首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CpG-ODNs activate dendritic cells (DCs) to produce interferon alpha (IFNα) and beta (IFNβ). Previous studies demonstrated that Toll-like receptor 9 (TLR9) deficient DCs exhibited a residual IFNα response to CpG-A, indicating that yet-unidentified molecules are also involved in induction of IFNα by CpG-A. Here, we report that the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) but not Ku70 deficient BMDCs showed defective IFNα and IFNβ responses to CpG-A or CpG-B. Loss of both DNA-PKcs and TLR9 further reduced the IFNα response to CpG-A. These DNA-PKcs and TLR9 effects were mediated by their downstream Akt/mTORC1 pathway and downstream events IRAK1 and IKKα. Loss of DNA-PKcs, TLR9, MyD88 or IRAK4 impaired phosphorylation of Akt(S473), S6K, S6, IRAK1, or IKKα in BMDCs in response to CpG-ODNs. The residual IFNα and IFNβ in DNA-PKcs-deficient BMDCs were partially responsible for the induction of IL-6 and IL-12 by CpG-ODNs and their stimulatory effect was blocked by IFNAR1 neutralizing antibodies. Further analysis indicated that CpG-ODN associated with DNA-PKcs and Ku70, and induced DNA-PKcs’s interaction with TRAF3. Intriguingly, DNA-PKcs but not Ku70 expression level was reduced in TLR9-deficient BMDCs. Taken together, our data suggest that DNA-PKcs is an important mediator in the type I IFN response to CpG-ODNs in TLR9-dependent or -independent fashions.  相似文献   

2.

Background

In response to viral infection, the innate immune system recognizes viral nucleic acids and then induces production of proinflammatory cytokines and type I interferons (IFNs). Toll-like receptor 7 (TLR7) and TLR9 detect viral RNA and DNA, respectively, in endosomal compartments, leading to the activation of nuclear factor κB (NF-κB) and IFN regulatory factors (IRFs) in plasmacytoid dendritic cells. During such TLR signaling, TNF receptor-associated factor 6 (TRAF6) is essential for the activation of NF-κB and the production of type I IFN. In contrast, RIG-like helicases (RLHs), cytosolic RNA sensors, are indispensable for antiviral responses in conventional dendritic cells, macrophages, and fibroblasts. However, the contribution of TRAF6 to the detection of cytosolic viral nucleic acids has been controversial, and the involvement of TRAF6 in IRF activation has not been adequately addressed.

Principal Findings

Here we first show that TRAF6 plays a critical role in RLH signaling. The absence of TRAF6 resulted in enhanced viral replication and a significant reduction in the production of IL-6 and type I IFNs after infection with RNA virus. Activation of NF-κB and IRF7, but not that of IRF3, was significantly impaired during RLH signaling in the absence of TRAF6. TGFβ-activated kinase 1 (TAK1) and MEKK3, whose activation by TRAF6 during TLR signaling is involved in NF-κB activation, were not essential for RLH-mediated NF-κB activation. We also demonstrate that TRAF6-deficiency impaired cytosolic DNA-induced antiviral responses, and this impairment was due to defective activation of NF-κB and IRF7.

Conclusions/Significance

Thus, TRAF6 mediates antiviral responses triggered by cytosolic viral DNA and RNA in a way that differs from that associated with TLR signaling. Given its essential role in signaling by various receptors involved in the acquired immune system, TRAF6 represents a key molecule in innate and antigen-specific immune responses against viral infection.  相似文献   

