首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanisms of lung regeneration after injury remain poorly understood. Bone morphogenetic protein 4 (BMP4) is critical for lung morphogenesis and regulates differentiation of the airway epithelium during development, although its mechanism of action is unknown. The role of BMPs in adult lungs is unclear. We hypothesised that BMP signalling is involved in regeneration of damaged adult airways after injury. Our aims were to characterise the regeneration process in 1-nitronaphthalene (1-NN) injured airways, to determine if and when BMP signalling is activated during this process and investigate the effects of BMP4 on normal adult airway epithelial cells (AECs). Rats were injected with 50 mg/kg 1-NN and protein expression in AECs was examined by Western blotting of lung lysis lavage, and by immunofluorescence, at 6, 24, 48 and 96 h post injection. Expression of signalling molecules p-ERK-1, p-ERK-2 and p-Smad1/5/8 in AECs peaked at 6 h post injection, coincident with maximal inflammation and prior to airway denudation which occurred at 24 h. While airways were re-epithelialised by 48 h, AEC proliferation peaked later at 96 h post 1-NN injection. In vitro, BMP4 induced a mesenchymal-like morphology in normal AECs, downregulated E-cadherin expression and increased migration in a wound closure assay. Thus, following acute injury, increased BMP signalling in AECs coincides with inflammation and precedes airway denudation and re-epithelialisation. Our data indicate that, similar to its role in controlling tissue architecture during development, BMP signalling regulates regeneration of the airways following acute injury, involving downregulation of E-cadherin and induction of migration in AECs.  相似文献   

2.

Background

Epithelial to mesenchymal transition (EMT) in alveolar epithelial cells (AECs) has been widely observed in patients suffering interstitial pulmonary fibrosis. In vitro studies have also demonstrated that AECs could convert into myofibroblasts following exposure to TGF-β1. In this study, we examined whether EMT occurs in bleomycin (BLM) induced pulmonary fibrosis, and the involvement of bronchial epithelial cells (BECs) in the EMT. Using an α-smooth muscle actin-Cre transgenic mouse (α-SMA-Cre/R26R) strain, we labelled myofibroblasts in vivo. We also performed a phenotypic analysis of human BEC lines during TGF-β1 stimulation in vitro.

Methods

We generated the α-SMA-Cre mouse strain by pronuclear microinjection with a Cre recombinase cDNA driven by the mouse α-smooth muscle actin (α-SMA) promoter. α-SMA-Cre mice were crossed with the Cre-dependent LacZ expressing strain R26R to produce the double transgenic strain α-SMA-Cre/R26R. β-galactosidase (βgal) staining, α-SMA and smooth muscle myosin heavy chains immunostaining were carried out simultaneously to confirm the specificity of expression of the transgenic reporter within smooth muscle cells (SMCs) under physiological conditions. BLM-induced peribronchial fibrosis in α-SMA-Cre/R26R mice was examined by pulmonary βgal staining and α-SMA immunofluorescence staining. To confirm in vivo observations of BECs undergoing EMT, we stimulated human BEC line 16HBE with TGF-β1 and examined the localization of the myofibroblast markers α-SMA and F-actin, and the epithelial marker E-cadherin by immunofluorescence.

Results

βgal staining in organs of healthy α-SMA-Cre/R26R mice corresponded with the distribution of SMCs, as confirmed by α-SMA and SM-MHC immunostaining. BLM-treated mice showed significantly enhanced βgal staining in subepithelial areas in bronchi, terminal bronchioles and walls of pulmonary vessels. Some AECs in certain peribronchial areas or even a small subset of BECs were also positively stained, as confirmed by α-SMA immunostaining. In vitro, addition of TGF-β1 to 16HBE cells could also stimulate the expression of α-SMA and F-actin, while E-cadherin was decreased, consistent with an EMT.

Conclusion

We observed airway EMT in BLM-induced peribronchial fibrosis mice. BECs, like AECs, have the capacity to undergo EMT and to contribute to mesenchymal expansion in pulmonary fibrosis.  相似文献   

3.
4.
5.
6.
7.

