首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Truong NV  Liew EC  Burgess LW 《Fungal biology》2010,114(2-3):160-170
Phytophthora foot rot of black pepper caused by Phytophthora capsici is a major disease of black pepper (Piper nigrum) throughout Vietnam. To understand the population structure of P. capsici, a large collection of P. capsici isolates from black pepper was studied on the basis of mating type, random amplified microsatellites (RAMS) and repetitive extragenic palindromic (REP) fingerprinting. Two mating types A1 and A2 were detected in four provinces in two climatic regions, with A1:A2 ratios ranging from 1:3 to 1:5. In several instances A1 and A2 mating types were found to co-exist in the same farm or black pepper pole, suggesting the potential for sexual reproduction of P. capsici in the field in Vietnam although its contribution to disease epidemics is uncertain. RAMS and REP DNA fingerprinting analysis of 118 isolates of P. capsici from black pepper showed that the population was genetically more diverse where two mating types were found, although the overall genetic diversity was low with most of the isolates belonging to one clonal group. The implication of these findings is discussed. The low diversity among isolates suggests that the P. capsici population may have originated from a single source. There was no genetic differentiation of isolates from different climatic regions. In addition to the large clonal group, several isolates with unique RAMS/REP phenotypes were also detected. Most of these unique phenotypes belonged to the minority A1 mating type. This may have significant implications for a gradual increase in overall genetic diversity.  相似文献   

2.
3.
Phytophthora capsici causes significant loss to pepper (Capsicum annum) in China and our goal was to develop single nucleotide polymorphism (SNP) markers for P. capsici and characterize genetic diversity nationwide. Eighteen isolates of P. capsici from locations worldwide were re-sequenced and candidate nuclear and mitochondrial SNPs identified. From 2006 to 2012, 276 isolates of P. capsici were recovered from 136 locations in 27 provinces and genotyped using 45 nuclear and 2 mitochondrial SNPs. There were two main mitochondrial haplotypes and 95 multi-locus genotypes (MLGs) identified. Genetic diversity was geographically structured with a high level of genotypic diversity in the north and on Hainan Island in the south, suggesting outcrossing contributes to diversity in these areas. The remaining areas of China are dominated by four clonal lineages that share mitochondrial haplotypes, are almost exclusively the A1 or A2 mating type and appear to exhibit extensive diversity based on loss of heterozygosity (LOH). Analysis of SNPs directly from infected peppers confirmed LOH in field populations. One clonal lineage is dominant throughout much of the country. The overall implications for long-lived genetically diverse clonal lineages amidst a widely dispersed sexual population are discussed.  相似文献   

4.
《菌物学报》2017,(9):1233-1242
辣椒疫霉菌Phytophthora capsici引起的辣椒疫病是世界性蔬菜病害,该病害严重发生常给辣椒生产造成严重损失。植物病原卵菌侵染寄主植物过程中常分泌大量的效应分子来促进自身的侵染与定殖,其中Rx LR效应分子在病原卵菌侵染寄主及与寄主植物互作过程发挥着重要的作用。辣椒疫霉菌是一种重要的植物病原卵菌,本研究以辣椒疫霉菌标准菌株LT1534为材料,克隆鉴定了辣椒疫霉的一个效应分子,编号为Rx LR121504,然后将其构建至PBIN‐GFP2植物表达载体,利用农杆菌介导的瞬时表达技术、Western blot和亚细胞定位观察技术,较深入地开展了Rx LR121504功能特性的研究。结果表明,Rx LR121504能有效引起本氏烟寄主的过敏性坏死反应(HR),并对激发子INF1诱导的细胞坏死反应具明显的抑制效果,因此Rx LR121504可能参与了辣椒疫霉菌抑制寄主的免疫抗菌过程。但Rx LR121504对寄主植物的分子靶标尚未鉴定明确,该效应分子对寄主植物的分子机制有待进一步深入的研究。  相似文献   

