首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
由稻瘟病菌(Magnaporthe oryzae)引起的稻瘟病是全球最严重的植物真菌病害之一。稻瘟病菌通过分泌效应蛋白进入与植物相互作用界面或转运到植物细胞内,抑制寄主植物的免疫防卫反应,使病原菌成功侵染。通过农杆菌介导的异源表达策略,筛选到能引起非寄主植物烟草细胞死亡的候选效应蛋白MoCDIE2(Cell Death-Inducing Effector)。序列分析表明:MoCDIE2基因编码一个蓖麻毒素B凝集素蛋白;系统发育树构建结果表明MoCDIE2同源蛋白保守存在于丝状真菌中;利用基因敲除的方法获得MoCDIE2的敲除突变体,结果表明MoCDIE2的敲除突变体在菌丝生长和致病性方面与野生型菌株Guy11没有明显差异。  相似文献   

2.
3.
4.
Ma  Xiaoqing  Duan  Guihua  Chen  Hongfeng  Tang  Ping  Su  Shunyu  Wei  Zhaoxia  Yang  Jing 《Plant molecular biology》2022,110(3):219-234
Plant Molecular Biology - Identification of infection process and defense response during M. oryzae infecting Acuce. Magnaporthe oryzae is a destructive rice pathogen. Recent studies have focused...  相似文献   

5.
Magnaporthe oryzae chrysovirus 1 (MoCV1), which is associated with an impaired growth phenotype of its host fungus, harbors four major proteins: P130 (130 kDa), P70 (70 kDa), P65 (65 kDa), and P58 (58 kDa). N-terminal sequence analysis of each protein revealed that P130 was encoded by double-stranded RNA1 (dsRNA1) (open reading frame 1 [ORF1] 1,127 amino acids [aa]), P70 by dsRNA4 (ORF4; 812 aa), and P58 by dsRNA3 (ORF3; 799 aa), although the molecular masses of P58 and P70 were significantly smaller than those deduced for ORF3 and ORF4, respectively. P65 was a degraded form of P70. Full-size proteins of ORF3 (84 kDa) and ORF4 (85 kDa) were produced in Escherichia coli. Antisera against these recombinant proteins detected full-size proteins encoded by ORF3 and ORF4 in mycelia cultured for 9, 15, and 28 days, and the antisera also detected smaller degraded proteins, namely, P58, P70, and P65, in mycelia cultured for 28 days. These full-size proteins and P58 and P70 were also components of viral particles, indicating that MoCV1 particles might have at least two forms during vegetative growth of the host fungus. Expression of the ORF4 protein in Saccharomyces cerevisiae resulted in cytological changes, with a large central vacuole associated with these growth defects. MoCV1 has five dsRNA segments, as do two Fusarium graminearum viruses (FgV-ch9 and FgV2), and forms a separate clade with FgV-ch9, FgV2, Aspergillus mycovirus 1816 (AsV1816), and Agaricus bisporus virus 1 (AbV1) in the Chrysoviridae family on the basis of their RdRp protein sequences.  相似文献   

6.
The rice blast fungus Magnaporthe oryzae is a serious pathogen that jeopardises the world’s most important food-security crop. Ten common Malaysian rice varieties were examined for their morphological, physiological and genomic responses to this rice blast pathogen. qPCR quantification was used to assess the growth of the pathogen population in resistant and susceptible rice varieties. The chlorophyll content and photosynthesis were also measured to further understand the disruptive effects that M. oryzae has on infected plants of these varieties. Real-time PCR was used to explore the differential expression of eight blast resistance genes among the ten local varieties. Blast disease has destructive effects on the growth of rice, and the findings of our study provide evidence that the Pikh, Pi9, Pi21, and Osw45 genes are involved in defence responses in the leaves of Malaysian rice at 31 h after inoculation with M. oryzae pathotype P7.2. Both the chlorophyll content and photosynthesis were reduced, but the levels of Pikh gene expression remained constant in susceptible varieties, with a developed pathogen population and mild or severe symptoms. The Pi9, Pi21, and Osw45 genes, however, were simultaneously upregulated in infected rice plants. Therefore, the presence of the Pikh, Pi9, Pi21, and Osw45 genes in the germplasm is useful for improving the resistance of rice varieties.  相似文献   