Background

Statins have recently been highlighted for their pleiotropic actions distinct from cholesterol-lowering effects. Despite this interest, it is currently unknown whether statin therapy inhibits peritoneal dialysis (PD)-related epithelial-mesenchymal transition (EMT).

Methods

In vitro, human peritoneal mesothelial cells (HPMCs) were exposed to 5.6 mM glucose (NG) or 100 mM glucose (HG) with or without simvastatin (1 µM). In vivo, PD catheters were inserted into 32 Sprague-Dawley rats, and saline (C, n = 16) or 4.25% peritoneal dialysis fluid (PDF) (PD, n = 16) was infused for 4 weeks. Eight rats from each group were treated with 5 mg/kg/day of simvastatin intraperitoneally. Changes in the protein expression of EMT markers such as E-cadherin, α-SMA, Snail, and fibronectin in HPMCs and the peritoneum were evaluated by Western blot analysis and immunofluorescence or immunohistochemical staining. We also explored whether activation of the mevalonate pathway and its downstream small GTPases were involved in dialysis-related peritoneal EMT and could be inhibited by statin treatment.

Results

Compared to NG cells, E-cadherin expression was significantly decreased, while α-SMA, Snail, and fibronectin expression were significantly increased in HPMCs exposed to HG, and these changes were abrogated by simvastatin (p<0.05). In addition, the cobblestone-like appearance of normal HPMCs was converted into a fibroblast-like morphology after HG treatment, which was reversed by simvastatin. These EMT-like changes were also observed in HPMCs treated with geranyl-geranyl pyrophosphate (5 µM). HG significantly increased the protein expression of RhoA and Rac1 in the membrane fractions, and these increases were ameliorated by simvastatin (p<0.05). In PD rats, E-cadherin in the peritoneum was significantly decreased, whereas α-SMA, Snail, and fibronectin expression were significantly increased (p<0.05) compared to C rats. The thickness of the mesothelial layer in the peritoneum were also significantly greater in PD rats than in C rats (p<0.05). These changes of the peritoneum in PD rats were significantly attenuated by simvastatin.

Conclusion

This study demonstrated that PD-related EMT was mediated via the mevalonate pathway, and statin treatment inhibited the EMT changes in HG-treated HPMCs and PDF-stimulated PD rats. These findings suggest that statins may be a promising therapeutic strategy for preservation of peritoneal membrane integrity in long-term PD patients.  相似文献   

8.
Abnormal TGF-β1/Smad3 activation plays an important role in the pathogenesis of pulmonary fibrosis, which can be prevented by paclitaxel (PTX). This study aimed to investigate an antifibrotic effect of the low-dose PTX (10 to 50 nM in vitro, and 0.6 mg/kg in vivo). PTX treatment resulted in phenotype reversion of epithelial-mesenchymal transition (EMT) in alveolar epithelial cells (AECs) with increase of miR-140. PTX resulted in an amelioration of bleomycin (BLM)-induced pulmonary fibrosis in rats with reduction of the wet lung weight to body weight ratios and the collagen deposition. Our results further demonstrated that PTX inhibited the effect of TGF-β1 on regulating the expression of Smad3 and phosphorylated Smad3 (p-Smad3), and restored the levels of E-cadherin, vimentin and α-SMA. Moreover, lower miR-140 levels were found in idiopathic pulmonary fibrosis (IPF) patients, TGF-β1-treated AECs and BLM-instilled rat lungs. Through decreasing Smad3/p-Smad3 expression and upregulating miR-140, PTX treatment could significantly reverse the EMT of AECs and prevent pulmonary fibrosis of rats. The action of PTX to ameliorate TGF-β1-induced EMT was promoted by miR-140, which increased E-cadherin levels and reduced the expression of vimentin, Smad3 and p-Smad3. Collectively, our results demonstrate that low-dose PTX prevents pulmonary fibrosis by suppressing the TGF-β1/Smad3 pathway via upregulating miR-140.  相似文献   

9.

Background

N-acetylglucosaminyltransferase-III (GnT-III) is a glycosyltransferase encoded by Mgat3 that catalyzes the addition of β1,4-bisecting-N-acetylglucosamine on N-glycans. GnT-III has been pointed as a metastases suppressor having varying effects on cell adhesion and migration. We have previously described the existence of a functional feedback loop between E-cadherin expression and GnT-III-mediated glycosylation. The effects of GnT-III-mediated glycosylation on E-cadherin expression and cellular phenotype lead us to evaluate Mgat3 and GnT-III-glycosylation role during Epithelial-Mesenchymal-Transition (EMT) and the reverted process, Mesenchymal-Epithelial-Transition (MET).

