首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Addition of dibutyryl cyclic AMP (dbcAMP), methylisobutylxanthine (MIX), or cytochalasin D to co-cultures of Sertoli cells and testicular peritubular myoid cells blocks a series of morphogenetic changes which otherwise occur during culture. When Sertoli cells are plated directly onto preexisting layers of peritubular cells maintained under basal conditions, structures form which display many of the characteristics of germ cell-depleted seminiferous tubules. The presence of dbcAMP, MIX, or cytochalasin D, added at varying times after plating Sertoli cells, results in the inhibition of each successive stage of in vitro remodeling: the inhibition of migration of Sertoli cells, the inhibition of initial ridge formation, the blockage of subsequent formation of mounds and nodules of compacted Sertoli cell aggregates, the prevention of the formation of basal lamina and associated layers of extracellular matrix between Sertoli cell aggregates and surrounding peritubular cells, and the inhibition of tubule formation. The presence of dbcAMP also inhibits the migration of peritubular cells, contractions by these cells, and compaction of Sertoli cell aggregates. When intimate cell apposition is prevented by plating the two cell types on either side of a membrane filter, the morphogenetic cascade is blocked, and no formation of a germ cell-depleted seminiferous tubule-like structure occurs. Other effects of dbcAMP on cell shape, cell movement, and cell association patterns during co-culture are described. Possible mechanisms by which dbcAMP, MIX, or cytochalasin D blocks restructuring are discussed. Since each elicits perturbations of the cytoskeleton, we offer the interpretation that cytoskeletal changes may be correlated with the prevention of closely apposing cell compact and the inhibition of basement membrane formation. Interactions observed between Sertoli cells and peritubular cells during co-culture are postulated to be analogous to those occurring in other types of mesenchymal cell-epithelial cell interactions during organogenesis and during tubulogenesis in the fetal testis. Speculatively, the blockage by dbcAMP of the morphogenetic cascade in the co-cultured system may be related to the inhibition by dbcAMP of testis cord formation in organ cultures of fetal gonads reported by others.  相似文献   

2.
The potential role of transforming growth factor beta (TGF beta) as a mediator of cell-cell interactions within the seminiferous tubule was investigated through an examination of the local production and action of TGF beta. Sertoli cells and peritubular (myoid) cells were isolated and cultured under serum-free conditions. Secreted proteins from Sertoli cells and peritubular cells were found to contain a component that bound to TGF beta receptors in RRA. Reverse-phase chromatography of Sertoli cell and peritubular cell secreted proteins fractionated a protein with similar biochemical properties as TGF beta 1. This fractionated protein also contained TGF beta bioactivity in its ability to inhibit growth of an epidermal growth factor-dependent cell line. Both peritubular cells and Sertoli cells contained a 2.4 kilobase mRNA species that hybridized in a Northern blot analysis with a TGF beta 1 cDNA probe. TGF beta 1 gene expression was not detected in freshly isolated germ cells. TGF beta 1 alone was not found to influence Sertoli cell nor peritubular cell proliferation with cells isolated from a midpubertal stage of development. The effects of hormones and TGF beta on Sertoli cell differentiation and function were assessed through an examination of transferrin production by Sertoli cells. TGF beta 1 had no effect on transferrin production nor the ability of hormones to influence transferrin production. The presence of peritubular cells in a coculture with Sertoli cells also did not affect the inability of TGF beta 1 to act on Sertoli cells. Although Sertoli cell function did not appear to be influenced by TGF beta 1, peritubular cells responded to TGF beta 1 through an increase in the production of a number of radiolabeled secreted proteins. TGF beta 1 also had relatively rapid effects on peritubular cell migration and the promotion of colony formation in culture. Cocultures of Sertoli cells and peritubular cells responded to TGF beta 1 by the formation of large cell clusters with ball-like structures. Data indicate that TGF beta may have an important role in influencing the differentiation and migration of peritubular cells. Observations demonstrate the local production of TGF beta within the seminiferous tubule by Sertoli cells and peritubular cells and suggest that TGF beta may have a role as a paracrine-autocrine factor involved in the maintenance of testicular function.  相似文献   

