首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Obesity and the metabolic syndrome represent serious health threats affecting increasing numbers of individuals, with females being more affected than males and with growing incidence among children and adolescents. In the present study, we used the OLETF rat model of early-onset obesity to examine the influence of different timing of food restriction on long-term obesity levels in females. Food restriction took place at different time windows: from weaning until postnatal day (PND) 45 (early); from weaning until PND90 (chronic); or from PND45 until PND70 (late). Follow-up continued until PND90. During and after the termination of the diet-restriction period, we focused on peripheral adiposity-related measures such as fat pad weight (brown, retroperitoneal and inguinal); inguinal adipocyte size and number; and leptin, oxytocin and glucose levels. We also examined body weight, feeding efficiency, spontaneous intake after release from diet-restriction, and plasma creatinine levels and estrous cycle characteristics as a result of the chronic diet. The results suggest that while food restriction produced significant weight and adiposity loss, OLETF females presented poor weight loss retention after the early and late short-term diets. The estrous cycle structure and time of first estrous of the OLETF rats were normalized by chronic food restriction. Females responded to early food restriction in a different manner than males did in previous studies, further emphasizing the importance of sex-appropriate approaches in the investigation and treatment of the pathologies related to obesity and the metabolic syndrome.  相似文献   

2.
《Hormones and behavior》2011,59(5):844-853
Obesity and the metabolic syndrome represent serious health threats affecting increasing numbers of individuals, with females being more affected than males and with growing incidence among children and adolescents. In the present study, we used the OLETF rat model of early-onset obesity to examine the influence of different timing of food restriction on long-term obesity levels in females. Food restriction took place at different time windows: from weaning until postnatal day (PND) 45 (early); from weaning until PND90 (chronic); or from PND45 until PND70 (late). Follow-up continued until PND90. During and after the termination of the diet-restriction period, we focused on peripheral adiposity-related measures such as fat pad weight (brown, retroperitoneal and inguinal); inguinal adipocyte size and number; and leptin, oxytocin and glucose levels. We also examined body weight, feeding efficiency, spontaneous intake after release from diet-restriction, and plasma creatinine levels and estrous cycle characteristics as a result of the chronic diet. The results suggest that while food restriction produced significant weight and adiposity loss, OLETF females presented poor weight loss retention after the early and late short-term diets. The estrous cycle structure and time of first estrous of the OLETF rats were normalized by chronic food restriction. Females responded to early food restriction in a different manner than males did in previous studies, further emphasizing the importance of sex-appropriate approaches in the investigation and treatment of the pathologies related to obesity and the metabolic syndrome.  相似文献   

3.

Background

The OLETF rat is an animal model of early onset hyperphagia induced obesity, presenting multiple pre-obese characteristics during the suckling period. In the present study, we used a cross-fostering strategy to assess whether interactions with obese dams in the postnatal environment contributed to the development of obesity.

Methodology

On postnatal Day (PND)-1 OLETF and control LETO pups were cross-fostered to same or opposite strain dams. An independent ingestion test was performed on PND11 and a nursing test on PND18. Rats were sacrificed at weaning or on PND90, and plasma leptin, insulin, cholesterol, triglycerides and alanine aminotransferase (ALT) were assayed. Fat pads were collected and weighed and adipocyte size and number were estimated. Body weight and intake, as well as the estrous cycle of the female offspring were monitored.

Principal Findings

During the suckling period, the pups'' phenotype was almost completely determined by the strain of the mother. However, pups independently ingested food according to their genotype, regardless of their actual phenotype. At adulthood, cross fostered males of both strains and LETO females were affected in regard of their adiposity levels in the direction of the foster dam. On the other hand, OLETF females showed almost no alterations in adiposity but were affected by the strain of the dams in parameters related to the metabolic syndrome. Thus, OLETF females showed reduced liver adiposity and circulating levels of ALT, while LETO females presented a disrupted estrous cycle and increased cholesterol and triglycerides in the long term.