5.
Phytophthora capsici causes serious diseases in numerous crop plants. Polygalacturonases (PGs) are cell wall‐degrading enzymes that play an important role in pathogenesis in straminopilous pathogens. To understand PGs as they relate to the virulence of P. capsici, Pcipg2 was identified from a genomic library of a highly virulent P. capsici strain. Pcipg2 was strongly expressed during symptom development after the inoculation of pepper leaves with P. capsici. The wild protein (PCIPGII) was obtained from the expression of pcipg2 and found that increasing activity of PGs in PCIPGII‐treated pepper leaves was consistent with increasing symptom development. Asp residues in active sites within pcipg2 affected PCIPGII activity or its virulence on pepper leaves. Results show that pcipg2 is an important gene among pcipg genes, and illustrate the benefit of analyzing mechanisms of pathogenicity during the period of host/parasite interaction. genesis 47:535–544, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Coronin 1C (synonyms: coronin-3, CRN2), a WD40 repeat-containing protein involved in cellular actin dynamics, is ubiquitously expressed in human tissues. Here, we report on the identification and functional characterization of two novel coronin 1C isoforms, referred to as CRN2i2 and CRN2i3, which also associate with F-actin. Analyses of the coronin 1C gene disclosed a single promoter containing binding sites for myogenic regulatory factors and an alternative first exon 1b present in intron 1, which give rise to the novel isoforms. Chromatin immunoprecipitation studies demonstrate MyoD binding to a region of the CRN2 gene, which contains a highly conserved E-box element in exon 1a. Gel-filtration assays suggest that the largest isoform 3 exists as a monomer, in contrast to isoform 1 and isoform 2 appearing as trimers. CRN2i3, which can be induced by MyoD, is exclusively expressed in well-differentiated myoblasts as well as in mature skeletal muscle tissue. In human skeletal muscle, CRN2i3 is a novel component of postsynaptic neuromuscular junctions and thin filaments of myofibrils. Together, our findings postulate a role for CRN2 isoforms in the structural and functional organization of F-actin in highly ordered protein complexes.  相似文献   

7.
土壤中辣椒疫霉分离方法的研究与量化测定   总被引:1,自引:0,他引:1  
从杭州、西安、广州及武汉等辣椒病田分别采集土样 ,室内晾干研碎后 ,用选择性培养基 ,采用土壤稀释平板法和组织诱饵法分离辣椒疫霉 (PhytophthoracapsiciLeonian) ,并对土壤中辣椒疫霉的密度进行量化处理。结果表明 ,利用选择性燕麦培养基 ,采用土壤稀释平板法可分离获得大量的辣椒疫霉菌株 ,而且辣椒连作田的辣椒疫霉菌密度高于轮作田。组织诱饵法试验结果表明 ,辣椒叶片诱集效果最好 ,其次是辣椒果实。  相似文献   

8.
拮抗辣椒疫病菌的红树内生细菌筛选及RS261菌株鉴定   总被引:10,自引:0,他引:10  
红树内生细菌分离及拮抗辣椒疫霉(Phytophthora capsici)筛选结果表明:各红树体内均有大量的内生细菌, 不同红树种类及部位内生细菌的数量均不同, 被测定的红树内生细菌中约有27.97%的可培养菌株对辣椒疫霉具有拮抗作用; 其中18株拮抗作用较强的细菌在辣椒果上对辣椒疫病菌均有一定的抑制效果, 以来自红海榄叶片内的RS261菌株效果最好; 经形态、生理生化特征和分子生物学等测定分析, 将RS261菌株初步鉴定为解淀粉芽孢杆菌(Bacillus amyloliquefaciens)。  相似文献   

9.
Phytophthora capsici and P.parasitica were transformed to hygromycin B resistance using plasmids pCM54 and pHL1, which contain the bacterial hygromycin B phosphotransferase gene (hph) fused to promoter elements of the Ustilago maydis heat shock hsp70 gene. Enzymes Driselase and Novozyme 234 were used to generate protoplasts which were then transformed following exposure to plasmid DNA and polyethylene glycol 6000. Transformation frequencies of over 500 transformants per micrograms of DNA per 1 x 10(6) protoplasts were obtained. Plasmid pCM54 appears to be transmitted in Phytophthora spp. as an extra-chromosomal element through replication, as shown by Southern blot hybridization and by the loss of plasmid methylation. In addition, transformed strains retained their capacity of infecting Serrano pepper seedlings and Mc. Intosh apple fruits, the host plants for P.capsici and P.parasitica, respectively.  相似文献   