Methodology/Principal Findings

We analyzed the expression profile and genetic mechanism controlling Mgat3 expression as well as GnT-III-mediated glycosylation, in general and specifically on E-cadherin, during EMT/MET. We found that during EMT, Mgat3 expression was dramatically decreased and later recovered when cells returned to an epithelial-like phenotype. We further identified that Mgat3 promoter methylation/demethylation is involved in this expression regulation. The impact of Mgat3 expression variation, along EMT/MET, leads to a variation in the expression levels of the enzymatic product of GnT-III (bisecting GlcNAc structures), and more importantly, to the specific modification of E-cadherin glycosylation with bisecting GlcNAc structures.

Conclusions/Significance

Altogether, this work identifies for the first time Mgat3 glycogene expression and GnT-III-mediated glycosylation, specifically on E-cadherin, as a novel and major component of the EMT/MET mechanism signature, supporting its role during EMT/MET.  相似文献   

10.

Objective

Dysregulated repair following epithelial injury is a key forerunner of disease in many organs, and the acquisition of a mesenchymal phenotype by the injured epithelial cells (epithelial to mesenchymal transition, EMT) may serve as a source of fibrosis. The macrolide antibiotic azithromycin and the DNA synthesis inhibitor mycophenolate are in clinical use but their mechanism of action remains unknown in post-transplant bronchiolitis obliterans syndrome (BOS). Here we determined if regional variation in the EMT response to TGFβ1 underlies the bronchiolocentric fibrosis leading to BOS and whether EMT could be inhibited by azithromycin or mycophenolate.

Methods/Results

We found that small and large airway epithelial cells from stable lung transplant patients underwent EMT when stimulated with TGFβ1, however mesenchymal protein expression was higher and loss of epithelial protein expression more complete in small airway epithelial cells. This regional difference was not mediated by changes in expression of the TGFβRII or Smad3 activation. Azithromycin potentially inhibited EMT in both small and large airway epithelial cells by inhibiting Smad3 expression, but not activation.

Conclusion

Collectively, these observations provide a biologic basis for a previously unexplained but widely observed clinical phenomena, and a platform for the development of new approaches to fibrotic diseases.  相似文献   

11.
Cheng ZX  Sun B  Wang SJ  Gao Y  Zhang YM  Zhou HX  Jia G  Wang YW  Kong R  Pan SH  Xue DB  Jiang HC  Bai XW 《PloS one》2011,6(8):e23752

Background

Epithelial to mesenchymal transition (EMT) induced by hypoxia is one of the critical causes of treatment failure in different types of human cancers. NF-κB is closely involved in the progression of EMT. Compared with HIF-1α, the correlation between NF-κB and EMT during hypoxia has been less studied, and although the phenomenon was observed in the past, the molecular mechanisms involved remained unclear.

Methodology/Principal Findings

Here, we report that hypoxia or overexpression of hypoxia-inducible factor-1α (HIF-1α) promotes EMT in pancreatic cancer cells. On molecular or pharmacologic inhibition of NF-κB, hypoxic cells regained expression of E-cadherin, lost expression of N-cadherin, and attenuated their highly invasive and drug-resistant phenotype. Introducing a pcDNA3.0/HIF-1α into pancreatic cancer cells under normoxic conditions heightened NF-κB activity, phenocopying EMT effects produced by hypoxia. Conversely, inhibiting the heightened NF-κB activity in this setting attenuated the EMT phenotype.

Conclusions/Significance

These results suggest that hypoxia or overexpression of HIF-1α induces the EMT that is largely dependent on NF-κB in pancreatic cancer cells.  相似文献   

12.
13.

Background

Extracellular heat shock protein 70 and peptide complexes (eHSP70/HSP70-PCs) regulate a variety of biological behaviors in tumor cells. Whether eHSP70/HSP70-PCs are involved in the epithelial-mesenchymal transition (EMT) of tumor cells remains unclear.

