首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Rps0 proteins of Saccharomyces cerevisiae are components of the 40S ribosomal subunit required for maturation of the 3′ end of 18S rRNA. Drosophila and human homologs of the Rps0 proteins physically interact with Rps21 proteins, and decreased expression of both proteins in Drosophila impairs control of cellular proliferation in hematopoietic organs during larval development. Here, we characterize the yeast RPS21A/B genes and show that strains where both genes are disrupted are not viable. Relative to the wild type, cells with disrupted RPS21A or RPS21B genes exhibit a reduction in growth rate, a decrease in free 40S subunits, an increase in the amount of free 60S subunits, and a decrease in polysome size. Ribosomal RNA processing studies reveal RPS21 and RPS0 mutants have virtually identical processing defects. The pattern of processing defects observed in RPS0 and RPS21 mutants is not a general characteristic of strains with suboptimal levels of small subunit ribosomal proteins, since disruption of the RPS18A or RPS18B genes results in related but distinct processing defects. Together, these data link the Rps0 and Rps21 proteins together functionally in promoting maturation of the 3′ end of 18S rRNA and formation of active 40S ribosomal subunits.  相似文献   

2.
QSR1 is an essential Saccharomyces cerevisiae gene, which encodes a 60S ribosomal subunit protein required for joining of 40S and 60S subunits. Truncations of QSR1 predicted to encode C-terminally truncated forms of Qsr1p do not substitute for QSR1 but do act as dominant negative mutations, inhibiting the growth of yeast when expressed from an inducible promoter. The dominant negative mutants exhibit a polysome profile characterized by 'half-mer' polysomes, indicative of a subunit joining defect like that seen in other qsr1 mutants (D. P. Eisinger, F. A. Dick, and B. L. Trumpower, Mol. Cell. Biol. 17:5136-5145, 1997.) By screening a high-copy yeast genomic library, we isolated several clones containing overlapping inserts of a novel gene that rescues the slow-growth phenotype of the dominant negative qsr1 truncations. The suppressor of qsr1 truncation mutants, SQT1, is an essential gene, which encodes a 47.1-kDa protein containing multiple WD repeats and which interacts strongly with Qsr1p in a yeast two-hybrid system. SQT1 restores growth and the "half-mer" polysome profile of the dominant negative qsr1 mutants to normal, but it does not rescue temperature-sensitive qsr1 mutants or the original qsr1-1 missense allele. In yeast cell lysates, Sqt1p fractionates as part of an oligomeric protein complex that is loosely associated with ribosomes but is distinct from known eukaryotic initiation factor complexes. Loss of SQT1 function by down regulation from an inducible promoter results in formation of half-mer polyribosomes and decreased Qsr1p levels on free 60S subunits. Sqt1p thus appears to be involved in a late step of 60S subunit assembly or modification in the cytoplasm.  相似文献   

3.
Using immuno-fluorescent probing and Western blotting analysis, we reveal the exclusive cytoplasm nature of the small subunit ribosomal protein S20. To illustrate the importance of the cellular compartmentation of S20 to the function of small subunit 40S, we created a nuclear resident S20NLS mutant gene and examined polysome profile of cells that had been transfected with the S20NLS gene. As a result, we observed the formation of recombinant 40S carried S20NLS but this recombinant 40S was never found in the polysome, suggesting such a recombinant 40S was translation incompetent. Moreover, by the tactic of the energy depletion and restoration, we were able to restrain the nuclear-resided S20NLS in the cytoplasm. Yet, along a progressive energy restoration, we observed the presence of recombinant 40S subunits carrying the S20NLS in the polysome. This proves that S20 needs to be cytoplasmic in order to make a functional 40S subunit. Furthermore, it also implies that the assembly order of ribosomal protein in eukaryote is orderly regulated.  相似文献   

4.
The cDNA sequence of a murine gene whose expression was up-regulated after epidermal injury was cloned utilizing differential display. The full-length cDNA was isolated by 3' and 5' rapid amplification of cDNA ends from mouse liver. The predicted protein is >97% identical to the human sequence for eukaryotic translation initiation factor (eIF) 6, thus identifying the gene as murine eIF6. Functional studies of the yeast eIF6 homolog, YPR016c, were initiated in Saccharomyces cerevisiae to determine the cellular role(s) of eIF6. Complete deletion of the YPR016c coding sequence was lethal. Viability was restored in the presence of either YPR016c or murine eIF6, when either was expressed as amino-terminal green fluorescent protein fusion protein. Moreover, both fusion proteins localized to nuclear/perinuclear compartments in their respective yeast strains. When the expression of YPR016c-green fluorescent protein was repressed, there was a dramatic reduction in the 60 S ribosomal subunit and polysome content and decreased 80S monosome content. Additionally, the YPR016c-depleted cells arrested in G1. These studies show that YPR016c, which encodes yeast eIF6, is necessary for maximal polysome formation and plays an important role in determining free 60 S ribosomal subunit content.  相似文献   