Conclusions

The present study provides further support for the early postnatal environment playing a sex-divergent role in programming later life phenotype. In addition, it plays a more central role in determining the functioning of mechanisms involved in energy balance that may provide protection from or sensitivity to later life obesity and pathologies related to the metabolic syndrome.  相似文献   

4.
Leptin acts as a satiety factor within the central nervous system by binding to its receptor located in the hypothalamus. A missense mutation of the leptin receptor induces hyperphagia and obesity in the obese Zucker fa/fa rat. Since the CNS is an important target of leptin action, we hypothesized that leptin gene transfer into the lateral cerebral ventricle could efficiently lead to inhibition of food intake and reduction of body weight in obese fa/fa rats as well as in lean animals. A single intracerebroventricular injection of an adenoviral vector containing a cDNA encoding leptin resulted in the expression of leptin in the ependymal cells lining the ventricle and the secretion of leptin into the cerebrospinal fluid (CSF). During the first week after injection, when high concentrations of leptin were produced in the CSF, the reducing effects of leptin on food intake and body weight were comparable in lean and in obese fa/fa rats. The subsequent decline in CSF leptin levels, that was similar in lean and obese fa/fa rats, resulted in the faster resumption of food intake and body weight gain in obese than in lean animals, confirming a reduced sensitivity to leptin in the obese group. The results of this study show that leptin gene delivery into the cerebral ventricles allows for the production of elevated leptin concentrations in CSF, and they support the hypothesis that the impaired sensitivity to leptin may be overcome in obese fa/fa rats.  相似文献   

5.
Patterns of leptin secretion during the estrous cycle and the possible relationship of changes in circulating leptin during the periovulatory period with ovarian function in sows of obese (Iberian breed) and lean genotype (Large White×Landrace) were evaluated in two consecutive experiments. Plasma leptin concentrations throughout the estrous cycle in lean sows remain unchanged, but Iberian females showed a periovulatory increase in circulating leptin levels without associated changes in body condition and fatness. In these sows, plasma leptin concentrations at Days -1 and 0 of the cycle were found to be positively correlated with the ovulation rate (r=0.943 and r=0.987, respectively; P<0.05 for both), but the levels of leptin at Day 0 were negatively correlated with the progesterone release from Day 3 (r=-0.557; P<0.05) and, became more evident at Day 5 of the estrous cycle (r=-0.924; P<0.005). Such relationships were not observed in the females of the lean genotype. In conclusion, the present study indicates the existence of a distinctive pattern in the periovulatory leptin secretion in swine with obesity and leptin resistance, which is associated with the number and functionality of the corpora lutea present in the subsequent cycle.  相似文献   

6.
7.
We have studied the hypothalamic activity of the neuropeptide Y (NPY) system in dietary-induced obese male Wistar rats and examined whether the NPY antagonist, BW1229U91, can inhibit the hyperphagia during positive energy balance associated with feeding rats an energy-rich, highly palatable diet. Rats given a highly palatable, high-fat diet became obese after 8 weeks and exhibited hyperinsulinemia and hyperleptinemia, as compared to lean rats fed on standard pellet laboratory diet. Hypothalamic NPY mRNA concentrations were significantly reduced by approximately 70% in dietary-obese rats compared with lean controls, and the former were hypersensitive to intracerebroventricular injections of NPY, possibly as a result of NPY receptor up-regulation. Intracerebroventricular injections of BW 1229U91, that inhibits food intake in starved rats, did not alter food intake in either control or obese rats fed either standard pellet diet or the highly palatable diet, respectively. We conclude that dietary-obese rats have underactive hypothalamic NPYergic neurons compared to lean controls, possibly as a result of increased plasma concentrations of leptin and/or insulin that directly inhibit the NPY neuronal activity. The lack of effect of BW1229U91 on the increased caloric intake of dietary-obese rats suggests that the hyperphagia is not NPY-driven and supports the data indicating reduced synaptic activity of the hypothalamic NPY system.  相似文献   

8.
In rats selectively bred to develop diet-induced obesity (DIO) or to be diet-resistant (DR), DIO maternal obesity selectively enhances the development of obesity and insulin resistance in their adult offspring. We postulated that the interaction between genetic predisposition and factors in the maternal environment alter the development of hypothalamic peptide systems involved in energy homeostasis regulation. Maternal obesity in the current studies led to increased body and fat pad weights and higher leptin and insulin levels in postnatal day 16 offspring of both DIO and DR dams. However, by 6 wk of age, most of these intergroup differences disappeared and offspring of obese DIO dams had unexpected increases in arcuate nucleus leptin receptor mRNA, peripheral insulin sensitivity, diet- and leptin-induced brown adipose temperature increase and 24-h anorectic response compared with offspring of lean DIO, but not lean DR dams. On the other hand, while offspring of obese DIO dams did have the highest ventromedial nucleus melanocortin-4 receptor expression, their anorectic and brown adipose thermogenic responses to the melanocortin agonist, Melanotan II (MTII), did not differ from those of offspring of lean DR or DIO dams. Thus, during their rapid growth phase, juvenile offspring of obese DIO dams have alterations in their hypothalamic systems regulating energy homeostasis, which ameliorates their genetic and perinatally determined predisposition toward leptin resistance. Because they later go onto become more obese, it is possible that interventions during this time period might prevent the subsequent development of obesity.  相似文献   

