共查询到17条相似文献,搜索用时 4 毫秒
1.
前期研究观察到一种现象, 在正常妊娠的胎盘中细胞粘附分子CD146选择性地表达在侵入性滋养层细胞中, 而在滋养层细胞侵入不足的先兆子痫病人的胎盘中CD146表达降低或缺失.本文进一步研究了CD146分子影响滋养层细胞侵入行为的作用机理.免疫荧光实验显示CD146分子选择性地表达在具有侵袭能力的中间滋养层细胞,而在非侵入性的细胞滋养层细胞和合体滋养层细胞中不表达.细胞功能实验表明,影响滋养层细胞侵入性的两个关键要素,即细胞迁移和基质金属蛋白酶的分泌,都受到CD146特异抗体的显著抑制.这些研究结果提示,粘附分子CD146是影响细胞侵入行为的关键分子.这为深入研究胚胎植入和肿瘤浸润的分子调控机理提供了一个关键的分子模型. 相似文献
2.
目的:研究电磁辐射对体外培养骨髓来源的内皮祖细胞(EPCs)增殖、迁移、黏附能力的影响,并探讨其与肾脏疾病的可能关系。方法:密度梯度离心法获取大鼠骨髓单个核细胞(MNCs),接种至纤维连接素包被的培养板上,培养6d后进行免疫细胞化学和免疫荧光鉴定EPCs。采用MTT比色法、Transwell小室和黏附能力测定实验,观察平均功率密度为65mW/cm2,时间20min的电磁辐射对EPCs的增殖、迁移、黏附能力的影响;同等剂量全身照射大鼠,光镜和透射电镜观察大鼠肾脏组织学和超微结构的变化。结果:从大鼠骨髓能成功分离培养获得EPCs。EPCs的增殖、迁移、黏附能力较对照组显著下降;大鼠接受全身照射后各时相点无明显组织学改变,但超微结构显示在照射后3h后开始出现肾小球毛细血管袢足突肿胀,12h后出现部分足突融合。结论:电磁辐射导致EPCs生物功能显著减弱,肾小球超微结构改变,电磁辐射可能与起肾脏疾病的发生有关。 相似文献
3.
Vicky Chaar Sandrine Laurance Claudine Lapoumeroulie Sylvie Cochet Maria De Grandis Yves Colin Jacques Elion Caroline Le Van Kim Wassim El Nemer 《The Journal of biological chemistry》2014,289(16):11512-11521
Vaso-occlusive crises are the main acute complication in sickle cell disease. They are initiated by abnormal adhesion of circulating blood cells to vascular endothelium of the microcirculation. Several interactions involving an intricate network of adhesion molecules have been described between sickle red blood cells and the endothelial vascular wall. We have shown previously that young sickle reticulocytes adhere to resting endothelial cells through the interaction of α4β1 integrin with endothelial Lutheran/basal cell adhesion molecule (Lu/BCAM). In the present work, we investigated the functional impact of endothelial exposure to hydroxycarbamide (HC) on this interaction using transformed human bone marrow endothelial cells and primary human pulmonary microvascular endothelial cells. Adhesion of sickle reticulocytes to HC-treated endothelial cells was decreased despite the HC-derived increase of Lu/BCAM expression. This was associated with decreased phosphorylation of Lu/BCAM and up-regulation of the cAMP-specific phosphodiesterase 4A expression. Our study reveals a novel mechanism for HC in endothelial cells where it could modulate the function of membrane proteins through the regulation of phosphodiesterase expression and cAMP-dependent signaling pathways. 相似文献
4.