Aims

To determine the effects of eHSP70/HSP70-PCs on EMT of hepatocarcinoma cells.

Methods

The expressions of E-cadherin, HSP70, α-smooth muscle actin protein (α-SMA) and p-p38 were detected immunohistochemically in liver cancer samples. Immunofluorescence, western blotting and real-time RT-PCR methods were used to analyze the effects of eHSP70/HSP70-PCs on the expressions of E-cadherin, α-SMA and p38/MAPK in vivo.

Results

HSP70, E-cadherin, α-SMA and p-p38 were elevated in hepatocellular carcinoma tissues. The expression of HSP70 was positively correlated with malignant differentiated liver carcinoma. The expressions of HSP70, α-SMA and p-p38 correlated with recurrence-free survival after resection. eHSP70/HSP70-PCs significantly promoted the expressions of α-SMA and p-p38 and reduced the expressions of E-cadherin in vivo. The effect was inhibited by SB203580.

Conclusion

The expressions of HSP70, E-cadherin, α-SMA and p-p38 may represent indicators of malignant potential and could discriminate the malignant degree of liver cancer. eHSP70/HSP70-PCs play an important role in the EMT of hepatocellular carcinoma via the p38/MAPK pathway.  相似文献   

14.
15.

Background

The aim of this study is to investigate the expression profile of multiple epithelial mesenchymal transition (EMT)-related molecules in intrahepatic cholangiocarcinoma (ICC) and the related prognostic significance.

Methods

Immunohistochemistry was performed to determine the expression of E-cadherin, Vimentin, Snail, slug and β-catenin in a tissue microarray consisting of tumor tissues of 140 ICC patients undergoing curative resection. The correlation between the expression of these molecules and the clinicopathological characteristics of ICC patients was analyzed, and their prognostic implication was evaluated.

Results

Reduced E-cadherin and increased Vimentin expression, the characteristic changes of EMT, identified in 55.0% and 55.7% of primary ICCs, respectively, were correlated with lymphatic metastasis and poorer overall survival (OS) and disease-free survival (DFS) of ICCs. The overexpression of snail and nonmembranous β-catenin, which are the major regulators of the EMT, were identified in 49.2% and 45.7% of primary ICCs, while little slug expression was detected in ICCs. Cytoplasmic/nuclear β-catenin did not significantly predict worse DFS and was not related with E-cadherin loss. The overexpression of snail predicted worse OS and DFS. Snail overexpression correlated with the down-regulation of E-cadherin and the up-regulation of Vimentin. Inhibition of snail in an ICC cell line decreased the expression of E-cadherin, enhanced the expression of Vimentin and impaired the invasion and migration ability of ICC cells.

Conclusions

These data support the hypothesis that EMT plays vital roles in ICC progression and suggest that snail but not slug and β-catenin plays a crucial role in the EMT induction of ICC.  相似文献   

16.

Background

14-3-3ε is implicated in regulating tumor progression, including hepatocellular carcinoma (HCC). Our earlier study indicated that elevated 14-3-3ε expression is significantly associated with higher risk of metastasis and lower survival rates of HCC patients. However, the molecular mechanisms of how 14-3-3ε regulates HCC tumor metastasis are still unclear.

Methodology and Principal Findings

In this study, we show that increased 14-3-3ε expression induces HCC cell migration and promotes epithelial-mesenchymal transition (EMT), which is determined by the reduction of E-cadherin expression and induction of N-cadherin and vimentin expression. Knockdown with specific siRNA abolished 14-3-3ε-induced cell migration and EMT. Furthermore, 14-3-3ε selectively induced Zeb-1 and Snail expression, and 14-3-3ε-induced cell migration was abrogated by Zeb-1 or Snail siRNA. In addition, the effect of 14-3-3ε-reduced E-cadherin was specifically restored by Zeb-1 siRNA. Positive 14-3-3ε expression was significantly correlated with negative E-cadherin expression, as determined by immunohistochemistry analysis in HCC tumors. Analysis of 14-3-3ε/E-cadherin expression associated with clinicopathological characteristics revealed that the combination of positive 14-3-3ε and negative E-cadherin expression is significantly correlated with higher incidence of HCC metastasis and poor 5-year overall survival. In contrast, patients with positive 14-3-3ε and positive E-cadherin expression had better prognostic outcomes than did those with negative E-cadherin expression.