9.
There is growing evidence that the postnatal environment can have a major impact on the development of obesity and insulin resistance in offspring. We postulated that cross-fostering obesity-prone offspring to lean, obesity-resistant dams would ameliorate their development of obesity and insulin resistance, while fostering lean offspring to genetically obese dams would lead them to develop obesity and insulin resistance as adults. We found that obesity-prone pups cross-fostered to obesity-resistant dams remained obese but did improve their insulin sensitivity as adults. In contrast, obesity-resistant pups cross-fostered to genetically obese dams showed a diet-induced increase in adiposity, reduced insulin sensitivity, and associated changes in hypothalamic neuropeptide, insulin, and leptin receptors, which might have contributed to their metabolic defects. There was a selective increase in insulin levels and differences in fatty acid composition of obese dam milk which might have contributed to the increased adiposity, insulin resistance, and hypothalamic changes in obesity-resistant cross-fostered offspring. These results demonstrate that postnatal factors can overcome both genetic predisposition and prenatal factors in determining the development of adiposity, insulin sensitivity, and the brain pathways that mediate these functions.  相似文献   

10.
Changes in the ambient force environment alter the regulation of adiposity, food intake and energy expenditure (i.e., energy balance). Lean (Fa/Fa) and obese (fa/fa) male Zucker rats were exposed to 2G (twice Earth's normal gravity) for eight weeks via centrifugation to test the hypothesis that the Fa/Fa rats recover to a greater degree from the effects of an increased ambient force environment on body mass and food intake, than do the fa/fa rats which have a dysfunctional leptin regulatory system. The rats (lean and obese exposed to either 1G or 2G) were individually housed in standard vivarium cages with food and water provided ad libitum. The acute response to 2G included a transient hypophagia accompanied by decreased body mass, followed by recovery of feeding to new steady-states. In the lean rats, body mass-independent food intake had returned to 1G control levels six weeks after the onset of centrifugation, and body mass increased towards that of the 1G rats. In contrast, food intake and body mass of the 2G obese rats plateaued at a level lower than that of the 1G controls. Although percent carcass fat was reduced more in the 2G leans vs. 2G obese rats, the latter lost significantly more grams of fat than did the leans. Our data suggest that with respect to food intake and body mass, the lean rats recover from the initial effects of 2G exposure to a greater degree than do the fatty rats, a difference that likely reflects the functionality of the leptin regulatory system in the leans.  相似文献   

11.
Risk of obesity in adult life is subject to programming during gestation. To examine whether in utero exposure to maternal obesity increases the risk of obesity in offspring, we developed an overfeeding-based model of maternal obesity in rats utilizing intragastric feeding of diets via total enteral nutrition. Feeding liquid diets to adult female rats at 220 kcal/kg(3/4) per day (15% excess calories/day) compared with 187 kcal/kg(3/4) per day for 3 wk caused substantial increase in body weight gain, adiposity, serum insulin, leptin, and insulin resistance. Lean or obese female rats were mated with ad libitum AIN-93G-fed male rats. Exposure to obesity was ensured to be limited only to the maternal in utero environment by cross-fostering pups to lean dams having ad libitum access to AIN-93G diets throughout lactation. Numbers of pups, birth weight, and size were not affected by maternal obesity. Male offspring from each group were weaned at postnatal day (PND)21 to either AIN-93G diets or high-fat diets (45% fat calories). Body weights of offspring from obese dams did not differ from offspring of lean dams when fed AIN-93G diets through PND130. However, offspring from obese dams gained remarkably greater (P < 0.005) body weight and higher % body fat when fed a high-fat diet. Body composition was assessed by NMR, X-ray computerized tomography, and weights of adipose tissues. Adipose histomorphometry, insulin sensitivity, and food intake were also assessed in the offspring. Our data suggest that maternal obesity at conception leads to fetal programming of offspring, which could result in obesity in later life.  相似文献   