3.
Platelet-derived growth factors (PDGFs) are paracrine growth factors mediating epithelial-mesenchymal interactions and exerting multiple biological activities which include cell proliferation, motility, and differentiation. As previously demonstrated, PDGFs act during embryonic development and recently, by culturing male genital ridges, we have demonstrated that PDGF-BB is able to support in vitro testicular cord formation. In the present paper, we report that PDGF-BB is present during embryonic testis development and, in organ culture, induces cord formation although with reduced diameters compared with the cords formed in the genital ridges cultured in the presence of HGF. Moreover we have analyzed the roles exerted by this growth factor during the morphogenesis of the testis. We demonstrate by immunohistochemical experiments that PDGF-BB and its receptors are synthesized by the male UGRs isolated from 11.5 and 13.5 dpc embryos and by Western blot that the factor is secreted in a biologically active form by testicular cells isolated from 13.5 dpc embryos. The biological roles of the factor have also been studied and we demonstrate that PDGF-BB acts as a migratory factor for male mesonephric cells whose migration is a male specific event necessary for a normal testicular morphogenesis. In addition we demonstrate that during testicular development, PDGF-BB induces testicular cell proliferation being in this way responsible for the increase in size of the testis. Finally we demonstrate that PDGF-BB is able to reorganize dissociated testicular cells inducing the formation of large cellular aggregates. However the structures formed in vitro under PDGF-BB stimulation never had a cord-like morphology similar to the cord-like structures formed in the presence of HGF (Ricci et al., 2002, Mech Dev 118:19-28), suggesting that this factor does not act as a morphogenetic factor during testicular development. All together the data presented in this paper demonstrate that PDGF-BB and its receptors (alpha- and beta-subunits) are present during the crucial ages of embryonic mouse testis morphogenesis and indicate the multiple roles exerted by this factor during the development of the male gonad.  相似文献   

4.
We report the immortalization, using the SV40 large T antigen, of all the cell types contributing to a developing seminiferous tubule in the mouse testis. Sixteen peritubular, 22 Leydig, 8 Sertoli, and 1 germ cell line have been established and cultured successfully for 90 generations in a period of 2.5 years. Immortalized peritubular cells were identified by their spindle-like appearance, their high expression of alkaline phosphatase, and their expression of the intermediary filament desmin. They also produce high amounts of collagen. Immortalized Leydig cells are easily identifiable by the accumulation of lipid droplets in their cytoplasm and the production of the enzyme 3-beta-hydroxysteroid dehydrogenase. Some Leydig cell lines also express LH receptors. The immortalized Sertoli cells are able to adopt their typical in vivo columnar appearance when cultured at high density. They exhibit a typical indented nucleus and cytoplasmic phagosomes. Some Sertoli cell lines also express FSH receptors. A germ cell line (GC-1spg) was established that corresponds to a stage between spermatogonia type B and primary spermatocyte, based on its characteristics in phase contrast and electron microscopy. This cell line expresses the testicular cytochrome ct and lactate dehydrogenase-C4 isozyme. These four immortalized cell types, when plated together, are able to reaggregate and form structures resembling two-dimensional spermatogenic tubules in vitro. When only the immortalized somatic cells are cocultured, the peritubular and Sertoli cells form cord-like structures in the presence of Leydig cells. Fresh pachytene spermatocytes cocultured with the immortalized somatic cells integrate within the cords and are able to survive for at least 7 days. The ability to perform coculture experiments with immortalized testicular cell lines represents an important advancement in our ability to study the nature of cell-cell and cell-matrix interactions during spermatogenesis and testis morphogenesis.  相似文献   

5.
Immature rat Sertoli cells aggregate and form tubule-like structures when cultured on a monolayer of peritubular myoid cells. In this study, differential gene expression of monocultures and direct cocultures of peritubular cells and Sertoli cells were examined. One of the cDNA clones isolated showed high homology to calcyclin and a microvascular differentiation gene, CEC5, which was reported to be highly homologous to CASK, a membrane-associated guanylate kinase homolog. Sequencing and mRNA analysis of rat calcyclin demonstrated that the gene was differentially expressed and was found only in peritubular cells and cocultures with increased levels. In contrast, CASK was expressed by Sertoli cells, peritubular cells, and cocultures, whereas CEC5 was never found in the testicular somatic cells. Our findings point to a paracrine regulation of calcyclin expression in testicular peritubular fibroblasts which seems to be related to tubular growth.  相似文献   

