient to induce neurotoxicity) or dextrose control injections. Intramuscular injections of Tetanus Toxin C-fragment (TTc) labeled with Alexa 790 fluorescent dye were done (15 ug/20 uL) in the left calf muscles, and in vivo fluorescent imaging performed (0–60 min) at baseline, and then weekly for 5 weeks, followed by 2-weekly imaging out to 9 weeks. Tissues were harvested for immunohistochemical analysis.

Results

With sham treatment, TTc transport causes fluorescent signal intensity over the thoracic spine to increase from 0 to 60 minutes after injection. On average, fluorescence signal increased 722%+/−117% (Mean+/−SD) from 0 to 60 minutes. Oxaliplatin treated animals had comparable transport at baseline (787%+/−140%), but transport rapidly decreased through the course of the study, falling to 363%+/−88%, 269%+/−96%, 191%+/−58%, 121%+/−39%, 75%+/−21% with each successive week and stabilizing around 57% (+/−15%) at 7 weeks. Statistically significant divergence occurred at approximately 3 weeks (p≤0.05, linear mixed-effects regression model). Quantitative immuno-fluorescence histology with a constant cutoff threshold showed reduced TTc in the spinal cord at 7 weeks for treated animals versus controls (5.2 Arbitrary Units +/−0.52 vs 7.1 AU +/−1.38, p<0.0004, T-test). There was no significant difference in neural cell mass between the two groups as shown with NeuN staining (10.2+/−1.21 vs 10.5 AU +/−1.53, p>0.56, T-test).

Conclusion

We show–for the first time to our knowledge–that neurographic in vivo molecular imaging can demonstrate imaging changes in a model of oxaliplatin-induced neuropathy. Impaired retrograde neural transport is suggested to be an important part of the pathophysiology of oxaliplatin-induced neuropathy.  相似文献   

17.

Objective

To investigate the reproducibility of diffusion-weighted magnetic resonance imaging (DW-MRI) in assessing tumor response early in the course of neoadjuvant chemoradiotherapy in patients with operable esophageal cancer.

Methods

Eleven male patients (mean age 54.8 years) with newly diagnosed esophageal cancer underwent DW-MRI before and 10 days after start of chemoradiotherapy. Reproducibility of apparent diffusion coefficient (ADC) measurements by manual (freehand) and semi-automated volumetric methods was assessed.

Results

Interobserver reproducibility for the assessment of mean tumor ADC by the manual measurement method was good, with an ICC of 0.69 (95% CI, 0.36 to 0.85; P = 0.001). Interobserver reproducibility for the assessment of mean tumor ADC by the semi-automated volumetric measurement method was very good, with an ICC of 0.96 (95% CI, 0.91 to 0.98; P<0.001).

Conclusion

Semi-automated volumetric ADC measurements have higher reproducibility than manual ADC measurements in assessing tumor response to chemoradiotherapy in patients with esophageal adenocarcinoma.  相似文献   

18.

Background

LIM and SH3 protein 1 (LASP-1) is a specific focal adhesion protein involved in several malignant tumors. However, its role in oral squamous cell carcinoma (OSCC) is unknown. The aim of this study was to characterize the role and molecular status/mechanism of LASP-1 in OSCC.

Methods

We evaluated LASP-1 mRNA and protein expressions in OSCC-derived cell lines and primary OSCCs. Using an shRNA system, we analyzed the effect of LASP-1 on the biology and function of the OSCC cell lines, HSC-3 and Ca9-22. The cells also were subcutaneously injected to evaluate tumor growth in vivo. Data were analyzed by the Fisher’s exact test or the Mann-Whitney U test. Bonferroni correction was used for multiple testing.

Results

Significant up-regulation of LASP-1 was detected in OSCC-derived cell lines (n = 7, P<0.007) and primary OSCCs (n = 50, P<0.001) compared to normal controls. LASP-1 knockdown cells significantly inhibited cellular proliferation compared with shMock-transfected cells (P<0.025) by arresting cell-cycle progression at the G2 phase. We observed dramatic reduction in the growth of shLASP-1 OSCC xenografts compared with shMock xenografts in vivo.

Conclusion

Our results suggested that overexpression of LASP-1 is linked closely to oral tumourigenicity and further provide novel evidence that LASP-1 plays an essential role in tumor cellular growth by mediating G2/M transition.  相似文献   

19.

Background

Recent studies have shown that fluorescently labeled antibodies can be dissociated from their antigen by illumination with laser light. The mechanism responsible for the photounbinding effect, however, remains elusive. Here, we give important insights into the mechanism of photounbinding and show that the effect is not restricted to antibody/antigen binding.

Methodology/Principal Findings

We present studies of the photounbinding of labeled calmodulin (CaM) from a set of CaM-binding peptides with different affinities to CaM after one- and two-photon excitation. We found that the photounbinding effect becomes stronger with increasing binding affinity. Our observation that photounbinding can be influenced by using free radical scavengers, that it does not occur with either unlabeled protein or non-fluorescent quencher dyes, and that it becomes evident shortly after or with photobleaching suggest that photounbinding and photobleaching are closely linked.

Conclusions/Significance

The experimental results exclude surface effects, or heating by laser irradiation as potential causes of photounbinding. Our data suggest that free radicals formed through photobleaching may cause a conformational change of the CaM which lowers their binding affinity with the peptide or its respective binding partner.  相似文献   

20.

Background

The generation of thrombin is a critical process in the formation of venous thrombi. In isolated plasma under static conditions, phosphatidylserine (PS)-exposing platelets support coagulation factor activation and thrombin generation; however, their role in supporting coagulation factor binding under shear conditions remains unclear. We sought to determine where activated factor X (FXa), (pro)thrombin, and fibrin(ogen) are localized in thrombi formed under venous shear.

Methodology/Principal Findings

Fluorescence microscopy was used to study the accumulation of platelets, FXa, (pro)thrombin, and fibrin(ogen) in thrombi formed in vitro and in vivo. Co-perfusion of human blood with tissue factor resulted in formation of visible fibrin at low, but not at high shear rate. At low shear, platelets demonstrated increased Ca2+ signaling and PS exposure, and supported binding of FXa and prothrombin. However, once cleaved, (pro)thrombin was observed on fibrin fibers, covering the whole thrombus. In vivo, wild-type mice were injected with fluorescently labeled coagulation factors and venous thrombus formation was monitored in mesenteric veins treated with FeCl3. Thrombi formed in vivo consisted of platelet aggregates, focal spots of platelets binding FXa, and large areas binding (pro)thrombin and fibrin(ogen).

Conclusions/Significance

FXa bound in a punctate manner to thrombi under shear, while thrombin and fibrin(ogen) distributed ubiquitously over platelet-fibrin thrombi. During thrombus formation under venous shear, thrombin may relocate from focal sites of formation (on FXa-binding platelets) to dispersed sites of action (on fibrin fibers).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号