12.
Male Zucker rats were exposed to 2 G for 8 wk to test the hypothesis that the leptin regulatory pathway contributes to recovery from effects of 2 G on feeding, growth, and nutrient partitioning. After initial hypophagia, body mass-independent food intake of the lean rats exposed to 2 G surpassed that of the lean rats maintained at 1 G, but food intake of the obese rats exposed to 2 G remained low. After 8 wk at 2 G, body mass and carcass fat were less in both genotypes. Leptin and percent fat were lower in lean rats exposed to 2 G vs. 1 G but did not differ in obese rats exposed to 2 G vs. 1 G. Although exposure to 2 G did not alter uncoupling protein-1 levels, it did elicit white fat pad-specific changes in lipoprotein lipase activity in obese but not lean rats. We conclude that 2 G affects both genotypes but that the lean Zucker rats recover their food intake and growth rate and retain "normal" lipoprotein lipase activity to a greater degree than do the obese rats, emphasizing the importance of a functional leptin regulatory pathway in this acclimation.  相似文献   

13.
This article compared the effects of spontaneous obesity on the daily profile in the relative amount of the leptin receptor (LepRb), and its output. That is the precursor Pro-opiomelanocortin (POMC) over a 24-hour period and compared with differences in locomotion and food intake in periods of artificial light. Differences between lean and obese mice were examined, as were sex differences. Body weight, food intake and locomotor activity were monitored in freely moving lean and obese mice. Hypothalamic tissue was collected at 5 h, 10 h, 15 h, 19 h and 24 h. Samples were analyzed by western blotting to determine the relative presence of protein for LepRb, STAT3 phosphorylation (by pSTAT3/STAT3 ratio) and POMC. Obese mice were 60% less active in locomotion than lean mice during the night. While both locomotor activity and food intake were noticeably greater during the day in obese mice than in lean mice, the hypothalamus in obese mice showed a lower relative abundance of POMC and reduced pSTAT3/STAT3 ratio and leptin receptors. Behavioral and biochemical differences were more evident in obese females than in obese males. These results indicate that obesity in N. alstoni affects hypothalamic leptin signaling according to sex.  相似文献   

14.
The relationship was evaluated between early nutritional experiences, the intestinal microflora and the small intestinal functions in the mechanism of predisposition to obesity development. Male Sprague-Dawley rats were used in which the quantity of nutrition was manipulated from birth to weaning (day 30) by adjusting the number of pups in the nest to 4 small litters (SL) and 10 normal litters (NL) and fed a standard diet from days 30 to 40 of age. After 40 d, the postnatally overfed SL pups became heavier, displayed significantly enhanced adiposity, body mass gain and food intake as well as a significantly higher jejunal alkaline phosphatase and maltase activity than in rats nursed in NL nests. The effect of different early nutrition was also accompanied by the appearance of significantly decreased Bacteroides and significantly increased enterococci and lactobacilli of obese rats than in lean NL rats. The amounts of Bacteroides were negatively correlated with fat pad mass, body mass, body-mass gain and food intake whereas enterococci and lactobacilli were correlated positively with the same parameters. Our results demonstrate that postnatal nutritional experience may represent a predisposing factor influencing ontogeny of small intestine function and development of intestinal microbial communities. The acquired changes and associated alterations in food digestion could be a component of regulatory mechanisms contributing to the development of obesity and its maintenance in later life.  相似文献   

15.
In this study, susceptibility of inbred C57BL/6 and outbred NMRI mice to monosodium glutamate (MSG) obesity or diet-induced obesity (DIO) was compared in terms of food intake, body weight, adiposity as well as leptin, insulin and glucose levels. MSG obesity is an early-onset obesity resulting from MSG-induced lesions in arcuate nucleus to neonatal mice. Both male and female C57BL/6 and NMRI mice with MSG obesity did not differ in body weight from their lean controls, but had dramatically increased fat to body weight ratio. All MSG obese mice developed severe hyperleptinemia, more remarkable in females, but only NMRI male mice showed massive hyperinsulinemia and an extremely high HOMA index that pointed to development of insulin resistance. Diet-induced obesity is a late-onset obesity; it developed during 16-week-long feeding with high-fat diet containing 60 % calories as fat. Inbred C57BL/6 mice, which are frequently used in DIO studies, both male and female, had significantly increased fat to body weight ratio and leptin and glucose levels compared with their appropriate lean controls, but only female C57BL/6 mice had also significantly elevated body weight and insulin level. NMRI mice were less prone to DIO than C57BL/6 ones and did not show significant changes in metabolic parameters after feeding with high-fat diet.  相似文献   