6.
Proliferation and cord formation by embryonic Sertoli cells are pivotal events involved in testis morphogenesis. A number of growth factors have been implicated in mediating these events. However, the exact level of involvement and importance of each as yet remains elusive. We have adopted an in vitro approach to assess developing mouse Sertoli cells, whereby they are cultured in the presence or absence of fibroblast growth factor (FGF9) and/or extracellular matrix (ECM) gel, since previous studies have shown that ECM gel aids Sertoli cell differentiation. The present findings corroborate this effect, but in addition demonstrate that in the presence of FGF9 (10 ng/ml), cells undergo greater proliferation than those cultured on gel alone. They also display a differentiated epithelial phenotype, with appositional contact of cell membranes in cord-like aggregations. In addition we have shown that cultured Sertoli cells generally express a smaller truncated, nuclear form of the FGFr3, although in the presence of FGF9 and absence of gel, the larger, cytoplasmic form of the receptor is also expressed. Immunolocalisation of FGFr3 in Sertoli cells of whole testes revealed a temporal expression pattern profile, with high levels being abundant in the embryonic testicular cords and at puberty, but an absence in adult Sertoli cells. Our findings suggest that FGF9 plays an important role in proliferation and organisation of embryonic Sertoli cells during testis morphogenesis.  相似文献   

7.
The first morphological event after initiation of male sex determination is seminiferous cord formation in the embryonic testis. Cord formation requires migration of pre-peritubular myoid cells from the adjacent mesonephros. The embryonic Sertoli cells are the first testicular cells to differentiate and have been shown to express neurotropin-3 (NT3), which can act on high-affinity trkC receptors expressed on migrating mesonephros cells. NT3 expression is elevated in the embryonic testis during the time of seminiferous cord formation. A trkC receptor tyrophostin inhibitor, AG879, was found to inhibit seminiferous cord formation and mesonephros cell migration. Beads containing NT3 were found to directly promote mesonephros cell migration into the gonad. Beads containing other growth factors such as epidermal growth factor (EGF) did not influence cell migration. At male sex determination the SRY gene promotes testis development and the expression of downstream sex differentiation genes such as SOX-9. Inhibition of NT3 actions caused a reduction in the expression of SOX-9. Combined observations suggest that when male sex determination is initiated, the developing Sertoli cells express NT3 as a chemotactic agent for migrating mesonephros cells, which are essential to promote embryonic testis cord formation and influence downstream male sex differentiation.  相似文献   

8.
Testicular development is a complicated process involving differentiation and arrangement of several cell types. To analyze the process of testicular organization we examined the sequence of the appearance of testicular structures induced in fetal ovaries following transplantation. Fetal mouse ovaries on the twelfth day of gestation were transplanted beneath the kidney capsules of adult male mice. They continued to develop morphologically as ovaries until the eleventh day after transplantation, when seminiferous cord formation and testosterone production began in addition to follicle development (ovotestes). Between the eleventh and fourteenth day after transplantation, ovarian grafts frequently contained transitional structures consisting of Sertoli cells, pregranulosa cells, a third type of cells which show intermediate characteristics between Sertoli and pregranulosa cells, and oocytes enclosed by common basal lamina. Leydig cells or peritubular myoid cells were not found in the transitional area, whereas these cells were present around seminiferous cords composed only of Sertoli cells. Oocytes were absent or degenerated in the well-developed seminiferous cords. The present findings suggest that, in ovarian grafts, pregranulosa cells can differentiate into Sertoli cells, which are responsible for the organization of the seminiferous cords, degeneration of oocytes, and differentiation of other testicular somatic cell types.  相似文献   

9.
We report the patterns of migration of Sertoli cells plated on specific substrata, and the influences of testicular peritubular cells on these processes. Data presented indicate that while peritubular cells readily spread when explanted onto Type I collagen, Sertoli cells do not. A delay of 4 to 6 days occurs after Sertoli cells are plated before they begin to migrate randomly to form plaque-like monolayers on Type I collagen. These processes are dependent upon the synthesis and subsequent deposition of laminin and/or Type IV collagen by Sertoli cells, and are independent of fibronectin. A different behavior occurs when reconstituted mixtures of purified Sertoli cells and pertiubular cells are sparsely plated onto Type I collagen. Peritubular cells rapidly spread to form chains of cells between Sertoli cell aggregates. Sertoli cells then migrate on the surfaces of the peritubular cells, culminating in the formation of cable-like structures between aggregates. Evidence is presented that the Sertoli cell migration to form "cables" under these conditions is dependent upon fibronectin synthesized by peritubular cells, and is independent of the presence of laminin or Type IV collagen. We discuss the possible relevance of these data to the role which precursors of peritubular cells may play in determining the behavior of Sertoli cell precursors in vivo during tubulogenesis, or in the remodelling of the seminiferous tubule which occurs during different stages of the cycle of the seminiferous epithelium in spermatogenesis.  相似文献   

