首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute myeloid leukemia (AML) originates from self-renewing leukemic stem cells (LSCs), an ultimate therapeutic target for AML. Here we identified T cell immunoglobulin mucin-3 (TIM-3) as a surface molecule expressed on LSCs in most types of AML except for acute promyelocytic leukemia, but not on normal hematopoietic stem cells (HSCs). TIM-3(+) but not TIM-3? AML cells reconstituted human AML in immunodeficient mice, suggesting that the TIM-3(+) population contains most, if not all, of functional LSCs. We established an anti-human TIM-3 mouse IgG2a antibody having complement-dependent and antibody-dependent cellular cytotoxic activities. This antibody did not harm reconstitution of normal human HSCs, but blocked engraftment of AML after xenotransplantation. Furthermore, when it is administered into mice grafted with human AML, this treatment dramatically diminished their leukemic burden and eliminated LSCs capable of reconstituting human AML in secondary recipients. These data suggest that TIM-3 is one of the promising targets to eradicate AML LSCs.  相似文献   

2.
Acute myeloid leukemia (AML) is the most common malignant myeloid disorder of progenitor cells in myeloid hematopoiesis and exemplifies a genetically heterogeneous disease. The patients with AML also show a heterogeneous response to therapy. Although all-trans retinoic acid (ATRA) has been successfully introduced to treat acute promyelocytic leukemia (APL), it is rather ineffective in non-APL AML. In our present study, 1200 off-patent marketed drugs and natural compounds that have been approved by the Food and Drug Administration (FDA) were screened for anti-leukemia activity using the retrovirus transduction/transformation assay (RTTA). Furazolidone (FZD) was shown to inhibit bone marrow transformation mediated by several leukemia fusion proteins, including AML1-ETO. Furazolidone has been used in the treatment of certain bacterial and protozoan infections in human and animals for more than sixty years. We investigated the anti-leukemic activity of FZD in a series of AML cells. FZD displayed potent antiproliferative properties at submicromolar concentrations and induced apoptosis in AML cell lines. Importantly, FZD treatment of certain AML cells induced myeloid cell differentiation by morphology and flow cytometry for CD11b expression. Furthermore, FZD treatment resulted in increased stability of tumor suppressor p53 protein in AML cells. Our in vitro results suggest furazolidone as a novel therapeutic strategy in AML patients.  相似文献   

3.
Peripheral blood mononuclear cells from a patient with acute myeloid leukemia (AML) and spleen cells from a patient with chronic myeloid leukemia (CML) were fused with HAT-sensitive human B lymphoma cells (RH-L4) in attempts to generate human monoclonal antibodies (Mab) against antigens with high specificity for myeloid leukemia cells. Forty-seven of 246 hybridomas secreted Ig that bound to AML cell surface constituents, as determined by FACS analysis of viable cells that were FITC-stained with the human Mab as the first-step reagent and FITC-conjugated rabbit anti-human Ig as second-step. Two of the 47 human Mab (one from each patient and designated AML-19 and CML-20, respectively) bound to both autologous and allogeneic myeloid leukemia cells. No significant binding was observed to cell surface constituents on human bone marrow cells, granulocytes, lymphocytes, erythrocytes, thymocytes, monocytes, lymphoblastic leukemia cells, fibroblasts, malignant B and T lymphocytic cell lines, and murine bone marrow cells. Both human Mab were IgG and were cytotoxic to myeloid leukemia cells in the presence of complement. About 70% of peripheral blood cell samples from 46 AML patients contained AML-19- and CML-20-positive cells, but the reactivity pattern had no correlation to the morphologic FAB classification of the samples. The promyelocytic HL60 cell line and the K562 cell line reacted with the two antibodies. Dot blot analysis of binding of AML-19 and CML-20 to cellular extracts immobilized on nitrocellulose paper showed that both human Mab in this assay also reacted with normal bone marrow cells. This was supported by microscopic immunofluorescence because both human Mab stained intracytoplasmatic structures in normal bone marrow cells, but both intracytoplasmatic and cell surface components stained in myeloid leukemia cells. Moreover, immunoblotting demonstrated that both human Mab in leukemia cells reacted with two cellular proteins with Mr approximately 14,500 and 18,000, and in normal bone marrow cells with a molecule with Mr approximately 20,000. Immunoprecipitation of cell membrane molecules with both the AML-19 and CML-20 antibody precipitated from leukemic cells only the molecule with Mr approximately 18,000 and no components from normal bone marrow cells. It is concluded that myeloid leukemogenesis may result in generation of cell surface expression of either new or abnormally processed molecules that are immunogenic in the autochthonous host. These molecules may also be useful as markers in diagnosis of myeloid leukemia.  相似文献   