7.
含WD重复功能域的蛋白能够参与信号传导、转录调控、RNA剪切、细胞的凋亡等多种功能,在病原菌与寄主植物蛋白互作的过程中扮演着重要的角色。本研究分析了稻瘟病菌基因组中94个WD功能域基因编码区和调控区中SSR的组成、分布,并检测了7个蛋白编码区中SSR的变异及其对蛋白二级结构的影响。结果表明,WD功能域基因的编码区和调控区中都含有大量的SSR,但是SSR在这些基因的外显子区、内含子区、5’一UTR和3’一UTR区中SSR的组成和分布均不相同;编码区中三碱基和六碱基SSR分布较多,这些SSR基序大都表现为GC含量较高和其所编码的亲水性氨基酸出现的频率远远高于疏水性氨基酸的特点。且检测的7个WD功能域基因的编码区中的SSR位点均具有丰富的多态性,通过Antheprot(DPM)软件预测发现:SSR的变异对蛋白的二级结构有一定影响。这暗示着SSR的变异对致病相关基因的变异起着十分重要的作用。  相似文献   

8.
Biotrophic invasive hyphae (IH) of the blast fungus Magnaporthe oryzae secrete effectors to alter host defenses and cellular processes as they successively invade living rice (Oryza sativa) cells. However, few blast effectors have been identified. Indeed, understanding fungal and rice genes contributing to biotrophic invasion has been difficult because so few plant cells have encountered IH at the earliest infection stages. We developed a robust procedure for isolating infected-rice sheath RNAs in which ∼20% of the RNA originated from IH in first-invaded cells. We analyzed these IH RNAs relative to control mycelial RNAs using M. oryzae oligoarrays. With a 10-fold differential expression threshold, we identified known effector PWL2 and 58 candidate effectors. Four of these candidates were confirmed to be fungal biotrophy-associated secreted (BAS) proteins. Fluorescently labeled BAS proteins were secreted into rice cells in distinct patterns in compatible, but not in incompatible, interactions. BAS1 and BAS2 proteins preferentially accumulated in biotrophic interfacial complexes along with known avirulence effectors, BAS3 showed additional localization near cell wall crossing points, and BAS4 uniformly outlined growing IH. Analysis of the same infected-tissue RNAs with rice oligoarrays identified putative effector-induced rice susceptibility genes, which are highly enriched for sensor-transduction components rather than typically identified defense response genes.  相似文献   

9.
Ankyrin repeat containing proteins are one of the most abundant solenoid folds. Usually implicated in specific protein-protein interactions, these proteins are readily amenable for design, with promising biotechnological and biomedical applications. Studying repeat protein families presents technical challenges due to the high sequence divergence among the repeating units. We developed and applied a systematic method to consistently identify and annotate the structural repetitions over the members of the complete Ankyrin Repeat Protein Family, with increased sensitivity over previous studies. We statistically characterized the number of repeats, the folding of the repeat-arrays, their structural variations, insertions and deletions. An energetic analysis of the local frustration patterns reveal the basic features underlying fold stability and its relation to the functional binding regions. We found a strong linear correlation between the conservation of the energetic features in the repeat arrays and their sequence variations, and discuss new insights into the organization and function of these ubiquitous proteins.  相似文献   

10.
水稻双链RNA结合蛋白同源基因OsRBP的克隆及其表达的分析   总被引:6,自引:0,他引:6  
在基因数据库中发现两个水稻EST片段与大白菜BcpLH基因的双链RNA结合结构域 (dsRBD)有同源的区域 ,根据同源片段的位置特征设计引物 ,用RT-RCR扩增粳稻 (Oryzasativasubsp .japonica)愈伤组织的cDNA ,得到大小为 1.8kb的DNA片段。该cDNA片段含完整的编码区 ,有两个典型的dsRBD ,分别与BcpLH的dsRBD在氨基酸水平上同源性为 75 %左右 ,故将其命名为OsRBP。RT -PCR表达分析显示该基因在未成熟的种子和愈伤组织中表达 ,在根、茎、叶、穗、成熟种子及胚芽鞘中没有表达信号 ,由此推测该基因的表达可能与种子和胚的早期发育相关。该研究首次从水稻中分离到双链RNA结合蛋白基因 ,并初步研究了其表达方式 ,为进一步探讨水稻重要器官的发育和植物中双链RNA结合蛋白的调节作用奠定了基础  相似文献   