Significance

Our findings show for the first time that E-cadherin is one of the downstream targets of 14-3-3ε in modulating HCC tumor progression. Thus, 14-3-3ε may act as an important regulator in modulating tumor metastasis by promoting EMT as well as cell migration, and it may serve as a novel prognostic biomarker or therapeutic target for HCC.  相似文献   

17.

Background

Radiofrequency ablation (RFA) is one of the curative therapies for hepatocellular carcinoma (HCC), however, accelerated progression of residual HCC after incomplete RFA has been reported more frequently. The underlying molecular mechanism of this phenomenon remains to be elucidated. In this study, we used an incomplete RFA orthotopic HCC nude mouse model to study the invasive and metastatic potential of residual cancer as well as the correlated mechanism.

Methods

The incomplete RFA orthotopic nude mouse models were established using high metastatic potential HCC cell line HCCLM3 and low metastatic potential HCC cell line HepG2, respectively. The changes in cellular morphology, motility, metastasis and epithelial–mesenchymal transition (EMT), and HCC cell molecular markers after in vitro and in vivo incomplete RFA intervention were observed.

Results

Pulmonary and intraperitoneal metastasis were observed in an in vivo study. The underlying pro-invasive mechanism of incomplete RFA appeared to be associated with promoting EMT, including down-regulation of E-cadherin and up-regulation of N-cadherin and vimentin. These results were in accordance with the in vitro response of HCC cells to heat intervention. Further studies demonstrated that β-catenin was a pivotal factor during this course and blocking β-catenin reduced metastasis and EMT phenotype changes in heat-treated HCCLM3 cells in vitro.

Conclusion

Incomplete RFA enhanced the invasive and metastatic potential of residual cancer, accompanying with EMT-like phenotype changes by activating β-catenin signaling in HCCLM3 cells.  相似文献   

18.
19.
Du R  Sun W  Xia L  Zhao A  Yu Y  Zhao L  Wang H  Huang C  Sun S 《PloS one》2012,7(2):e30771

Background

Hypoxia-induced renal tubular cell epithelial–mesenchymal transition (EMT) is an important event leading to renal fibrosis. MicroRNAs (miRNAs) are small non-coding RNA molecules that bind to their mRNA targets, thereby leading to translational repression. The role of miRNA in hypoxia-induced EMT is largely unknown.

Methodology/Principal Findings

miRNA profiling was performed for the identification of differentially expressed miRNAs in HK-2 cells under normal and low oxygen, and the results were then verified by quantitative real time RT-PCR (qRT-PCR). The function of miRNAs in hypoxia-induced renal tubular cell EMT was assessed by the transfection of specific miRNA inhibitors and mimics. Luciferase reporter gene assays and western blot analysis were performed to validate the target genes of miR-34a. siRNA against Jagged1 was designed to investigate the role of the miR-34a-Notch pathway in hypoxia induced renal tubular cell EMT. miRNA-34a was identified as being downregulated in hypoxic renal tubular epithelial cells. Inhibition of miR-34a expression in HK-2 cells, which highly express endogenous miR-34a, promoted a mesenchymal phenotype accompanied by reduced expression of the epithelial marker Z0-1, E-cadherin and increased expression of the mesenchymal markers α-SMA and vimentin. Conversely, miR-34a mimics effectively prevented hypoxia-induced EMT. Transfection of miRNA-34a in HK-2 cells under hypoxia abolished hypoxia-induced expression of Notch1 and Jagged1 as well as Notch downstream signals, such as snail. Western blot analysis and luciferase reporter gene assays showed direct evidence for miR-34a targeting Notch1 and Jagged1. siRNAs against Jagged1 or Notch1 effectively prevented miR-34a inhibitor-induced tubular epithelial cell EMT.

Conclusions/Significance

Our study provides evidence that the hypoxia-induced decrease of miR-34a expression could promote EMT in renal tubular epithelial cells by directly targeting Notch1 and Jagged1, and subsequently, Notch downstream signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号