4.
Background aimsTumor antigen-specific cytotoxic T lymphocytes (CTL) have been used in the treatment of human cancer, including leukemia. Several studies have established PR1 peptide, an HLA-A2.1-restricted peptide derived from proteinase 3 (P3), as a human leukemia-associated antigen. PR1-specific CTL elicited in vitro from healthy donors have been shown to lyse P3-expressing AML cells from patients. We investigated whether PR1-CTL can be adoptively transferred into NOD/SCID mice to eliminate human leukemia cells.MethodsPR1-CTL were generated in bulk culture from peripheral blood mononuclear cells (PBMC) stimulated with autologous dendritic cells. Human acute myeloid leukemia (AML) patient samples were injected and engrafted in murine bone marrow at 2 weeks post-transfer.ResultsFollowing adoptive transfer, bone marrow aspirate from mice that received AML alone had 72–88% blasts in a hypercellular marrow, whereas mice that received AML plus PR1-CTL co-infusion had normal hematopoietic elements and only 3–18% blasts in a hypocellular marrow. The PR1-CTL persisted in the bone marrow and liver and maintained a CD45RA? CD28+ effector phenotype.ConclusionsWe found that adoptive transfer of PR1-CTL generated in vitro is associated with reduced AML cells in NOD/SCID mice. PR1-CTL can migrate to the sites of disease and maintain their capacity to kill the AML cells. The surface phenotype of PR1-CTL was consistent with their trafficking pattern in both vascular and end-organ tissues.  相似文献   

5.
《Cytotherapy》2021,23(9):793-798
Background aimsHuman myeloperoxidase has been shown to be overexpressed in many types of leukemia, such as chronic myeloid leukemia, acute myeloid leukemia and myelodysplastic syndrome. The authors identified two myeloperoxidase-derived HLA-A2-restricted peptides, MY4 and MY8, as novel leukemia-associated antigens.MethodsEx vivo-elicited MY4- and MY8-specific cytotoxic T lymphocytes were generated, and tested for leukemia cell lysis in vitro and in NOD/SCID AML xenograft model.ResultsThese MY4- and MY8-specific cytotoxic T lymphocytes killed leukemic blasts while sparing healthy donor bone marrow cells. In addition, co-injection of MY4- and MY8-specific cytotoxic T lymphocytes into nonobese diabetic/severe combined immunodeficiency mice with acute myeloid leukemia drastically reduced tumor burden in vivo. The authors also found that MY4- and MY8-specific T cells could be detected in the peripheral blood mononuclear cells of allogeneic stem cell transplant recipients.ConclusionsThese antigen-specific T cells were significantly increased in blood samples from patients compared with healthy donors, suggesting that both MY4 and MY8 are immunogenic and that MY4- and MY8-specific cytotoxic T lymphocytes may play a role in reducing leukemia in vivo. Thus, the discovery of MY4 and MY8 as novel leukemia-associated antigens paves the way for targeting these antigens in immunotherapy against myeloid leukemia.  相似文献   