Mark W. Zimmerman Kelley E. McQueeney Jeffrey S. Isenberg Bruce R. Pitt Karla A. Wasserloos Gregg E. Homanics John S. Lazo 《The Journal of biological chemistry》2014,289(9):5904-5913
Protein-tyrosine phosphatase 4A3 (PTP4A3) is highly expressed in multiple human cancers and is hypothesized to have a critical, albeit poorly defined, role in the formation of experimental tumors in mice. PTP4A3 is broadly expressed in many tissues so the cellular basis of its etiological contributions to carcinogenesis may involve both tumor and stromal cells. In particular, PTP4A3 is expressed in the tumor vasculature and has been proposed to be a direct target of vascular endothelial growth factor (VEGF) signaling in endothelial cells. We now provide the first in vivo experimental evidence that PTP4A3 participates in VEGF signaling and contributes to the process of pathological angiogenesis. Colon tumor tissue isolated from Ptp4a3-null mice revealed reduced tumor microvessel density compared with wild type controls. Additionally, vascular cells derived from Ptp4a3-null tissues exhibited decreased invasiveness in an ex vivo wound healing assay. When primary endothelial cells were isolated and cultured in vitro, Ptp4a3-null cells displayed greatly reduced migration compared with wild type cells. Exposure to VEGF led to an increase in Src phosphorylation in wild type endothelial cells, a response that was completely ablated in Ptp4a3-null cells. In loss-of-function studies, reduced VEGF-mediated migration was also observed when human endothelial cells were treated with a small molecule inhibitor of PTP4A3. VEGF-mediated in vivo vascular permeability was significantly attenuated in PTP4A3-deficient mice. These findings strongly support a role for PTP4A3 as an important contributor to endothelial cell function and as a multimodal target for cancer therapy and mitigating VEGF-regulated angiogenesis. 相似文献
5.
Heng Mei Jay M. Campbell Cathy M. Paddock Panida Lertkiatmongkol Michael W. Mosesson Ralph Albrecht Peter J. Newman 《The Journal of biological chemistry》2014,289(30):20836-20844
PECAM-1 is a 130-kDa member of the immunoglobulin (Ig) superfamily that is expressed on the surface of platelets and leukocytes, and at the intracellular junctions of confluent endothelial cell monolayers. Previous studies have shown that PECAM-1/PECAM-1 homophilic interactions play a key role in leukocyte transendothelial migration, in allowing PECAM-1 to serve as a mechanosensory complex in endothelial cells, in its ability to confer cytoprotection to proapoptotic stimuli, and in maintaining endothelial cell junctional integrity. To examine the adhesive properties of full-length PECAM-1 in a native lipid environment, we purified it from platelets and assembled it into phospholipid nanodiscs. PECAM-1-containing nanodiscs retained not only their ability to bind homophilically to PECAM-1-expressing cells, but exhibited regulatable adhesive interactions that could be modulated by ligands that bind membrane-proximal Ig Domain 6. This property was exploited to enhance the rate of barrier restoration in endothelial cell monolayers subjected to inflammatory challenge. The finding that the adhesive properties of PECAM-1 are regulatable suggests novel approaches for controlling endothelial cell migration and barrier function in a variety of vascular permeability disorders. 相似文献
6.
Kemala Isnainiasih Mantilidewi Yoji Murata Munemasa Mori Chihiro Otsubo Takenori Kotani Shinya Kusakari Hiroshi Ohnishi Takashi Matozaki 《The Journal of biological chemistry》2014,289(10):6451-6461
Vascular endothelial cells (ECs) are continuously exposed to shear stress (SS) generated by blood flow. Such stress plays a key role in regulation of various aspects of EC function including cell proliferation and motility as well as changes in cell morphology. Vascular endothelial-protein-tyrosine phosphatase (VE-PTP) is an R3-subtype PTP that possesses multiple fibronectin type III-like domains in its extracellular region and is expressed specifically in ECs. The role of VE-PTP in EC responses to SS has remained unknown, however. Here we show that VE-PTP is diffusely localized in ECs maintained under static culture conditions, whereas it undergoes rapid accumulation at the downstream edge of the cells relative to the direction of flow in response to SS. This redistribution of VE-PTP triggered by SS was found to require its extracellular and transmembrane regions and was promoted by integrin engagement of extracellular matrix ligands. Inhibition of actin polymerization or of Cdc42, Rab5, or Arf6 activities attenuated the SS-induced redistribution of VE-PTP. VE-PTP also underwent endocytosis in the static and SS conditions. SS induced the polarized distribution of internalized VE-PTP. Such an effect was promoted by integrin engagement of fibronectin but prevented by inhibition of Cdc42 activity or of actin polymerization. In addition, depletion of VE-PTP by RNA interference in human umbilical vein ECs blocked cell elongation in the direction of flow induced by SS. Our results suggest that the polarized redistribution of VE-PTP in response to SS plays an important role in the regulation of EC function by blood flow. 相似文献
7.