10.
Testicular peritubular myoid cells secrete a paracrine factor that is a potent modulator of Sertoli cell functions involved in the maintenance of spermatogenesis. These cells also play an integral role in maintaining the structural integrity of the seminiferous tubule. To better understand this important testicular cell type, studies were initiated to characterize cultured peritubular cells using biochemical and histochemical techniques. The electrophoretic pattern of radiolabeled secreted proteins was similar for primary and subcultured peritubular cells and was unique from that of Sertoli cells. Morphologic differences between Sertoli cells and peritubular cells were noted and extended with histochemical staining techniques. Desmin cytoskeletal filaments were demonstrated immunocytochemically in peritubular cells, both in culture and in tissue sections, but were not detected in Sertoli cells. Desmin is proposed to be a marker for peritubular cell differentiation as well as a marker for peritubular cell contamination in Sertoli cell cultures. Peritubular cells and Sertoli cells were also stained histochemically for the presence of alkaline phosphatase. Staining for the alkaline phosphatase enzyme was associated with peritubular cells but not with Sertoli cells. Alkaline phosphatase is therefore an additional histochemical marker for peritubular cells. Biochemical characterization of peritubular cells relied on cell-specific enzymatic activities. Creatine phosphokinase activity, a marker for contractile cells, was found to be associated with peritubular cells, while negligible activity was associated with Sertoli cells. Alkaline phosphatase activity assayed spectrophotometrically was found to be a useful biochemical marker for peritubular cell function and was utilized to determine the responsiveness of primary and subcultured cells to regulatory agents. Testosterone stimulated alkaline phosphatase activity associated with primary cultures of peritubular cells, thus supporting the observation that peritubular cells provide a site of androgen action in the testis. Retinol increased alkaline phosphatase activity in subcultured peritubular cells. Alkaline phosphatase activity increased in response to dibutyryl cyclic adenosine monophosphate (AMP) in both primary and subcultured peritubular cell cultures. Observations indicate that the ability of androgens and retinoids to regulate testicular function may be mediated, in part, through their effects on peritubular cells. This provides additional support for the proposal that the mesenchymal-epithelial cell interactions between peritubular cells and Sertoli cells are important for the maintenance and control of testicular function. Results imply that the endocrine regulation of tissue function may be mediated in part through alterations in mesenchymal-epithelial cell interactions.  相似文献   

11.
Regenerative medical treatment with embryonic stem cells (an ES cell) is a goal for organ transplantation. Structures that are tubular in nature (i.e. blood capillaries) were induced from early embryonic stem (EES) cells in vitro using embryotrophic factor (ETFs). In addition, cardiac muscle cells could be identified as well. However, differentiation of EES cells into a complete cardiovascular system was difficult because 3 germ layer primordial organs are directed embryologically in various ways and it is not possible to guide only cardiovascular organs. Thus, we introduced ETFs after the formation of an embryoid body and were successful in cloning cell clusters that beat, thus deriving only cardiovascular organs. The application of this to the treatment of various cardiovascular diseases is promising.  相似文献   