10.
为科学评价中国灌木辣椒种质,选取有代表性的8份辣椒材料,开展了中国灌木辣椒农艺性状鉴定和疫病抗性分析。结果表明:中国灌木辣椒长势强,株高均在1.0 m以上,叶片阔大,花瓣白绿色;果实直立向上,单果质量在0.51~2.04 g之间,平均为1.26 g;果实辣椒素与二氢辣椒素含量之和在565.00~1821.00 mg/kg,平均为1328.33mg/kg,是一年生辣椒B9431的407倍;对疫霉菌抗性水平表现为中抗至高抗,其中,海南野生灌木辣椒H108表现高抗。基于表型数据的主成分分析将中国灌木辣椒与一年生辣椒及美洲灌木辣椒有效区分开来。本研究结果为中国灌木辣椒优异基因的发掘和有效利用提供了理论参考。  相似文献   

11.
Eggplant (Solanum melongena L.) is an important solanaceous crop with high phenotypic diversity and moderate genotypic diversity. Ninety-nine genotypes of eggplant germplasm (species (S. melongena, S. incanum, S. linnaeanum and S. gilo), landraces and heirloom cultivars) from 32 countries and five continents were evaluated for genetic diversity, population structure, fruit shape, and disease resistance to Phytophthora fruit rot. Fruits from each line were measured for fruit shape and evaluated for resistance to two Phytophthora capsici isolates seven days post inoculation. Only one accession (PI 413784) was completely resistant to both isolates evaluated. Partial resistance to Phytophthora fruit rot was found in accessions from all four eggplant species evaluated in this study. Genetic diversity and population structure were assessed using 22 polymorphic simple sequence repeats (SSRs). The polymorphism information content (PIC) for the population was moderate (0.49) in the population. Genetic analyses using the program STRUCTURE indicated the existence of four genetic clusters within the eggplant collection. Population structure was detected when eggplant lines were grouped by species, continent of origin, country of origin, fruit shape and disease resistance.  相似文献   

12.
Phytophthora and other oomycetes secrete a large number of putative host cytoplasmic effectors with conserved FLAK motifs following signal peptides, termed crinkling and necrosis inducing proteins (CRN), or Crinkler. Here, we first investigated the evolutionary patterns and mechanisms of CRN effectors in Phytophthora sojae and compared them to two other Phytophthora species. The genes encoding CRN effectors could be divided into 45 orthologous gene groups (OGG), and most OGGs unequally distributed in the three species, in which each underwent large number of gene gains or losses, indicating that the CRN genes expanded after species evolution in Phytophthora and evolved through pathoadaptation. The 134 expanded genes in P. sojae encoded family proteins including 82 functional genes and expressed at higher levels while the other 68 genes encoding orphan proteins were less expressed and contained 50 pseudogenes. Furthermore, we demonstrated that most expanded genes underwent gene duplication or/and fragment recombination. Three different mechanisms that drove gene duplication or recombination were identified. Finally, the expanded CRN effectors exhibited varying pathogenic functions, including induction of programmed cell death (PCD) and suppression of PCD through PAMP-triggered immunity or/and effector-triggered immunity. Overall, these results suggest that gene duplication and fragment recombination may be two mechanisms that drive the expansion and neofunctionalization of the CRN family in P. sojae, which aids in understanding the roles of CRN effectors within each oomycete pathogen.  相似文献   

13.
Gametangial development and oospore formation were studied, with emphasis on cell wall morphogenesis, on mated cultures (A1xA2) of Phytophthora capsici. In this species, the oogonial and antheridial hyphae interact to produce a typical amphigynous antheridium. The following developmental steps were recognized: 1) contact between oogonial and antheridial initials; 2) penetration of the antheridial initial by the oogonial initial; 3) reemergence of the oogonial initial; 4) oogonial expansion; 5) gametangial delimitation and oogonial wall thickening; 6) penetration of the oogonium by the antheridial fertilization tube; 7) oosphere formation; 8) periplasm degeneration and outer oospore wall formation; and 9) inner oospore wall formation. Electron micrographs were obtained of steps 3–9. Steps 1 and 2 were reconstructed from subsequent events. Steps 3–6 are stages of active wall formation with clear indication of intensive dictyosome activity leading to the formation of numerous wall-destined vesicles of two different sizes and electron densities. No vesicles were seen associated with the development of the inner oospore wall; however, by this stage of development the oosphere cytoplasm exhibited an overall intense electron density that obscured fine detail. Cytoplasmic appearance changed enormously during differentiation, from a developing oogonium rich in mitochondria, ribosomes, rough endoplasmic reticulum, dictyosomes and their vesicles, through an oosphere filled with large finger-print vacuoles and lipid-like bodies, to a mature oospore with a large central vacuole (ooplast) surrounded by a cortex of numerous lipid-like bodies; other organelles are confined to the interstitial space between these storage bodies.  相似文献   