Daniel Martin Yi Li Junyao Yang Gang Wang Andriana Margariti Zhixin Jiang Hui Yu Anna Zampetaki Yanhua Hu Qingbo Xu Lingfang Zeng 《The Journal of biological chemistry》2014,289(44):30625-30634
It is well known that atherosclerosis occurs geographically at branch points where disturbed flow predisposes to the development of plaque via triggering of oxidative stress and inflammatory reactions. In this study, we found that disturbed flow activated anti-oxidative reactions via up-regulating heme oxygenase 1 (HO-1) in an X-box-binding protein 1 (XBP1) and histone deacetylase 3 (HDAC3)-dependent manner. Disturbed flow concomitantly up-regulated the unspliced XBP1 (XBP1u) and HDAC3 in a VEGF receptor and PI3K/Akt-dependent manner. The presence of XBP1 was essential for the up-regulation of HDAC3 protein. Overexpression of XBP1u and/or HDAC3 activated Akt1 phosphorylation, Nrf2 protein stabilization and nuclear translocation, and HO-1 expression. Knockdown of XBP1u decreased the basal level and disturbed flow-induced Akt1 phosphorylation, Nrf2 stabilization, and HO-1 expression. Knockdown of HDAC3 ablated XBP1u-mediated effects. The mammalian target of rapamycin complex 2 (mTORC2) inhibitor, AZD2014, ablated XBP1u or HDAC3 or disturbed flow-mediated Akt1 phosphorylation, Nrf2 nuclear translocation, and HO-1 expression. Neither actinomycin D nor cycloheximide affected disturbed flow-induced up-regulation of Nrf2 protein. Knockdown of Nrf2 abolished XBP1u or HDAC3 or disturbed flow-induced HO-1 up-regulation. Co-immunoprecipitation assays demonstrated that XBP1u physically bound to HDAC3 and Akt1. The region of amino acids 201 to 323 of the HDAC3 protein was responsible for the binding to XBP1u. Double immunofluorescence staining revealed that the interactions between Akt1 and mTORC2, Akt1 and HDAC3, Akt1 and XBP1u, HDAC3, and XBP1u occurred in the cytosol. Thus, we demonstrate that XBP1u and HDAC3 exert a protective effect on disturbed flow-induced oxidative stress via up-regulation of mTORC2-dependent Akt1 phosphorylation and Nrf2-mediated HO-1 expression. 相似文献
8.
Neeliyath A. Ramakrishnan Marian J. Drescher Barbara J. Morley Philip M. Kelley Dennis G. Drescher 《The Journal of biological chemistry》2014,289(13):8750-8766
Mutations in otoferlin, a C2 domain-containing ferlin family protein, cause non-syndromic hearing loss in humans (DFNB9 deafness). Furthermore, transmitter secretion of cochlear inner hair cells is compromised in mice lacking otoferlin. In the present study, we show that the C2F domain of otoferlin directly binds calcium (KD = 267 μm) with diminished binding in a pachanga (D1767G) C2F mouse mutation. Calcium was found to differentially regulate binding of otoferlin C2 domains to target SNARE (t-SNARE) proteins and phospholipids. C2D–F domains interact with the syntaxin-1 t-SNARE motif with maximum binding within the range of 20–50 μm Ca2+. At 20 μm Ca2+, the dissociation rate was substantially lower, indicating increased binding (KD = ∼10−9) compared with 0 μm Ca2+ (KD = ∼10−8), suggesting a calcium-mediated stabilization of the C2 domain·t-SNARE complex. C2A and C2B interactions with t-SNAREs were insensitive to calcium. The C2F domain directly binds the t-SNARE SNAP-25 maximally at 100 μm and with reduction at 0 μm Ca2+, a pattern repeated for C2F domain interactions with phosphatidylinositol 4,5-bisphosphate. In contrast, C2F did not bind the vesicle SNARE protein synaptobrevin-1 (VAMP-1). Moreover, an antibody targeting otoferlin immunoprecipitated syntaxin-1 and SNAP-25 but not synaptobrevin-1. As opposed to an increase in binding with increased calcium, interactions between otoferlin C2F domain and intramolecular C2 domains occurred in the absence of calcium, consistent with intra-C2 domain interactions forming a “closed” tertiary structure at low calcium that “opens” as calcium increases. These results suggest a direct role for otoferlin in exocytosis and modulation of calcium-dependent membrane fusion. 相似文献
9.