6.
T-cell–targeting immunotherapy is now considered in acute myelogenous leukemia (AML). Immunotherapy seems most effective for patients with a low AML cell burden, and a possible strategy is therefore to administer immunotherapy early after intensive chemotherapy when patients have a low leukemia cell burden and severe treatment-induced cytopenia. To further investigate this possible therapeutic approach we used a whole blood assay to characterize the proliferative responsiveness (3H-thymidine incorporation) of circulating T cells from AML patients with severe treatment-induced leukopenia, i.e., peripheral blood leukocyte counts <0.5×109/l. This assay will reflect both quantitative and qualitative differences. Responses were compared for 17 AML patients, 6 patients with acute lymphoblastic leukemia (ALL), and a group of 21 healthy controls. Most circulating leukocytes in the AML patients were T lymphocytes, whereas B lymphocytes and monocytes usually constituted <10%. Anti-CD3-stimulated proliferation was significantly lower for AML patients compared with healthy controls. However, proliferation in response to anti-CD3 + anti-CD28 did not differ for AML patients and healthy controls, an observation suggesting that T cells from AML patients have an increased responsiveness in the presence of optimal costimulation that compensates for the quantitative T-cell defect. In contrast, the responses were significantly lower for ALL than for AML patients. We conclude that the remaining T-cell population in AML patients with severe chemotherapy-induced cytopenia show an increased proliferative responsiveness and may represent a therapeutic target when antileukemic immunotherapy is tried in combination with intensive chemotherapy.  相似文献   

7.
8.
9.
Acute myeloid leukemia (AML) is a hematological malignancy characterized by a rapid increase in the number of immature myeloid cells in bone marrow. Despite recent advances in the treatment, AML remains an incurable disease. Matrine, a major component extracted from Sophora flavescens Ait, has been demonstrated to exert anticancer effects on various cancer cell lines. However, the effects of matrine on AML remain largely unknown. Here we investigated its anticancer effects and underlying mechanisms on human AML cells in vitro and in vivo. The results showed that matrine inhibited cell viability and induced cell apoptosis in AML cell lines as well as primary AML cells from patients with AML in a dose- and time-dependent manner. Matrine induced apoptosis by collapsing the mitochondrial membrane potential, inducing cytochrome c release from mitochondria, reducing the ratio of Bcl-2/Bax, increasing activation of caspase-3, and decreasing the levels of p-Akt and p-ERK1/2. The apoptotic effects of matrine on AML cells were partially blocked by a caspase-3 inhibitor Z-DEVD-FMK and a PI3K/Akt activator IGF-1, respectively. Matrine potently inhibited in vivo tumor growth following subcutaneous inoculation of HL-60 cells in SCID mice. These findings indicate that matrine can inhibit cell proliferation and induce apoptosis of AML cells and may be a novel effective candidate as chemotherapeutic agent against AML.  相似文献   

10.
目的:通过建立一理想的动物模型来模拟T细胞急性淋巴细胞白血病的发病状态,为探索急性淋巴细胞白血病全新的治疗方法提供平台。方法:采用抗鼠-CD122抗体注射NOD/SCID小鼠进行预处理,通过尾静脉注射9例不同病例的白血病细胞,以及1株T-ALL细胞系。通过检测小鼠体内白血病细胞及脏器白血病细胞浸润情况,观察白血病细胞植入。将白血病细胞进行二次移植,观察移植稳定性。对白血病动物模型进行药物处理,观察小鼠生存期,模拟人体治疗反应。结果:有4例病例的细胞及T-ALL细胞株成功植入。流式细胞检测显示受体小鼠体内较多比例人CD45+细胞表达,免疫组化显示CD45+细胞浸润小鼠不同脏器,系列移植也获得成功。体内药物处理显示地塞米松能延长小鼠的生存期,与临床观察相一致。结论:成功建立经抗鼠CD122单抗预处理的人T细胞急性淋巴细胞白血病NOD/SCID小鼠模型,具有原发疾病的所有主要特征。  相似文献   