5.
In eukaryotes, the 40 S ribosomal subunit serves as the platform of initiation factor assembly, to place itself precisely on the AUG start codon. Structural arrangement of the 18 S rRNA determines the overall shape of the 40 S subunit. Here, we present genetic evaluation of yeast 18 S rRNA function using 10 point mutations altering the polysome profile. All the mutants reduce the abundance of the mutant 40 S, making it limiting for translation initiation. Two of the isolated mutations, G875A, altering the core of the platform domain that binds eIF1 and eIF2, and A1193U, changing the h31 loop located below the P-site tRNAiMet, show phenotypes indicating defective regulation of AUG selection. Evidence is provided that these mutations reduce the interaction with the components of the preinitiation complex, thereby inhibiting its function at different steps. These results indicate that the 18 S rRNA mutations impair the integrity of scanning-competent preinitiation complex, thereby altering the 40 S subunit response to stringent AUG selection. Interestingly, nine of the mutations alter the body/platform domains of 18 S rRNA, potentially affecting the bridges to the 60 S subunit, but they do not change the level of 18 S rRNA intermediates. Based on these results, we also discuss the mechanism of the selective degradation of the mutant 40 S subunits.  相似文献   

6.
Incubation of membrane-bound polyribosomes isolated from murine myeloma cells with heparin caused release of material which sedimented in the polysome, monosome and ribosomal subunit regions of linear sucrose gradients. The released material corresponded to approximately one half that which could be released by treatment with heparin plus Triton X-100. The action of heparin appeared to be related to its polyanionic nature. The use of heparin as a ribonuclease inhibitor in the separation and isolation of free and membrane-bound polysomes could cause artificial accumulation of detached polysomes in the free polysome fraction.  相似文献   

7.
Cell size is determined by a complex interplay between growth and division, involving multiple cellular pathways. To identify systematically processes affecting size control in G1 in budding yeast, we imaged and analyzed the cell cycle of millions of individual cells representing 591 mutants implicated in size control. Quantitative metric distinguished mutants affecting the mechanism of size control from the majority of mutants that have a perturbed size due to indirect effects modulating cell growth. Overall, we identified 17 negative and dozens positive size control regulators, with the negative regulators forming a small network centered on elements of mitotic exit network. Some elements of the translation machinery affected size control with a notable distinction between the deletions of parts of small and large ribosomal subunit: parts of small ribosomal subunit tended to regulate size control, while parts of the large subunit affected cell growth. Analysis of small cells revealed additional size control mechanism that functions in G2/M, complementing the primary size control in G1. Our study provides new insights about size control mechanisms in budding yeast.  相似文献   

8.
9.
Eukaryotic translation initiation factor 6 (eIF6) binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The Saccharomyces cerevisiae gene that encodes the 245-amino-acid eIF6 (calculated Mr 25,550), designated TIF6, has been cloned and expressed in Escherichia coli. The purified recombinant protein prevents association between 40S and 60S ribosomal subunits to form 80S ribosomes. TIF6 is a single-copy gene that maps on chromosome XVI and is essential for cell growth. eIF6 expressed in yeast cells associates with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Depletion of eIF6 from yeast cells resulted in a decrease in the rate of protein synthesis, accumulation of half-mer polyribosomes, reduced levels of 60S ribosomal subunits resulting in the stoichiometric imbalance in the 40S/60S subunit ratio, and ultimately cessation of cell growth. Furthermore, lysates of yeast cells depleted of eIF6 remained active in translation of mRNAs in vitro. These results indicate that eIF6 does not act as a true translation initiation factor. Rather, the protein may be involved in the biogenesis and/or stability of 60S ribosomal subunits.  相似文献   

10.
Mitochondrial ribosomal proteins were studied best in yeast, where the small subunit was shown to contain about 35 proteins. Yet, genetic and biochemical studies identified only 14 proteins, half of which were predictable by sequence homology with prokaryotic ribosomal components of the small subunit. Using a recently described affinity purification technique and tagged versions of yeast Ykl155c and Mrp1, we isolated this mitochondrial ribosomal subunit and identified a total of 20 proteins, of which 12 are new. For a subset of the newly described ribosomal proteins, we showed that they are localized in mitochondria and are required for the respiratory competency of the yeast cells. This brings to 26 the total number of proteins described as components of the mitochondrial small ribosomal subunit. Remarkably, almost half of the previously and newly identified mitochondrial ribosomal components showed no similarity to any known ribosomal protein. Homologues could be found, however, in predicted protein sequences from Schizosaccharomyces pombe. In more distant species, putative homologues were detected for Ykl155c, which shares conserved motifs with uncharacterized proteins of higher eukaryotes including humans. Another newly identified ribosomal protein, Ygl129c, was previously shown to be a member of the DAP-3 family of mitochondrial apoptosis mediators.  相似文献   