14.
Plants protect themselves against a variety of invading pathogenic organisms via sophisticated defence mechanisms. These responses include deployment of specialized antimicrobial compounds, such as phytoalexins, that rapidly accumulate at pathogen infection sites. However, the extent to which these compounds contribute to species-level resistance and their spectrum of action remain poorly understood. Capsidiol, a defense related phytoalexin, is produced by several solanaceous plants including pepper and tobacco during microbial attack. Interestingly, capsidiol differentially affects growth and germination of the oomycete pathogens Phytophthora infestans and Phytophthora capsici, although the underlying molecular mechanisms remain unknown. In this study we revisited the differential effect of capsidiol on P. infestans and P. capsici, using highly pure capsidiol preparations obtained from yeast engineered to express the capsidiol biosynthetic pathway. Taking advantage of transgenic Phytophthora strains expressing fluorescent markers, we developed a fluorescence-based method to determine the differential effect of capsidiol on Phytophtora growth. Using these assays, we confirm major differences in capsidiol sensitivity between P. infestans and P. capsici and demonstrate that capsidiol alters the growth behaviour of both Phytophthora species. Finally, we report intraspecific variation within P. infestans isolates towards capsidiol tolerance pointing to an arms race between the plant and the pathogens in deployment of defence related phytoalexins.  相似文献   

15.
Induced resistance in plants is a systemic response to certain microorganisms or chemicals that enhances basal defense responses during subsequent plant infection by pathogens. Inoculation of chile pepper with zoospores of non-host Phytophthora nicotianae or the chemical elicitor beta-aminobutyric acid (BABA) significantly inhibited foliar blight caused by Phytophthora capsici. Tissue extract analyses by GC/MS identified conserved change in certain metabolite concentrations following P. nicotianae or BABA treatment. Induced chile pepper plants had reduced concentrations of sucrose and TCA cycle intermediates and increased concentrations of specific hexose-phosphates, hexose-disaccharides and amino acids. Galactose, which increased significantly in induced chile pepper plants, was shown to inhibit growth of P. capsici in a plate assay.  相似文献   

16.
Oomycete pathogens that belong to the genus Phytophthora cause devastating diseases in solanaceous crops such as pepper, potato, and tobacco, resulting in crop production losses worldwide. Although the application of fungicides efficiently controls these diseases, it has been shown to trigger negative side effects such as environmental pollution, phytotoxicity, and fungicide resistance in plant pathogens. Therefore, biological control of Phytophthora-induced diseases was proposed as an environmentally sound alternative to conventional chemical control. In this review, progress on biological control of the soilborne oomycete plant pathogens, Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae, infecting pepper, potato, and tobacco is described. Bacterial (e.g., Acinetobacter, Bacillus, Chryseobacterium, Paenibacillus, Pseudomonas, and Streptomyces) and fungal (e.g., Trichoderma and arbuscular mycorrhizal fungi) agents, and yeasts (e.g., Aureobasidium, Curvibasidium, and Metschnikowia) have been reported as successful biocontrol agents of Phytophthora pathogens. These microorganisms antagonize Phytophthora spp. via antimicrobial compounds with inhibitory activities against mycelial growth, sporulation, and zoospore germination. They also trigger plant immunity-inducing systemic resistance via several pathways, resulting in enhanced defense responses in their hosts. Along with plant protection, some of the microorganisms promote plant growth, thereby enhancing their beneficial relations with host plants. Although the beneficial effects of the biocontrol microorganisms are acceptable, single applications of antagonistic microorganisms tend to lack consistent efficacy compared with chemical analogues. Therefore, strategies to improve the biocontrol performance of these prominent antagonists are also discussed in this review.  相似文献   