11.
Acute myeloid leukemia (AML) is a clinically and molecularly heterogeneous disease with poor outcome. Adequate model systems are required for preclinical studies to improve understanding of AML biology and to develop novel, rational treatment approaches. Xenografts in immunodeficient mice allow performing functional studies on patient-derived AML cells. We have established an improved model system that integrates serial retransplantation of patient-derived xenograft (PDX) cells in mice, genetic manipulation by lentiviral transduction, and essential quality controls by immunophenotyping and targeted resequencing of driver genes. 17/29 samples showed primary engraftment, 10/17 samples could be retransplanted and some of them allowed virtually indefinite serial transplantation. 5/6 samples were successfully transduced using lentiviruses. Neither serial transplantation nor genetic engineering markedly altered sample characteristics analyzed. Transgene expression was stable in PDX AML cells. Example given, recombinant luciferase enabled bioluminescence in vivo imaging and highly sensitive and reliable disease monitoring; imaging visualized minimal disease at 1 PDX cell in 10000 mouse bone marrow cells and facilitated quantifying leukemia initiating cells. We conclude that serial expansion, genetic engineering and imaging represent valuable tools to improve the individualized xenograft mouse model of AML. Prospectively, these advancements enable repetitive, clinically relevant studies on AML biology and preclinical treatment trials on genetically defined and heterogeneous subgroups.  相似文献   

12.
Immunity against acute myeloid leukemia (AML) is demonstrated in humans by the graft-versus-leukemia effect in allogeneic hematopoietic stem cell transplantation. Specific leukemic antigens have progressively been discovered and circulating specific T lymphocytes against Wilms tumor antigen, proteinase peptide or fusion-proteins produced from aberrant oncogenic chromosomal translocations have been detected in leukemic patients. However, due to the fact that leukemic blasts develop various escape mechanisms, antileukemic specific immunity is not able to control leukemic cell proliferation. The aim of immunotherapy is to overcome tolerance and boost immunity to elicit an efficient immune response against leukemia. We review different immunotherapy strategies tested in preclinical animal models of AML and the human trials that spurred from encouraging results obtained in animal models, demonstrate the feasibility of immunotherapy in AML patients.  相似文献   

13.
《Cytotherapy》2019,21(11):1161-1165
Rabbit antithymocyte globulin (ATG, thymoglobulin), a polyclonal antibody, is used to prevent graft-versus-host disease (GVHD) and graft failure in the setting of allogeneic hematopoietic cell transplantation (HCT). Recent in vitro studies suggest that ATG also has anti-leukemic activity. Whether acute lymphoid leukemia (ALL) or acute myeloid leukemia (AML) is more sensitive to ATG is not known. We used primary cells from 12 B-ALL and 38 AML patients and measured ATG-induced complement-dependent cytotoxicity (CDC) and complement-independent cytotoxicity (CIC) at clinically relevant ATG concentrations (10 and 50 mg/L). At 50 mg/L, ALL blasts were killed to a greater degree than AML blasts by CDC (median 96% vs 50% dead cells, P = 0.001) as well as CIC (median 23% vs 11% apoptotic cells, P = 0.049). At 10 mg/L, the difference was significant for CDC but not CIC. In conclusion, the anti-leukemic activity of ATG, particularly CDC, is more potent for ALL than AML in vitro. If this applies in vivo, ATG-based GVHD prophylaxis may be particularly advantageous for ALL.  相似文献   