3.
4.
The Toll-like receptor (TLR) 3 plays a critical role in mammalian innate immune response against viral attacks by recognizing double-stranded RNA (dsRNA) or its synthetic analog polyinosinic-polycytidylic acid (poly (I∶C)). This leads to the activation of MAP kinases and NF-κB which results in the induction of type I interferons and proinflammatory cytokines to combat the viral infection. To understand the complex interplay of the various intracellular signaling molecules in the regulation of NF-κB and MAP kinases, we developed a computational TLR3 model based upon perturbation-response approach. We curated literature and databases to determine the TLR3 signaling topology specifically for murine macrophages. For initial model creation, we used wildtype temporal activation profiles of MAP kinases and NF-κB and, for model testing, used TRAF6 KO and TRADD KO data. From dynamic simulations we predict i) the existence of missing intermediary steps between extracellular poly (I∶C) stimulation and intracellular TLR3 binding, and ii) the presence of a novel pathway which is essential for JNK and p38, but not NF-κB, activation. Our work shows activation dynamics of signaling molecules can be used in conjunction with perturbation-response models to decipher novel signaling features of complicated immune pathways.  相似文献   

5.
DNA damage-induced NF-κB activation plays a critical role in regulating cellular response to genotoxic stress. However, the molecular mechanisms controlling the magnitude and duration of this genotoxic NF-κB signaling cascade are poorly understood. We recently demonstrated that genotoxic NF-κB activation is regulated by reversible ubiquitination of several essential mediators involved in this signaling pathway. Here we show that TRAF family member-associated NF-κB activator (TANK) negatively regulates NF-κB activation by DNA damage via inhibiting ubiquitination of TRAF6. Despite the lack of a deubiquitination enzyme domain, TANK has been shown to negatively regulate the ubiquitination of TRAF proteins. We found TANK formed a complex with MCPIP1 (also known as ZC3H12A) and a deubiquitinase, USP10, which was essential for the USP10-dependent deubiquitination of TRAF6 and the resolution of genotoxic NF-κB activation upon DNA damage. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated deletion of TANK in human cells significantly enhanced NF-κB activation by genotoxic treatment, resulting in enhanced cell survival and increased inflammatory cytokine production. Furthermore, we found that the TANK-MCPIP1-USP10 complex also decreased TRAF6 ubiquitination in cells treated with IL-1β or LPS. In accordance, depletion of USP10 enhanced NF-κB activation induced by IL-1β or LPS. Collectively, our data demonstrate that TANK serves as an important negative regulator of NF-κB signaling cascades induced by genotoxic stress and IL-1R/Toll-like receptor stimulation in a manner dependent on MCPIP1/USP10-mediated TRAF6 deubiquitination.  相似文献   

6.
RIP1 and its homologs, RIP2 and RIP3, form part of a family of Ser/Thr kinases that regulate signal transduction processes leading to NF-κB activation. Here, we identify RIP4 (DIK/PKK) as a novel member of the RIP kinase family. RIP4 contains an N-terminal RIP-like kinase domain and a C-terminal region characterized by the presence of 11 ankyrin repeats. Overexpression of RIP4 leads to activation of NF-κB and JNK. Kinase inactive RIP4 or a truncated version containing the ankyrin repeats have a dominant negative (DN) effect on NF-κB induction by multiple stimuli. RIP4 binds to several members of the TRAF protein family, and DN versions of TRAF1, TRAF3 and TRAF6 inhibit RIP4-induced NF-κB activation. Moreover, RIP4 is cleaved after Asp340 and Asp378 during Fas-induced apoptosis. These data suggest that RIP4 is involved in NF-κB and JNK signaling and that caspase-dependent processing of RIP4 may negatively regulate NF-κB-dependent pro-survival or pro-inflammatory signals.  相似文献   