12.
Observations summarized in this article demonstrate an essential role of laminin during the restructuring processes that occur during coculture of Sertoli cells with testicular peritubular cells. The data presented indicate that laminin becomes detectable on the free surfaces of Sertoli cells only after reaggregation of Sertoli cells begins, coincident with the initiation of repolarization at a specific stage of the morphogenetic cascade. We infer that laminin deposited at this time serves as a cohesion molecule that permits peritubular cells to come into close contact with Sertoli cells and subsequently to spread along the free surfaces of Sertoli cells. These conclusions and inferences are based on the following experiments. Cycloheximide-treated peritubular cells in culture in MEM containing cycloheximide readily attach to laminin-coated polystyrene surfaces. By contrast, added peritubular cells do not attach onto monolayers of Sertoli cells in monoculture or onto Sertoli cells plated on top of peritubular cells and maintained in coculture for periods of up to 48 h in cocultures maintained for 6 days, however, labeled peritbular cells readily adhere to the free surfaces of reaggregated Sertoli cells. Laminin, but not fibronectin, appears on the free surfaces of the reaggregated Sertoli cells atthis time, coinciding with the period of initial mound formation. The addition of antilaminin IgG, but not antifibronectin IgG, blocks the attachment of cycloheximide-treated peritubular cells to laminin-coated plates and also blocks the subsequent migration of peritubular cells required to form a monolayer. Similarly, anti-laminin IgG inhibits the attachment and spreading of labeled peritubular cells seeded on the free surfaces of reaggregated Sertoli cells in mounds generated during the morphogenetic cascade. We interpret the combined data to indicate that the appearance of laminin on the free surfaces of Sertoli cells is required to permit peritubular cells to adhere and subsequently to migrate on Sertoli cell surfaces, resulting in the formation of a tubule-like structure. © 1994 Wiley-Liss, Inc.  相似文献   

13.

Background  

Female reproductive potential, or the ability to propagate life, is limited in mammals with the majority of oocytes lost before birth. In mice, surviving perinatal oocytes are enclosed in ovarian follicles for subsequent oocyte development and function in the adult. Before birth, fetal germ cells of both sexes develop in clusters, or germline cysts, in the undifferentiated gonad. Upon sex determination of the fetal gonad, germ cell cysts become organized into testicular or ovarian cord-like structures and begin to interact with gonadal somatic cells. Although germline cysts and testicular cords are required for spermatogenesis, the role of cyst and ovarian cord formation in mammalian oocyte development and female fertility has not been determined.  相似文献   

14.
Testicular organogenesis in vitro requires an environment allowing a reassembly of testicular cell types. Previous in vitro studies using male murine germ cells cultured in a defined three-dimensional environment demonstrated tubulogenesis and differentiation into spermatozoa. Combining scaffolds as artificial culture substrates with testicular cell culture, we analysed the colonization of collagen sponges by rat testicular cells focusing on cell survival and reassembly of tubule-like-structures in vitro. Isolated testicular cells obtained from juvenile Sprague Dawley and eGFP transgenic rats were cultured on collagen sponges (DMEM high glucose + Glutamax, 35 °C, 5% CO2 with or without gonadotropins). Live cell imaging revealed the colonization of cells across the entire scaffold for up to 35 days. After two days, histology showed cell clusters attached to the collagen fibres and displaying signs of tubulogenesis. Clusters consisted mainly of Sertoli and peritubular cells which surrounded some undifferentiated spermatogonia. Flow cytometry confirmed lack of differentiation as no haploid cells were detected. Leydig cell activity was detected by a rise of testosterone after gonadotropin stimulation. Our approach provides a novel method which is in particular suitable to follow the somatic testicular cells in vitro an issue of growing importance for the analysis of germ line independent failure of spermatogenesis.  相似文献   

15.
While the molecular cues initiating testis determination have been identified in mammals, the cellular interactions involved in generating a functional testis with cord and interstitial compartments remain poorly understood. Previous studies have shown that testis cord formation relies on cell migration from the adjacent mesonephros, and have implicated immigrant peritubular myoid cells in this process. Here, we used recombinant organ culture experiments to show that immigrant cells are endothelial, not peritubular myoid or other interstitial cells. Inhibition of endothelial cell migration and vascular organisation using a blocking antibody to VE-cadherin, also disrupted the development of testis cords. Our data reveal that migration of endothelial cells is required for testis cord formation, consistent with increasing evidence of a broader role for endothelial cells in establishing tissue architecture during organogenesis.  相似文献   