14.
Cisplatin is the first generation platinum-based chemotherapy agent. However, the extensive application of cisplatin inevitably causes drug resistance, which is a major obstacle to cancer chemotherapy. Oridonin is a diterpenoid isolated from Rabdosia rubescens with potent anticancer activity. The aim of our study is to investigate the role of oridonin to reverse the cisplatin-resistance in human acute myeloid leukemia (AML) cells. The effect of oridonin on human AML cell proliferation was evaluated by MTT assay, cell migration and invasion were evaluated by transwell migration and invasion assays in cisplatin-resistant human AML cells. Furthermore, cell apoptosis was examined by flow cytometry. The inhibitive effect of oridonin in vivo was determined using xenografted nude mice. In addition, the expressions of MMP2 and MMP9 were detected by Western blot. There was a synergistic antitumor effect between cisplatin and oridonin on cisplatin-resistant human AML cells in vitro and in vivo. In addition, the combination of cisplatin and oridonin synergistically induced cell apoptosis. Furthermore, the combination treatment not only inhibited AML cell migration and invasion, but more significantly, decreased the expressions of MMP2 and MMP9 proteins. Our results suggest that the synergistic effect between both agents is likely to be driven by the inhibition of MMP expression and the resulting increased apoptosis.  相似文献   

15.
Experiments performed in mice revealed that anthracyclines stimulate immunogenic cell death that is characterized by the pre-apoptotic exposure of calreticulin (CRT) on the surface of dying tumor cells. Here, we determined whether CRT exposure at the cell surface (ecto-CRT) occurs in human cancer in response to anthracyclines in vivo, focusing on acute myeloid leukemia (AML), which is currently treated with a combination of aracytine and anthracyclines. Most of the patients benefit from the induction chemotherapy but relapse within 1–12 months. In this study, we investigated ecto-CRT expression on malignant blasts before and after induction chemotherapy. We observed that leukemic cells from some patients exhibited ecto-CRT regardless of chemotherapy and that this parameter was not modulated by in vivo chemotherapy. Ecto-CRT correlated with the presence of phosphorylated eIF2α within the blasts, in line with the possibility that CRT exposure results from an endoplasmic reticulum stress response. Importantly, high levels of ecto-CRT on malignant myeloblasts positively correlated with the ability of autologous T cells to secrete interferon-γ on stimulation with blast-derived dendritic cell. We conclude that the presence of ecto-CRT on leukemia cells facilitates cellular anticancer immune responses in AML patients.  相似文献   

16.
Acute myeloid leukemia (AML) originates from self-renewing leukemic stem cells (LSCs), an ultimate therapeutic target for AML. Recent studies have shown that many AML LSC-specific surface antigens could be such candidates. T cell immunoglobulin mucin-3 (TIM-3) is expressed on LSCs in most types of AML, except for acute promyelocytic leukemia, but not on normal hematopoietic stem cells (HSCs). In mouse models reconstituted with human AML LSCs or human hematopoietic stem cells, a human TIM-3 mouse IgG2a antibody with complement-dependent and antibody-dependent cellular cytotoxic activities eradicates AML LSCs in vivo but does not affect normal human hematopoiesis. Thus, TIM-3 is one of the promising targets to eradicate AML LSCs.  相似文献   

17.

Background

Xenotransplantation of patient-derived AML (acute myeloid leukemia) cells in NOD-scid Il2rγ null (NSG) mice is the method of choice for evaluating this human hematologic malignancy. However, existing models constructed using intravenous injection in adult or newborn NSG mice have inferior engraftment efficiency, poor peripheral blood engraftment, or are difficult to construct.

Methods

Here, we describe an improved AML xenograft model where primary human AML cells were injected into NSG newborn pups intrahepatically.

Results

Introduction of primary cells from AML patients resulted in high levels of engraftment in peripheral blood, spleen, and bone marrow (BM) of recipient mice. The phenotype of engrafted AML cells remained unaltered during serial transplantation. The mice developed features that are consistent with human AML including spleen enlargement and infiltration of AML cells into multiple organs. Importantly, we demonstrated that although leukemic stem cell activity is enriched and mediated by CD34+CD117+ subpopulation, CD34+CD117? subpopulation can acquire CD34+CD117+ phenotype through de-differentiation. Lastly, we evaluated the therapeutic potential of Sorafenib and Regorafenib in this AML model and found that periphery and spleen AML cells are sensitive to these treatments, whereas BM provides a protective environment to AML.