7.
8.
Th2-inducing pathological conditions such as parasitic diseases increase susceptibility to viral infections through yet unclear mechanisms. We have previously reported that IL-4, a pivotal Th2 cytokine, suppresses the response of murine bone-marrow-derived conventional dendritic cells (cDCs) and splenic DCs to Type I interferons (IFNs). Here, we analyzed cDC responses to TLR7 and TLR9 ligands, R848 and CpGs, respectively. We found that IL-4 suppressed the gene expression of IFNβ and IFN-responsive genes (IRGs) upon TLR7 and TLR9 stimulation. IL-4 also inhibited IFN-dependent MHC Class I expression and amplification of IFN signaling pathways triggered upon TLR stimulation, as indicated by the suppression of IRF7 and STAT2. Moreover, IL-4 suppressed TLR7- and TLR9-induced cDC production of pro-inflammatory cytokines such as TNFα, IL-12p70 and IL-6 by inhibiting IFN-dependent and NFκB-dependent responses. IL-4 similarly suppressed TLR responses in splenic DCs. IL-4 inhibition of IRGs and pro-inflammatory cytokine production upon TLR7 and TLR9 stimulation was STAT6-dependent, since DCs from STAT6-KO mice were resistant to the IL-4 suppression. Analysis of SOCS molecules (SOCS1, −2 and −3) showed that IL-4 induces SOCS1 and SOCS2 in a STAT6 dependent manner and suggest that IL-4 suppression could be mediated by SOCS molecules, in particular SOCS2. IL-4 also decreased the IFN response and increased permissiveness to viral infection of cDCs exposed to a HIV-based lentivirus. Our results indicate that IL-4 modulates and counteracts pro-inflammatory stimulation induced by TLR7 and TLR9 and it may negatively affect responses against viruses and intracellular parasites.  相似文献   

9.
The adapter protein TRAF6 is critical for mediating signal transduction from members of the IL-1R/TLR and TNFR superfamilies. The TRAF6 RING finger domain functions as an ubiquitin E3 ligase capable of generating non-degradative K63-linked ubiquitin chains. It is believed that these chains serve as docking sites for formation of signaling complexes, and that K63-linked autoubiquitination of TRAF6 is essential for formation and activation of a complex involving the kinase TAK1 and its adapters, TAB1 and TAB2. In order to assess independently the E3 ligase and ubiquitin substrate functions of TRAF6, we generated, respectively, RING domain and complete lysine-deficient TRAF6 mutants. We found that while the TRAF6 RING domain is required for activation of TAK1, it is dispensable for interaction between TRAF6 and the TAK1-TAB1-TAB2 complex. Likewise, lysine-deficient TRAF6 was found to interact with the TAK1-TAB1-TAB2 complex, but surprisingly was also found to be fully competent to activate TAK1, as well as NFκB and AP-1 reporters. Furthermore, lysine-deficient TRAF6 rescued IL-1-mediated NFκB and MAPK activation, as well as IL-6 elaboration in retrovirally-rescued TRAF6-deficient fibroblasts. Lysine-deficient TRAF6 also rescued RANKL-mediated NFκB and MAPK activation, and osteoclastogenesis in retrovirally-rescued TRAF6-deficient bone marrow macrophages. While incapable of being ubiquitinated itself, we demonstrate that lysine-deficient TRAF6 remains competent to induce ubiquitination of IKKγ/NEMO. Further, this NEMO modification contributes to TRAF6-mediated activation of NFκB. Collectively, our results suggest that while TRAF6 autoubiquitination may serve as a marker of activation, it is unlikely to underpin RING finger-dependent TRAF6 function.  相似文献   

10.
The role of Interleukin(IL)-6 in the pathogenesis of joint and systemic inflammation in rheumatoid arthritis (RA) and systemic juvenile idiopathic arthritis (s-JIA) has been clearly demonstrated. However, the mechanisms by which IL-6 contributes to the pathogenesis are not completely understood. This study investigates whether IL-6 affects, alone or upon toll like receptor (TLR) ligand stimulation, the production of inflammatory cytokines and chemokines in human peripheral blood mononuclear cells (PBMCs), synovial fluid mononuclear cells from JIA patients (SFMCs) and fibroblast-like synoviocytes from rheumatoid arthritis patients (RA synoviocytes) and signalling pathways involved. PBMCs were pre-treated with IL-6 and soluble IL-6 Receptor (sIL-6R). SFMCs and RA synoviocytes were pre-treated with IL-6/sIL-6R or sIL-6R, alone or in combination with Tocilizumab (TCZ). Cells were stimulated with LPS, S100A8-9, poly(I-C), CpG, Pam2CSK4, MDP, IL-1β. Treatment of PBMCs with IL-6 induced production of TNF-α, CXCL8, and CCL2, but not IL-1β. Addition of IL-6 to the same cells after stimulation with poly(I-C), CpG, Pam2CSK4, and MDP induced a significant increase in IL-1β and CXCL8, but not TNF-α production compared with TLR ligands alone. This enhanced production of IL-1β and CXCL8 paralleled increased p65 NF-κB activation. In contrast, addition of IL-6 to PBMCs stimulated with LPS or S100A8-9 (TLR-4 ligands) led to reduction of IL-1β, TNF-α and CXCL8 with reduced p65 NF-κB activation. IL-6/IL-1β co-stimulation increased CXCL8, CCL2 and IL-6 production. Addition of IL-6 to SFMCs stimulated with LPS or S100A8 increased CXCL8, CCL2 and IL-1β production. Treatment of RA synoviocytes with sIL-6R increased IL-6, CXCL8 and CCL2 production, with increased STAT3 and p65 NF-κB phosphorylation. Our results suggest that IL-6 amplifies TLR-induced inflammatory response. This effect may be relevant in the presence of high IL-6 and sIL-6R levels, such as in arthritic joints in the context of stimulation by endogenous TLR ligands.  相似文献   