11.
12.
13.
Surface recognition and penetration are critical steps in the infection cycle of many plant pathogenic fungi. In Magnaporthe oryzae, cAMP signaling is involved in surface recognition and pathogenesis. Deletion of the MAC1 adenylate cyclase gene affected appressorium formation and plant infection. In this study, we used the affinity purification approach to identify proteins that are associated with Mac1 in vivo. One of the Mac1-interacting proteins is the adenylate cyclase-associated protein named Cap1. CAP genes are well-conserved in phytopathogenic fungi but none of them have been functionally characterized. Deletion of CAP1 blocked the effects of a dominant RAS2 allele and resulted in defects in invasive growth and a reduced intracellular cAMP level. The Δcap1 mutant was defective in germ tube growth, appressorium formation, and formation of typical blast lesions. Cap1-GFP had an actin-like localization pattern, localizing to the apical regions in vegetative hyphae, at the periphery of developing appressoria, and in circular structures at the base of mature appressoria. Interestingly, Cap1, similar to LifeAct, did not localize to the apical regions in invasive hyphae, suggesting that the apical actin cytoskeleton differs between vegetative and invasive hyphae. Domain deletion analysis indicated that the proline-rich region P2 but not the actin-binding domain (AB) of Cap1 was responsible for its subcellular localization. Nevertheless, the AB domain of Cap1 must be important for its function because CAP1 ΔAB only partially rescued the Δcap1 mutant. Furthermore, exogenous cAMP induced the formation of appressorium-like structures in non-germinated conidia in CAP1 ΔAB transformants. This novel observation suggested that AB domain deletion may result in overstimulation of appressorium formation by cAMP treatment. Overall, our results indicated that CAP1 is important for the activation of adenylate cyclase, appressorium morphogenesis, and plant infection in M. oryzae. CAP1 may also play a role in feedback inhibition of Ras2 signaling when Pmk1 is activated.  相似文献   

14.
15.
Protein ubiquitination, which is highly selective, regulates many important biological processes including cellular differentiation and pathogenesis in eukaryotic cells. Here, we integrated pharmacological, molecular and proteomic approaches to explore the role of ubiquitination in Magnaporthe oryzae, the leading fungal disease of rice world-wide. Inhibition of ubiquitin-mediated proteolysis using the 26S proteasome inhibitor, Bortezomib, significantly attenuated conidia germination, appressorium formation and pathogenicity in M. oryzae. Gene expression analysis revealed that many genes associated with protein ubiquitination were developmentally regulated during conidia germination. Only a few, including a polyubiquitin encoding gene, MGG_01282, were more abundantly expressed during appressorium formation and under nitrogen starvation. Targeted gene deletion of MGG_01282, in addition to a significant reduction in protein ubiquitination as determined by immuno blot assays, resulted in pleiotropic effects on M. oryzae including reduced growth and sporulation, abnormal conidia morphology, reduced germination and appressorium formation, and the inability to cause disease. Mutants were also defective in sexual development and were female sterile. Using mass spectrometry, we identified 63 candidate polyubiquitinated proteins under nitrogen starvation, which included overrepresentation of proteins involved in translation, transport and protein modification. Our study suggests that ubiquitination of target proteins plays an important role in nutrient assimilation, development and pathogenicity of M. oryzae.  相似文献   

16.
Zhu  Huajun  Zhou  Hu  Ren  Zuohua  Liu  Erming 《Journal of Plant Growth Regulation》2022,41(6):2319-2327
Journal of Plant Growth Regulation - It is quite important to develop the microorganism resources with biocontrol capacity for rice blast. This study evaluated Bacillus subtilis JN005 for growth...  相似文献   