16.
OBJECTIVE: To evaluate the value of percentage cell counts and cell indices in testicular fine needle aspiration cytology (FNAC) in male infertility and their correlation with histologic categories as seen in open testicular biopsies. STUDY DESIGN: Differential cell counts were performed, and cell indices, including spermatic index, Sertoli cell index and sperm-Sertoli cell index, were calculated in testicular fine needle aspiration (FNA) smears in 30 azoospermic males whose open testicular biopsies were classified as normal spermatogenesis in 10 cases, maturation arrest in 5, hypospermatogenesis in 6, Sertoli cell only syndrome in 5 and tubular/peritubular sclerosis in 4. RESULTS: In normal spermatogenesis, FNA smears showed up to 40% Sertoli cells, and spermatozoa were the predominant spermatogenetic cell type. There was a progressive increase in Sertoli cell percentage and Sertoli cell index and reduction in spermatozon percentage, spermatic index and sperm-Sertoli cell index with increasing severity of reduction in spermatogenesis in different histologic categories. The differences between mean counts and indices in normal spermatogenesis and other histologic categories were statistically significant (P < .01). CONCLUSION: The percent cell counts and cell indices in testicular FNAC correlate with histologic categories and are useful in evaluating male infertility.  相似文献   

17.
An approach combining two-dimensional gel electrophoresis and autoradiography was used to correlate patterns of secretory proteins in cultures of Sertoli and peritubular cells with those observed in the incubation medium from segments of seminiferous tubules. Sertoli cells in culture and in seminiferous tubules secreted three proteins designated S70 (Mr 72,000-70,000), S45 (Mr 45,000), and S35 (Mr 35,000). Cultured Sertoli and peritubular cells and incubated seminiferous tubules secreted two proteins designated SP1 (Mr 42,000) and SP2 (Mr 50,000). SP1 and S45 have similar Mr but differ from each other in isoelectric point (pI). Cultured peritubular cells secreted a protein designated P40 (Mr 40,000) that was also seen in intact seminiferous tubules but not in seminiferous tubules lacking the peritubular cell wall. However, a large number of high-Mr proteins were observed only in the medium of cultured peritubular cells but not in the incubation medium of intact seminiferous tubules. Culture conditions influence the morphology and patterns of protein secretion of cultured peritubular cells. Peritubular cells that display a flat-stellate shape transition when placed in culture medium free of serum (with or without hormones and growth factors), accumulate various proteins in the medium that are less apparent when these cells are maintained in medium supplemented with serum. Two secretory proteins stimulated by follicle-stimulating hormone (FSH) (designated SCm1 and SCm2) previously found in the medium of cultured Sertoli cells, were also observed in the incubation medium of seminiferous tubular segments stimulated by FSH. Results of this study show that, although cultured Sertoli and peritubular cells synthesize and secrete proteins also observed in segments of incubated seminiferous tubules anther group of proteins lacks seminiferous tubular correlates. Our observations should facilitate efforts to achieve a differentiated functional state of Sertoli and peritubular cells in culture as well as to select secretory proteins for assessing their possible biological role in testicular function.  相似文献   

18.
Involvement of actin filaments in mouse fetal testicular differentiation was examined in vivo and in vitro. During testicular cord formation in vivo, actin filaments accumulated in the basal cytoplasm of Sertoli cells. Addition of cytochalasin D (CD) to organ cultures of undifferentiated gonadal primordia significantly inhibited testicular cord formation. In brief, treatment with 25 ng/ml CD induced the formation of slender testicular cords, and treatment with 50 ng/ml largely inhibited cord formation in the explants. However, development and growth of the testicular parenchyma and Leydig cell differentiation occurred in the presence of CD. By electron microscopic and immunohistochemical examinations, it became clear that CD also affected formation of the basal lamina and accumulation of vimentin filaments in Sertoli cells. On the other hand, treatment with colcemid at 12.5 or 15 ng/ml prevented growth of the testicular parenchyma and development of interstitial regions. Interestingly, testicular cords formed under this condition. These results indicate that the basal actin filaments of Sertoli cells may play an important role in testicular cord formation, especially Sertoli cell polarization. Cell mitosis and/or microtubules, on the other hand, may not be directly involved in this process.  相似文献   