11.
12.
Tumor necrosis factor receptor-associated factor 6 (TRAF6) and TGFβ-activated kinase 1 (TAK1) are considered as key intermediates in Toll-like receptor (TLR) signaling. However, the role of TRAF6 and TAK1 in C-type lectin receptors (CLRs) in response to fungal infection has not been studied. In this study, we have utilized macrophages derived from TRAF6 knock-out mice and myeloid-specific TAK1-deficient mice and determined the role of TRAF6 and TAK1 in CLR-induced signal transduction events. We demonstrate that TRAF6 and TAK1 are required for NF-κB and JNK activation, and expression of proinflammatory cytokines in response to Candida albicans infection. Our results highlight TRAF6 and TAK1 as key components in the signaling cascade downstream of C-type lectin receptors and as critical mediators of the anti-fungal immune response. Therefore, our studies provide a mechanistic understanding of the host immune response to C. albicans, which has a significant impact for the development of anti-fungal therapeutics and in understanding risk-factors and determining susceptibility to C. albicans infection.  相似文献   

13.
14.
While infection-induced placental inflammation is a common mechanism of adverse pregnancy outcome, some pathogens can also trigger placental apoptosis, and Toll-like receptors (TLRs) mediate this response. Treatment of human first trimester trophoblast cells with bacterial peptidoglycan (PDG) reduces their constitutive secretion of IL-6 protein and induces apoptosis. This apoptotic response is dependent upon the cell’s expression of TLR1, TLR2 and TLR10, and their lack of TLR6, such that ectopic expression of TLR6 prevents PDG-induced apoptosis and restores IL-6 production. In this current study we have identified three microRNAs (miRs) that regulate TLR2-mediated responses in the human trophoblast. Herein we report that miR-329 plays a pivotal role in mediating PDG-induced trophoblast apoptosis and inhibition of IL-6 mRNA expression by targeting the NF-κB subunit, p65. TLR2 activation by PDG upregulates miR-329 expression and inhibits NF-κB p65 and IL-6 mRNA, and this is reversed by the presence of TLR6. Moreover, inhibition of miR-329 prevents PDG-induced inhibition of NF-κB p65 and IL-6 mRNA expression, and restores cell survival. In addition, we have found miR-23a and let-7c to directly regulate PDG-mediated inhibition of IL-6 mRNA. TLR2 activation by PDG upregulates miR23a and let-7c expression and this is reversed by the presence of TLR6. Furthermore, inhibition of both miR23a and let-7c prevents PDG-inhibition of trophoblast IL-6 mRNA expression. Together, our findings suggest that multiple miRs are involved in the molecular regulation of TLR2-mediated responses in the trophoblast towards gram-positive bacterial components.  相似文献   