17.
M Xue  J Yang  Z Li  S Hu  N Yao  RA Dean  W Zhao  M Shen  H Zhang  C Li  L Liu  L Cao  X Xu  Y Xing  T Hsiang  Z Zhang  JR Xu  YL Peng 《PLoS genetics》2012,8(8):e1002869
Rice blast caused by Magnaporthe oryzae is one of the most destructive diseases of rice worldwide. The fungal pathogen is notorious for its ability to overcome host resistance. To better understand its genetic variation in nature, we sequenced the genomes of two field isolates, Y34 and P131. In comparison with the previously sequenced laboratory strain 70-15, both field isolates had a similar genome size but slightly more genes. Sequences from the field isolates were used to improve genome assembly and gene prediction of 70-15. Although the overall genome structure is similar, a number of gene families that are likely involved in plant-fungal interactions are expanded in the field isolates. Genome-wide analysis on asynonymous to synonymous nucleotide substitution rates revealed that many infection-related genes underwent diversifying selection. The field isolates also have hundreds of isolate-specific genes and a number of isolate-specific gene duplication events. Functional characterization of randomly selected isolate-specific genes revealed that they play diverse roles, some of which affect virulence. Furthermore, each genome contains thousands of loci of transposon-like elements, but less than 30% of them are conserved among different isolates, suggesting active transposition events in M. oryzae. A total of approximately 200 genes were disrupted in these three strains by transposable elements. Interestingly, transposon-like elements tend to be associated with isolate-specific or duplicated sequences. Overall, our results indicate that gain or loss of unique genes, DNA duplication, gene family expansion, and frequent translocation of transposon-like elements are important factors in genome variation of the rice blast fungus.  相似文献   

18.
19.
稻瘟菌Magnaporthe oryzae P-ATPases基因家族分析   总被引:1,自引:0,他引:1  
利用TCDB(Transporter Classification Database)网站数据库中的P-ATPases氨基酸序列对稻瘟菌全基因组表达序列(Coding Sequence,CDS)数据库进行搜索和分析,共发现23个P-ATPases基因,进化树分析表明这23个基因分属于4个家族和7个亚家族。构建了本地ESTs数据库,通过P-ATPases基因CDS序列与EST序列比对分析发现,在这些基因中有20个存在EST同源体,另外3个基因没有发现EST同源体,因此这20个基因是真实P-ATPases基因的可能性更高。运用MEME程序分析了这些P-ATPases蛋白结构域的基序,有6种基序在90%以上的基因氨基酸序列中出现,属保守基序。对这23个P-ATPases基因GC含量的分析表明,它们的平均GC含量在0.519-0.628之间,稍高于稻瘟菌整个基因组GC平均含量(0.516),同时这些基因内各区段GC含量变化不大,没有明显的梯度变化。本文结果为下一步深入研究稻瘟菌中P-ATPases基因家族的功能奠定了基础。  相似文献   

20.

Background

The development of a gonorrhea vaccine is challenged by the lack of correlates of protection. The antigenically variable neisserial opacity (Opa) proteins are expressed during infection and have a semivariable (SV) and highly conserved (4L) loop that could be targeted in a vaccine. Here we compared antibodies to linear (Ablinear) and cyclic (Abcyclic) peptides that correspond to the SV and 4L loops and selected hypervariable (HV2) loops for surface-binding and protective activity in vitro and in vivo.

Methods/Findings

AbSV cyclic bound a greater number of different Opa variants than AbSV linear, including variants that differed by seven amino acids. Antibodies to the 4L peptide did not bind Opa-expressing bacteria. AbSV cyclic and AbHV2 cyclic, but not AbSV linear or AbHV2 linear agglutinated homologous Opa variants, and AbHV2BD cyclic but not AbHV2BD linear blocked the association of OpaB variants with human endocervical cells. Only AbHV2BD linear were bactericidal against the serum resistant parent strain. Consistent with host restrictions in the complement cascade, the bactericidal activity of AbHV2BD linear was increased 8-fold when rabbit complement was used. None of the antibodies was protective when administered vaginally to mice. Antibody duration in the vagina was short-lived, however, with <50% of the antibodies recovered 3 hrs post-administration.

Conclusions

We conclude that an SV loop-specific cyclic peptide can be used to induce antibodies that recognize a broad spectrum of antigenically distinct Opa variants and have agglutination abilities. HV2 loop-specific cyclic peptides elicited antibodies with agglutination and adherence blocking abilities. The use of human complement when testing the bactericidal activity of vaccine-induced antibodies against serum resistant gonococci is also important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号