19.
We examined the synthesis and deposition of extracellular matrix (ECM) components in cultures of Sertoli cells and testicular peritubular cells maintained alone or in contact with each other. Levels of soluble ECM components produced by populations of isolated Sertoli cells and testicular peritubular cells were determined quantitatively by competitive enzyme-linked immunoabsorbent assays, using antibodies shown to react specifically with Type I collagen, Type IV collagen, laminin, or fibronectin. Peritubular cells in monoculture released into the medium fibronectin (432 to 560 ng/microgram cell DNA per 48 h), Type I collagen (223 to 276 ng/microgram cell DNA per 48 h), and Type IV collagen (350 to 436 ng/microgram cell DNA per 48 h) during the initial six days of culture in serum-free medium. In contrast, Sertoli cells in monoculture released into the medium Type IV collagen (322 to 419 ng/microgram cell DNA per 48 h) but did not form detectable amounts of Type I collagen or fibronectin during the initial six days of culture. Neither cell type produced detectable quantities of soluble laminin. Immunocytochemical localization investigations demonstrated that peritubular cells in monoculture were positive for fibronectin, Type I collagen, and Type IV collagen but negative for laminin. In all monocultures most of the ECM components were intracellular, with scant deposition as extracellular fibrils. Sertoli cells were positive immunocytochemically for Type IV collagen and laminin but negative for fibronectin and Type I collagen. Co-cultures of peritubular cells and Sertoli cells resulted in interactions that quantitatively altered levels of soluble ECM components present in the medium. This was correlated with an increased deposition of ECM components in extracellular fibrils. The data correlated with an increased deposition of ECM components in extracellular fibrils. The data presented here we interpret to indicate that the two cell types in co-culture act cooperatively in the formation and deposition of ECM components. Results are discussed with respect to the nature of interactions between mesenchymal peritubular cell precursors and adjacent epithelial Sertoli cell precursors in the formation of the basal lamina of the seminiferous tubule.  相似文献   

20.
The process of seminiferous cord formation is the first morphological event that differentiates a testis from an ovary and indicates male sex determination. Cord formation occurs by embryonic Day 14 (Day 0 = plug date; E14) in the rat. A series of experiments were conducted to determine if neurotropins and their receptors are important for the process of rat embryonic cord formation. The expression of low affinity neurotropin receptor (p75/LNGFR) was determined by immunohistochemistry on sections of both testis and ovary from E13 through birth (Day 0, P0) with an antibody to p75/LNGFR. The staining for p75/LNGFR was present in the mesonephros of E13 gonads and in a sex-specific manner appeared around developing cords at E14 in the embryonic testis. At birth, staining for p75/LNGFR was localized to a single layer of cells (i.e., peritubular cells) that surrounded the seminiferous cords. The genes for both neurotropin 3 (NT3) and for corresponding high affinity neurotropin trkC receptor were found to be expressed in the E14 rat testis, as well as other neurotropins and receptors. Immunocytochemical analysis of E14 rat testis demonstrated that NT3 was localized to the Sertoli cells and trkC was present in individual cells of the interstitium at E16 and in selected preperitubular cells at E18. Previously, the peritubular cells adjacent to the cords were demonstrated to be derived from migrating mesonephros cells around the time of cord formation. To determine if neurotropins were involved in cord formation, the actions of neurotropins were inhibited. A high affinity neurotropin receptor (trk)-specific kinase inhibitor, K252a, was used to treat organ cultures of testes from E13 rats prior to cord formation. Treatment of E13 testis organ cultures with K252a completely inhibited cord formation. K252a-treated organ cultures of E14 testis that contained cords did not alter cord morphology. A second experiment to inhibit neurotropin actions utilized a specific antagonist trk-IgG chimeric fusion protein and E13 testis organ cultures. The trk-IgG molecules dimerize with endogenous trk receptors and inhibit receptor signaling and activation of ligand function. Forty percent of E13 testis organ cultures treated with trkC-IgG had significantly reduced cord formation. TrkA-IgG had no effect on initiation of cords; however, in fifty percent of the treated organs, a "swollen" appearance of the cord structures was observed. Experiments using trkB-IgG chimeric protein on E13 organ cultures had no effect on cord formation or cord morphology. The testes from trkC and NT3 knockout mice were examined to determine if there were any morphological differences in the testis. NT3 knockouts appeared to have normal cord morphology in E15 and E17 testis. TrkC knockout mice also had normal cord morphology in E14 and P0 testis. Both NT3 and trkC knockout-mice testis had less interstitial area than wild-type controls. In addition, the trkC knockout mice have an increased number of cells expressing p75LNGFR within the cords when compared to controls or NT3 knockout mice. Combined observations suggest compensation between the different neurotropin ligands, receptors, and/or possibly different growth factors for this critical biological process. In summary, results suggest a novel nonneuronal role for neurotropins in the process of cord formation during embryonic rat testis development. The hypothesis developed is that neurotropins are involved in the progression of male sex differentiation and are critical for the induction of embryonic testis cord formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号