15.
CD40L and statins exhibit pro-inflammatory and anti-inflammatory effects, respectively. They are both pleiotropic and can regulate extracellular matrix (ECM) degeneration in an atherosclerotic plaque. Statins can decrease both the CD40 expression and the resulting inflammation. However, the effects of CD40L and stains on atherosclerotic plaque ECM production and the underlying mechanisms are not well established. Moreover, prolyl-4-hydroxylase α1 (P4Hα1) is involved in collagen synthesis but its correlations with CD40L and statins are unknown. In the present study, CD40L suppressed P4Hα1 expression in human aortic smooth muscle cells (HASMCs) in a dose- and time-dependent manner, with insignificant changes in MMP2 expression and negative enzymatic activity of MMP9. CD40L increased TRAF6 expression, JNK phosphorylation, NF-κB nuclear translocation as well as DNA binding. Furthermore, silencing TRAF6, JNK or NF-κB genes abolished CD40L-induced suppression of P4Hα1. Lower NF-κB nuclear import rates were observed when JNK or TRAF6 silenced HASMCs were stimulated with CD40L compared to HASMCs with active JNK or TRAF6. Together, these results indicate that CD40L suppresses P4Hα1 expression in HASMCs by activating the TRAF6-JNK- NF-κB pathway. We also found that rosuvastatin inhibits CD40L-induced activation of the TRAF6-JNK- NF-κB pathway, thereby significantly rescuing the CD40L stimulated P4Hα1 inhibition. The results from this study will help find potential targets for stabilizing vulnerable atherosclerotic plaques.  相似文献   

16.
TNF receptor 2 (TNFR2) exerts diverse roles in the pathogenesis of inflammatory and autoimmune diseases. Here, we report that TNFR2 but not TNFR1 forms a heteromer with interleukin-17 receptor D (IL-17RD), also named Sef, to activate NF-κB signaling. TNFR2 associates with IL-17RD, leading to mutual receptor aggregation and TRAF2 recruitment, which further activate the downstream cascade of NF-κB signaling. Depletion of IL-17RD impaired TNFR2-mediated activation of NF-κB signaling. Importantly, IL-17RD was markedly increased in renal tubular epithelial cells in nephritis rats, and a strong interaction of TNFR2 and IL-17RD was observed in the renal epithelia. The IL-17RD·TNFR2 complex in activation of NF-κB may explain the role of TNFR2 in inflammatory diseases including nephritis.  相似文献   

17.
Neuroinflammation mediated by the activated microglia is suggested to play a pivotal role in the pathogenesis of hypoxic brain injury; however, the underlying mechanism of microglia activation remains unclear. Here, we show that the canonical Notch signaling orchestrates microglia activation after hypoxic exposure which is closely associated with multiple pathological situations of the brain. Notch-1 and Delta-1 expression in primary microglia and BV-2 microglial cells was significantly elevated after hypoxia. Hypoxia-induced activation of Notch signaling was further confirmed by the concomitant increase in the expression and translocation of intracellular Notch receptor domain (NICD), together with RBP-Jκ and target gene Hes-1 expression. Chemical inhibition of Notch signaling with N-[N-(3,5-difluorophenacetyl)-1-alany1- S-phenyglycine t-butyl ester (DAPT), a γ-secretase inhibitor, effectively reduced hypoxia-induced upregulated expression of most inflammatory mediators. Notch inhibition also reduced NF-κB/p65 expression and translocation. Remarkably, Notch inhibition suppressed expression of TLR4/MyD88/TRAF6 pathways. In vivo, Notch signaling expression and activation in microglia were observed in the cerebrum of postnatal rats after hypoxic injury. Most interestingly, hypoxia-induced upregulation of NF-κB immunoexpression in microglia was prevented when the rats were given DAPT pretreatment underscoring the interrelationship between Notch signaling and NF-κB pathways. Taken together, we conclude that Notch signaling is involved in regulating microglia activation after hypoxia partly through the cross talk between TLR4/MyD88/TRAF6/NF-κB pathways. Therefore, Notch signaling may serve as a prospective target for inhibition of microglia activation known to be implicated in brain damage in the developing brain.  相似文献   