11.
Rapid and accurate assembly of the ribosomal subunits, which are responsible for protein synthesis, is required to sustain cell growth. Our best understanding of the interaction of 30S ribosomal subunit components (16S ribosomal RNA [rRNA] and 20 ribosomal proteins [r-proteins]) comes from in vitro work using Escherichia coli ribosomal components. However, detailed information regarding the essential elements involved in the assembly of 30S subunits still remains elusive. Here, we defined a set of rRNA nucleotides that are critical for the assembly of the small ribosomal subunit in E. coli. Using an RNA modification interference approach, we identified 54 nucleotides in 16S rRNA whose modification prevents the formation of a functional small ribosomal subunit. The majority of these nucleotides are located in the head and interdomain junction of the 30S subunit, suggesting that these regions are critical for small subunit assembly. In vivo analysis of specific identified sites, using engineered mutations in 16S rRNA, revealed defective protein synthesis capability, aberrant polysome profiles, and abnormal 16S rRNA processing, indicating the importance of these residues in vivo. These studies reveal that specific segments of 16S rRNA are more critical for small subunit assembly than others, and suggest a hierarchy of importance.  相似文献   

12.
It is widely accepted that the DNA, RNA and protein content of Enterobacteriaceae is regulated as a function of exponential growth rates; macromolecular content increases with faster growth regardless of specific composition of the growth medium. This phenomenon, called growth rate control, primarily involves regulation of ribosomal RNA and ribosomal protein synthesis. However, it was uncertain whether the global regulator ppGpp is the major determinant for growth rate control. Therefore, here we re-evaluate the effect of ppGpp on macromolecular content for different balanced growth rates in defined media. We find that when ppGpp is absent, RNA/protein and RNA/DNA ratios are equivalent in fast and slow growing cells. Moreover, slow growing ppGpp-deficient cells with increased RNA content, display a normal ribosomal subunit composition although polysome content is reduced when compared with fast growing wild-type cells. From this we conclude that growth rate control does not occur in the absence of ppGpp. Also, artificial elevation of ppGpp or introduction of stringent RNA polymerase mutants in ppGpp-deficient cells restores this control. We believe these findings strongly argue in favour of ppGpp and against redundant regulation of growth rate control by other factors in Escherichia coli and other enteric bacteria.  相似文献   

13.
To ensure accurate and rapid protein synthesis, nearby and distantly located functional regions of the ribosome must dynamically communicate and coordinate with one another through a series of information exchange networks. The ribosome is ~2/3 rRNA and information should pass mostly through this medium. Here, two viable mutants located in the peptidyltransferase center (PTC) of yeast ribosomes were created using a yeast genetic system that enables stable production of ribosomes containing only mutant rRNAs. The specific mutants were C2820U (Escherichia coli C2452) and Ψ2922C (E. coli U2554). Biochemical and genetic analyses of these mutants suggest that they may trap the PTC in the ‘open’ or aa-tRNA bound conformation, decreasing peptidyl-tRNA binding. We suggest that these structural changes are manifested at the biological level by affecting large ribosomal subunit biogenesis, ribosomal subunit joining during initiation, susceptibility/resistance to peptidyltransferase inhibitors, and the ability of ribosomes to properly decode termination codons. These studies also add to our understanding of how information is transmitted both locally and over long distances through allosteric networks of rRNA–rRNA and rRNA–protein interactions.  相似文献   

14.
Nucleolin is a major nucleolar protein implicated in many aspects of ribosomal biogenesis, including early events such as processing of the large 35S preribosomal RNA. We found that the Arabidopsis (Arabidopsis thaliana) parallel1 (parl1) mutant, originally identified by its aberrant leaf venation, corresponds to the Arabidopsis nucleolin gene. parl1 mutants display parallel leaf venation, aberrant localization of the provascular marker Athb8:beta-glucuronidase, the auxin-sensitive reporter DR5:beta-glucuronidase, and auxin-dependent growth defects. PARL1 is highly similar to the yeast (Saccharomyces cerevisiae) nucleolin NUCLEAR SIGNAL RECOGNITION 1 (NSR1) multifunctional protein; the Arabidopsis PARL1 gene can rescue growth defects of yeast nsr1 null mutants. This suggests that PARL1 protein may have roles similar to those of the yeast nucleolin in nuclear signal recognition, ribosomal processing, and ribosomal subunit accumulation. Based on the range of auxin-related defects in parl1 mutants, we propose that auxin-dependent organ growth and patterning is highly sensitive to the efficiency of nucleolin-dependent ribosomal processing.  相似文献   