Conclusions

Collectively, our improved model is robust, easy-to-construct, and reliable for pre-clinical AML studies.
  相似文献   

18.
Vγ9Vδ2 T cells are attractive candidates for antileukemic activity. The analysis of Vγ9Vδ2 T cells in newly diagnosed acute myeloid leukemia (AML) patients revealed that their absolute cell numbers were normal in the blood as well as in the bone marrow but showed a striking imbalance in the differentiation subsets, with preponderance of the effector memory population. This unusual phenotype was restored after removal of leukemic cells in patients, which reached complete remission after chemotherapy, suggesting that leukemic cells might be involved in the alteration of γδ T cell development in AML. Accordingly, coculture between AML cells and Vγ9Vδ2 T cells induced selection of effector cells. In accordance with their effector memory status, in vitro proliferation of Vγ9Vδ2 T cells was reduced compared with normal controls. Nevertheless, Vγ9Vδ2 T cells efficiently killed autologous AML blasts via the perforin/granzyme pathway. The ligands for DNAM-1 were expressed by AML cells. We showed that killing of AML blasts was TCR and DNAM-1 dependent. Using a xenotransplantation murine model, we showed that Vγ9Vδ2 T cells homed to the bone marrow in close proximity of engrafted leukemic cells and enhanced survival. These data demonstrate that Vγ9Vδ2 T cells are endowed with the ability to interact with and eradicate AML blasts both in vitro and in a mouse model. Collectively, our data revealed that Vγ9Vδ2 T cells have a potent antileukemic activity provided that optimal activation is achieved, such as with synthetic TCR agonists. This study enhances the interest of these cells for therapeutic purposes such as AML treatment.  相似文献   

19.
BackgroundCeefourin-1 is a specific MRP4/ABCC4 inhibitor with potential antileukemic activity. In this study, we evaluate the ability of ceefourin-1 alone or in combination with histamine, an approved antileukemic agent, to induce cell differentiation or apoptosis in human acute myeloid leukemic cells. We also examine ceefourin-1 toxicity in mice.MethodsU937, HL-60, and KG1a cells were used as models for human acute myeloid leukemia. Cyclic AMP efflux was estimated by measuring intracellular and extracellular cAMP levels. Cell differentiation was assessed by levels of CD14 and CD11b by FACS, and CD88 by western blot, and by cell morphology. Apoptosis was evaluated by cleavage of caspase-3 and PARP by western blot, and by annexin V binding assay. Subacute toxicity study of ceefourin-1 was carried out in BALB/c mice.ResultsCeefourin-1 inhibits cAMP exclusion in AML cells and promotes intracellular signaling via CREB. Ceefourin-1 leads AML cells to apoptosis and histamine potentiates this effect, without evidence of cell differentiation. Intraperitoneal administration of ceefourin-1 shows no important alterations in mice blood parameters, hepatic, and renal functions, nor signs of histologic damage.ConclusionsThese results show that ceefourin-1 promotes apoptosis in AML cells that is enhanced by histamine.General significance:This work indicates that ceefourin-1 represents a promising molecule that could be used alone or in combination with histamine for in vivo evaluation in acute myeloid leukemia malignancies.  相似文献   

20.
Lars Bullinger 《The EMBO journal》2016,35(22):2383-2385
An improved understanding of the biology underlying leukemogenesis, including the determination of the cells of leukemia origin, is of great importance as it can have immediate implications on patient treatment and management. The article by Riemke et al ( 2016 ) provides further evidence that a subgroup of acute myeloid leukemia (AML), the most common acute leukemia in adults, might arise from T‐lymphoid progenitor cells. This study not only supports that the lymphoid fate of early T‐cell progenitors is not yet fully stabilized but also shows that under oncogenic conditions, this multilineage plasticity potential of T‐lymphoid progenitors can lead to transdifferentiation into myeloid leukemia. While gene expression profiles suggest that approximately 5% of all AML cases originate from T‐lymphoid progenitors, novel treatment strategies targeting JAK2/STAT3 signaling might open new avenues for this AML cohort.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号