18.
The IL-1 receptor-associated kinases (IRAKs) are key regulators of Toll-like receptor (TLR)/IL-1 signaling, which are critical regulators of mammalian inflammation and innate immune response. Single nucleotide polymorphisms (SNPs) within the IRAK genes have been discovered recently. However, the functions of these IRAK SNPs remain largely unknown. Here, we found that the non-synonymous IRAK2 variant rs708035 (coding D431E) increases NF-κB activity and leads to more expression of NF-κB-dependent proinflammatory cytokines compared with IRAK2 wild type. Moreover, when IRAK2 knockdown cells reconstituted with siRNA-resistant WT-IRAK2 or D431E-IRAK2 were infected with influenza virus, a more obvious induction of IL-6 and a stronger anti-apoptosis effect were observed in D431E-IRAK2 expressing cells. Notably, we also found that the levels of proinflammatory cytokine-IL-6 were indeed higher in people carrying D431E-IRAK2 than those carrying WT-IRAK2. Further study demonstrated that elevated NF-κB activation mediated by the IRAK2 variant was due to increased TRAF6 ubiquitination and faster IκBα degradation. Our study provides important insight of IRAK2 SNP in the regulation of NF-κB activation and indicates that IRAK2 rs708035 might be associated with human diseases caused by hyper-activation of NF-κB.  相似文献   

19.

Background

Bupleurum polysaccharides (BPs), isolated from Bupleurum smithii var. parvifolium, possesses immunomodulatory activity, particularly on inflammation. Bacterial endotoxin lipopolysaccharide (LPS) triggers innate immune responses through Toll-like receptor 4 (TLR4) on host cell membrane. The present study was performed to evaluate whether the therapeutic efficacy of BPs on suppression of LPS’s pathogenecity could be associated with the modulating of TLR4 signaling pathway.

Methodology/Principal Findings

LPS stimulated expression and activation of factors in the TLR4 signaling system, including TLR4, CD14, IRAK4, TRAF6, NF-κB, and JNK, determined using immunocytochemical and/or Western blot assays. BPs significantly inhibited these effects of LPS. LPS increased pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, IL-12p40, and IFN-β) and NO production, evaluated using ELISA and Griess reaction assays, respectively. BPs antagonized these effects of LPS. Interestingly, BPs alone augmented secretion of some pro-inflammatory cytokines of non-LPS stimulated macrophages and enhanced phagocytic activity towards fluorescent E.coli bioparticles. In a rat model of acute lung injury (ALI) with pulmonary hemorrhage and inflammation, BPs ameliorated lung injuries and suppressed TLR4 expression.

Significance

The therapeutic properties of BPs in alleviating inflammatory diseases could be attributed to its inhibitory effect on LPS-mediated TLR4 signaling.  相似文献   

20.
ECSIT (evolutionarily conserved signaling intermediate in Toll pathways) is known as a multifunctional regulator in different signals, including Toll-like receptors (TLRs), TGF-β, and BMP. Here, we report a new regulatory role of ECSIT in TLR4-mediated signal. By LPS stimulation, ECSIT formed a high molecular endogenous complex including TAK1 and TRAF6, in which ECSIT interacted with each protein and regulated TAK1 activity, leading to the activation of NF-κB. ECSIT-knockdown THP-1 (ECSITKD THP-1) cells exhibited severe impairments in NF-κB activity, cytokine production, and NF-κB-dependent gene expression, whereas those were dramatically restored by reintroduction of wild type (WT) ECSIT gene. Interestingly, ECSIT mutants, which lack a specific interacting domain for either TAK1 or TRAF6, could not restore these activities. Moreover, no significant changes in both NF-κB activity and cytokine production induced by TLR4 could be seen in TAK1KD or TRAF6KD THP-1 cells transduced by WT ECSIT, strongly suggesting the essential requirement of TAK1-ECSIT-TRAF6 complex in TLR4 signaling. Taken together, our data demonstrate that the ECSIT complex, including TAK1 and TRAF6, plays a pivotal role in TLR4-mediated signals to activate NF-κB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号