Zsolt Kasza Peder Fredlund Fuchs Christoffer Tamm Anna S. Eriksson Paul O'Callaghan Femke Heindryckx Dorothe Spillmann Erik Larsson Sébastien Le Jan Inger Eriksson P?r Gerwins Lena Kjellén Johan Kreuger 《The Journal of biological chemistry》2013,288(36):25956-25963
Heparan sulfate (HS) proteoglycans, present at the plasma membrane of vascular endothelial cells, bind to the angiogenic growth factor VEGFA to modulate its signaling through VEGFR2. The interactions between VEGFA and proteoglycan co-receptors require sulfated domains in the HS chains. To date, it is essentially unknown how the formation of sulfated protein-binding domains in HS can be regulated by microRNAs. In the present study, we show that microRNA-24 (miR-24) targets NDST1 to reduce HS sulfation and thereby the binding affinity of HS for VEGFA. Elevated levels of miR-24 also resulted in reduced levels of VEGFR2 and blunted VEGFA signaling. Similarly, suppression of NDST1 using siRNA led to a reduction in VEGFR2 expression. Consequently, not only VEGFA binding, but also VEGFR2 protein expression is dependent on NDST1 function. Furthermore, overexpression of miR-24, or siRNA-mediated reduction of NDST1, reduced endothelial cell chemotaxis in response to VEGFA. These findings establish NDST1 as a target of miR-24 and demonstrate how such NDST1 suppression in endothelial cells results in reduced responsiveness to VEGFA. 相似文献
10.
Hee Jun Cho Yoo-Seok Hwang Kathleen Mood Yon Ju Ji Junghwa Lim Deborah K. Morrison Ira O. Daar 《The Journal of biological chemistry》2014,289(26):18556-18568
The Eph receptors and their membrane-bound ligands, ephrins, play important roles in various biological processes such as cell adhesion and movement. The transmembrane ephrinBs transduce reverse signaling in a tyrosine phosphorylation-dependent or -independent, as well as PDZ-dependent manner. Here, we show that ephrinB1 interacts with Connector Enhancer of KSR1 (CNK1) in an EphB receptor-independent manner. In cultured cells, cotransfection of ephrinB1 with CNK1 increases JNK phosphorylation. EphrinB1/CNK1-mediated JNK activation is reduced by overexpression of dominant-negative RhoA. Overexpression of CNK1 alone is sufficient for activation of RhoA; however, both ephrinB1 and CNK1 are required for JNK phosphorylation. Co-immunoprecipitation data showed that ephrinB1 and CNK1 act as scaffold proteins that connect RhoA and JNK signaling components, such as p115RhoGEF and MKK4. Furthermore, adhesion to fibronectin or active Src overexpression increases ephrinB1/CNK1 binding, whereas blocking Src activity by a pharmacological inhibitor decreases not only ephrinB1/CNK1 binding, but also JNK activation. EphrinB1 overexpression increases cell motility, however, CNK1 depletion by siRNA abrogates ephrinB1-mediated cell migration and JNK activation. Moreover, Rho kinase inhibitor or JNK inhibitor treatment suppresses ephrinB1-mediated cell migration. Taken together, our findings suggest that CNK1 is required for ephrinB1-induced JNK activation and cell migration. 相似文献
11.