15.
16.
Addition of nutrients to starved mouse S-180 cells leads to rapid conversion of ribosomal monomers to polysomes. During this process, a portion of the ribosomes originally found in the 17,000 g (10 min centrifugation) supernatant of cell lysates becomes firmly attached to structures sedimenting at 500 g (5 min centrifugation). Electron microscopy of sections of the intact cells showed the change from randomly distributed ribosomal particles to clusters. Association with membranes also became evident. The material sedimenting at 500 g comprised nuclei enclosed in an extensive endoplasmic reticulum (ER) network. This fraction prepared from recovering cells showed numerous ribosome clusters associated with the ER network. The appearance of many of these clusters indicated that the ribosomal particles were not directly bound to the membranes. RNase treatment released about 40% of the attached ribosomes as monomers, and ethylenediaminetetraacetic acid released 60% as subunits. It is suggested that during polysome formation a portion of the ribosomes becomes attached to the membranes through the intermediary of messenger RNA.  相似文献   

17.
DNA replication stress activates the S-phase checkpoint that arrests the cell cycle, but it is poorly understood how cells recover from this arrest. Cyclin-dependent kinase (CDK) and protein phosphatase 2A (PP2A) are key cell cycle regulators, and Cdc55 is a regulatory subunit of PP2A in budding yeast. We found that yeast cells lacking functional PP2ACdc55 showed slow growth in the presence of hydroxyurea (HU), a DNA synthesis inhibitor, without obvious viability loss. Moreover, PP2A mutants exhibited delayed anaphase entry and sustained levels of anaphase inhibitor Pds1 after HU treatment. A DNA damage checkpoint Chk1 phosphorylates and stabilizes Pds1. We show that chk1Δ and mutation of the Chk1 phosphorylation sites in Pds1 largely restored efficient anaphase entry in PP2A mutants after HU treatment. In addition, deletion of SWE1, which encodes the inhibitory kinase for CDK or mutation of the Swe1 phosphorylation site in CDK (cdc28F19), also suppressed the anaphase entry delay in PP2A mutants after HU treatment. Our genetic data suggest that Swe1/CDK acts upstream of Pds1. Surprisingly, cdc55Δ showed significant suppression to the viability loss of S-phase checkpoint mutants during DNA synthesis block. Together, our results uncover a PP2A-Swe1-CDK-Chk1-Pds1 axis that promotes recovery from DNA replication stress.  相似文献   

18.
19.
Most ribosomal proteins play important roles in ribosome biogenesis and function. Here, we have examined the contribution of the essential ribosomal protein L40 in these processes in the yeast Saccharomyces cerevisiae. Deletion of either the RPL40A or RPL40B gene and in vivo depletion of L40 impair 60 S ribosomal subunit biogenesis. Polysome profile analyses reveal the accumulation of half-mers and a moderate reduction in free 60 S ribosomal subunits. Pulse-chase, Northern blotting, and primer extension analyses in the L40-depleted strain clearly indicate that L40 is not strictly required for the precursor rRNA (pre-rRNA) processing reactions but contributes to optimal 27 SB pre-rRNA maturation. Moreover, depletion of L40 hinders the nucleo-cytoplasmic export of pre-60 S ribosomal particles. Importantly, all these defects most likely appear as the direct consequence of impaired Nmd3 and Rlp24 release from cytoplasmic pre-60 S ribosomal subunits and their inefficient recycling back into the nucle(ol)us. In agreement, we show that hemagglutinin epitope-tagged L40A assembles in the cytoplasm into almost mature pre-60 S ribosomal particles. Finally, we have identified that the hemagglutinin epitope-tagged L40A confers resistance to sordarin, a translation inhibitor that impairs the function of eukaryotic elongation factor 2, whereas the rpl40a and rpl40b null mutants are hypersensitive to this antibiotic. We conclude that L40 is assembled at a very late stage into pre-60 S ribosomal subunits and that its incorporation into 60 S ribosomal subunits is a prerequisite for subunit joining and may ensure proper functioning of the translocation process.  相似文献   

20.
The synthesis of eucaryotic ribosomal proteins in vitro.   总被引:44,自引:0,他引:44  
J R Warner  C Gorenstein 《Cell》1977,11(1):201-212
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号