17.
CRN(crinkling and necrosis-inducing protein)为疫霉菌在与寄主互作过程中分泌的一类特有胞质效应因子,干扰寄主细胞正常的生理代谢和功能。采用PCR法从辣椒疫霉LT1534菌株c DNA中克隆PcCRN20-C基因。该基因序列长783bp,编码261个氨基酸。构建重组表达载体,并转化大肠杆菌BL21(DE3)。在优化条件下诱导表达重组蛋白,利用Ni-NTA金属螯合层析、离子交换层析、分子筛层析和胰蛋白酶酶解技术获得高纯目的蛋白,SDS-PAGE分析表明,蛋白质分子量约为25kDa。采用座滴气相扩散法进行晶体制备和筛选,成功获得了蛋白质晶体,并通过X-射线衍射仪收集了晶体衍射花样。结合蛋白质晶体学方法,获得了有衍射的辣椒疫霉PcCRN20-C蛋白晶体,为进一步研究CRN蛋白的结构与病原菌致病机制提供参考资料。  相似文献   

18.
贵州地区木霉菌分离鉴定及对辣椒疫霉的拮抗作用   总被引:3,自引:0,他引:3  
【背景】辣椒疫霉是一种毁灭性的土传病害,当前主要使用化学合成杀菌剂防治,但容易导致环境污染和食品安全等问题。【目的】筛选可拮抗辣椒疫霉的候选菌株,探究分离菌株拮抗辣椒疫霉的生理生化作用机制。【方法】综合应用形态学、核糖体RNA (rRNA)基因非转录区ITS序列相似性方法鉴定分离菌株,通过对峙实验筛选抑菌效果较高的拮抗菌株,基于比色法测定分离菌株发酵液粗提物对辣椒疫霉菌丝脂质过氧化、纤维素酶、β-葡萄糖苷酶(β-GC)和多聚半乳糖醛酸酶(PG)活性的影响。【结果】从腐木和土壤样品中分离得到11株木霉,分属于绿色木霉(Trichodermavirens)、哈茨木霉(Trichoderma harzianum)、钩状木霉(Trichoderma hamatum)和棘孢木霉(Trichoderma asperellum) 4个种。11株木霉对辣椒疫霉均有一定的抑制作用,抑制率达到90%以上的菌株包括:绿色木霉Tv-1(92.68%)、Tv-2 (95.12%),哈茨木霉Thz-2 (92.68%),钩状木霉Tha-1 (90.24%)。以4株高效木霉的发酵液粗提物处理辣椒疫霉菌丝5 d后,因脂质过氧化产生的丙二醛含量显著增加,分别达到1.20、1.48、2.69和3.16 nmol/g,显著高于对照处理的0.77 nmol/g;与对照组相比,β-GC、PG酶活性显著下降,分别降低了12.28%-64.91%、7.2%-15.5%;同时纤维素酶活性呈上升趋势,最显著组为2.647 U/mL,相对于对照组增加了0.831U/mL。【结论】分离得到4株明显抑制辣椒疫霉菌生长的高效木霉菌,主要通过破坏细胞壁结构、降低致病因子酶活力和增强脂质过氧化等方式起拮抗作用,可为辣椒疫病的生物防治提供理论依据和技术支持。  相似文献   

19.
With the increasing availability of plant pathogen genomes, secreted proteins that aid infection (effectors) have emerged as key factors that help to govern plant–microbe interactions. The conserved CRN (CRinkling and Necrosis) effector family was first described in oomycetes by their capacity to induce host cell death. Despite recent advances towards the elucidation of CRN virulence functions, the relevance of CRN‐induced cell death remains unclear. In planta over‐expression of PcCRN83_152, a CRN effector from Phytophthora capsici, causes host cell death and boosts P. capsici virulence. We used these features to ask whether PcCRN83_152‐induced cell death is linked to its virulence function. By randomly mutating this effector, we generated PcCRN83_152 variants with no cell death (NCD) phenotypes, which were subsequently tested for activity towards enhanced virulence. We showed that a subset of PcCRN83_152 NCD variants retained their ability to boost P. capsici virulence. Moreover, NCD variants were shown to have a suppressive effect on PcCRN83_152‐mediated cell death. Our work shows that PcCRN83_152‐induced cell death and virulence function can be separated. Moreover, if these findings hold true for other cell death‐inducing CRN effectors, this work, in turn, will provide a framework for studies aimed at unveiling the virulence functions of these effectors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号