Shun-Fa Yang Mu-Kuan Chen Yih-Shou Hsieh Tsung-Te Chung Yi-Hsien Hsieh Chiao-Wen Lin Jen-Liang Su Ming-Hsui Tsai Chih-Hsin Tang 《The Journal of biological chemistry》2010,285(39):29808-29816
Oral squamous cell carcinoma has a striking tendency to migrate and metastasize. Cyclooxygenase (COX)-2, the inducible isoform of prostaglandin (PG) synthase, has been implicated in tumor metastasis. However, the effects of COX-2 on human oral cancer cells are largely unknown. We found that overexpression of COX-2 or exogenous PGE2 increased migration and intercellular adhesion molecule 1 (ICAM)-1 expression in human oral cancer cells. Using pharmacological inhibitors, activators, and genetic inhibition of EP receptors, we discovered that the EP1 receptor, but not other PGE receptors, is involved in PGE2-mediated cell migration and ICAM-1 expression. PGE2-mediated migration and ICAM-1 up-regulation were attenuated by inhibitors of protein kinase C (PKC)δ, and c-Src. Activation of the PKCδ, c-Src, and AP-1 signaling pathway occurred after PGE2 treatment. PGE2-induced expression of ICAM-1 and migration activity were inhibited by a specific inhibitor, siRNA, and mutants of PKCδ, c-Src, and AP-1. In addition, migration-prone sublines demonstrated that cells with increased migration ability had higher expression of COX-2 and ICAM-1. Taken together, these results indicate that the PGE2 and EP1 interaction enhanced migration of oral cancer cells through an increase in ICAM-1 production. 相似文献
12.
13.
Jun-ichi Suehiro Yasuharu Kanki Chihiro Makihara Keri Schadler Mai Miura Yuuka Manabe Hiroyuki Aburatani Tatsuhiko Kodama Takashi Minami 《The Journal of biological chemistry》2014,289(42):29044-29059
VEGF is a key regulator of endothelial cell migration, proliferation, and inflammation, which leads to activation of several signaling cascades, including the calcineurin-nuclear factor of activated T cells (NFAT) pathway. NFAT is not only important for immune responses but also for cardiovascular development and the pathogenesis of Down syndrome. By using Down syndrome model mice and clinical patient samples, we showed recently that the VEGF-calcineurin-NFAT signaling axis regulates tumor angiogenesis and tumor metastasis. However, the connection between genome-wide views of NFAT-mediated gene regulation and downstream gene function in the endothelium has not been studied extensively. Here we performed comprehensive mapping of genome-wide NFATc1 binding in VEGF-stimulated primary cultured endothelial cells and elucidated the functional consequences of VEGF-NFATc1-mediated phenotypic changes. A comparison of the NFATc1 ChIP sequence profile and epigenetic histone marks revealed that predominant NFATc1-occupied peaks overlapped with promoter-associated histone marks. Moreover, we identified two novel NFATc1 regulated genes, CXCR7 and RND1. CXCR7 knockdown abrogated SDF-1- and VEGF-mediated cell migration and tube formation. siRNA treatment of RND1 impaired vascular barrier function, caused RhoA hyperactivation, and further stimulated VEGF-mediated vascular outgrowth from aortic rings. Taken together, these findings suggest that dynamic NFATc1 binding to target genes is critical for VEGF-mediated endothelial cell activation. CXCR7 and RND1 are NFATc1 target genes with multiple functions, including regulation of cell migration, tube formation, and barrier formation in endothelial cells. 相似文献
14.
Kevin Wilhelmsen Samira Khakpour Alphonso Tran Kayla Sheehan Mark Schumacher Fengyun Xu Judith Hellman 《The Journal of biological chemistry》2014,289(19):13079-13100
Although cannabinoids, such as Δ9-tetrahydrocannabinol, have been studied extensively for their psychoactive effects, it has become apparent that certain cannabinoids possess immunomodulatory activity. Endothelial cells (ECs) are centrally involved in the pathogenesis of organ injury in acute inflammatory disorders, such as sepsis, because they express cytokines and chemokines, which facilitate the trafficking of leukocytes to organs, and they modulate vascular barrier function. In this study, we find that primary human ECs from multiple organs express the cannabinoid receptors CB1R, GPR18, and GPR55, as well as the ion channel transient receptor potential cation channel vanilloid type 1. In contrast to leukocytes, CB2R is only minimally expressed in some EC populations. Furthermore, we show that ECs express all of the known endocannabinoid (eCB) metabolic enzymes. Examining a panel of cannabinoids, we demonstrate that the synthetic cannabinoid WIN55,212-2 and the eCB N-arachidonoyl dopamine (NADA), but neither anandamide nor 2-arachidonoylglycerol, reduce EC inflammatory responses induced by bacterial lipopeptide, LPS, and TNFα. We find that endothelial CB1R/CB2R are necessary for the effects of NADA, but not those of WIN55,212-2. Furthermore, transient receptor potential cation channel vanilloid type 1 appears to counter the anti-inflammatory properties of WIN55,212-2 and NADA, but conversely, in the absence of these cannabinoids, its inhibition exacerbates the inflammatory response in ECs activated with LPS. These data indicate that the eCB system can modulate inflammatory activation of the endothelium and may have important implications for a variety of acute inflammatory disorders that are characterized by EC activation. 相似文献
15.
Alice Y. Pollitt Natalie S. Poulter Eelo Gitz Leyre Navarro-Nu?ez Ying-Jie Wang Craig E. Hughes Steven G. Thomas Bernhard Nieswandt Michael R. Douglas Dylan M. Owen David G. Jackson Michael L. Dustin Steve P. Watson 《The Journal of biological chemistry》2014,289(52):35695-35710
The interaction of C-type lectin receptor 2 (CLEC-2) on platelets with Podoplanin on lymphatic endothelial cells initiates platelet signaling events that are necessary for prevention of blood-lymph mixing during development. In the present study, we show that CLEC-2 signaling via Src family and Syk tyrosine kinases promotes platelet adhesion to primary mouse lymphatic endothelial cells at low shear. Using supported lipid bilayers containing mobile Podoplanin, we further show that activation of Src and Syk in platelets promotes clustering of CLEC-2 and Podoplanin. Clusters of CLEC-2-bound Podoplanin migrate rapidly to the center of the platelet to form a single structure. Fluorescence lifetime imaging demonstrates that molecules within these clusters are within 10 nm of one another and that the clusters are disrupted by inhibition of Src and Syk family kinases. CLEC-2 clusters are also seen in platelets adhered to immobilized Podoplanin using direct stochastic optical reconstruction microscopy. These findings provide mechanistic insight by which CLEC-2 signaling promotes adhesion to Podoplanin and regulation of Podoplanin signaling, thereby contributing to lymphatic vasculature development. 相似文献
16.
17.
Jiechuang Su Yongchuan Gu Frederik B. Pruijn Jeff B. Smaill Adam V. Patterson Christopher P. Guise William R. Wilson 《The Journal of biological chemistry》2013,288(52):37138-37153
Hypoxia, a ubiquitous feature of tumors, can be exploited by hypoxia-activated prodrugs (HAP) that are substrates for one-electron reduction in the absence of oxygen. NADPH:cytochrome P450 oxidoreductase (POR) is considered one of the major enzymes responsible, based on studies using purified enzyme or forced overexpression in cell lines. To examine the role of POR in HAP activation at endogenous levels of expression, POR knock-outs were generated in HCT116 and SiHa cells by targeted mutation of exon 8 using zinc finger nucleases. Absolute quantitation by proteotypic peptide mass spectrometry of DNA sequence-confirmed multiallelic mutants demonstrated expression of proteins with residual one-electron reductase activity in some clones and identified two (Hko2 from HCT116 and S2ko1 from SiHa) that were functionally null by multiple criteria. Sensitivities of the clones to 11 HAP (six nitroaromatics, three benzotriazine N-oxides, and two quinones) were compared with wild-type and POR-overexpressing cells. All except the quinones were potentiated by POR overexpression. Knocking out POR had a marked effect on antiproliferative activity of the 5-nitroquinoline SN24349 in both genetic backgrounds after anoxic exposure but little or no effect on activity of most other HAP, including the clinical stage 2-nitroimidazole mustard TH-302, dinitrobenzamide mustard PR-104A, and benzotriazine N-oxide SN30000. Clonogenic cell killing and reductive metabolism of PR-104A and SN30000 under anoxia also showed little change in the POR knock-outs. Thus, although POR expression is a potential biomarker of sensitivity to some HAP, identification of other one-electron reductases responsible for HAP activation is needed for their rational clinical development. 相似文献