16.
The obese Zucker rat has a genetically flawed leptin system and is a model of hyperphagia, obesity, hyperlipidemia, and markedly elevated leptin levels. Dehydroepiandrosterone (DHEA) administration reduces hyperphagia, hyperlipidemia, and obesity in Zucker rats. Since serum leptin levels are associated with body fat, we wondered what the effects of fat pad weight reduction from DHEA administration would have on leptin levels. This experiment investigated the effects of DHEA on intra-abdominal fat pads, serum lipids, and peripheral leptin in male lean and obese Zucker rats that were administered DHEA in their food from 4 weeks of age to 20 weeks. Lean and obese rats received plain chow or chow containing DHEA. Additional chow-fed groups of lean and obese weight-matched controls and obese pair-fed rats helped to control for the reduced body weight, food intake, and fat pad weights seen with DHEA administration. DHEA administration to lean Zucker rats reduced body weight and fat pad weights, but leptin levels showed a lower trend. Among obese rats, both DHEA treatment and pair-feeding reduced body weight and fat pad weights, but only DHEA lowered leptin levels. The weight-matched controls had reductions in fat pad weights similar to the DHEA-treated group, but with increased leptin levels. Thus, DHEA may exert a small, independent effect on leptin levels in this animal model, but the reduction is less than what would be expected.  相似文献   

17.
We have previously demonstrated that running-wheel access normalizes the food intake and body weight of Otsuka Long-Evens Tokushima Fatty (OLETF) rats. Following 6 wk of running-wheel access beginning at 8 wk of age, the body weight of OLETF rats remains reduced, demonstrating a lasting effect on their phenotype. In contrast, access to a high-fat diet exacerbates the hyperphagia and obesity of OLETF rats. To determine whether diet modulates the long-term effects of exercise, we examined the effects of high-fat diet on food intake and body weight in OLETF rats that had prior access to running wheels for 4 wk. We found that 4 wk of running exercise significantly decreased food intake and body weight of OLETF rats. Consistent with prior results, 4 wk of exercise also produced long-lasting effects on food intake and body weight in OLETF rats fed a regular chow. When running wheels were relocked, OLETF rats stabilized at lower levels of body weight than sedentary OLETF rats. However, access to a high-fat diet offset these effects. When OLETF rats were switched to a high-fat diet following wheel relocking, they significantly increased food intake and body weight, so that they reached levels similar to those of sedentary OLETF rats fed a high-fat diet. Gene expression determination of hypothalamic neuropeptides revealed changes that appeared to be appropriate responses to the effects of diet and running exercise. Together, these results demonstrate that high-fat diet modulates the long-lasting effects of exercise on food intake and body weight in OLETF rats.  相似文献   

18.
Obese Zucker rats (fa/fa) are characterized by inadequate leptin signaling caused by a mutation in the leptin receptor gene. Obese Zucker females are infertile and hyporesponsive to the inductive effects of ovarian hormones on sexual behaviors. Leptin treatment reverses aspects of reproductive dysfunction due to perturbations in energy balance in other animal models. Our first experiment tested the hypothesis that intracerebroventricular (icv) leptin administration would enhance the display of sexual behaviors in obese Zucker females. A second experiment compared lean and obese Zucker females' responses to leptin, during fed and fasted conditions. Ovariectomized (OVX) Zucker rats were implanted with lateral ventricular cannulae. In Experiment 1, fasted, obese females received estradiol benzoate, progesterone, and icv injections of 3, 18, or 36 microg murine leptin or vehicle. Leptin administration reduced food intake, but did not enhance sexual behaviors. In Experiment 2, steroid-replaced, OVX lean and obese females (from a different source than those in Experiment 1) received icv injections of vehicle or 3 or 36 microg leptin under fed and fasted conditions. Leptin treatment reduced food intake and weight gain in the fed, but not the fasted, condition in both genotypes. Sexual receptivity and locomotion were not affected, but icv leptin injections reduced proceptive behaviors in ad libitum-fed rats. These data confirm previous reports that centrally administered leptin decreases food intake and weight gain in obese Zucker rats; results from Experiment 2 suggest that lean and obese females are similarly responsive to these actions of leptin. Contrary to our hypothesis, leptin treatment did not stimulate sexual behaviors; rather, the hormone appears to inhibit the display of sexual proceptivity in ad libitum-fed lean and obese Zucker female rats.  相似文献   

19.
This study presents an in-depth analysis of the effects of obesity on energy balance (EB) and fuel utilization in adult female rats, over the estrous cycle and immediately after surgical ovariectomy (OVX), to model pre- and postmenopausal states, respectively. Female Wistar rats were fed a high-fat (46%) diet for 16 wk to produce mature lean and obese animals. Stage of estrous was identified by daily vaginal lavage, while energy intake (EI), total energy expenditure (TEE), and fuel utilization were monitored in a multichamber indirect calorimeter and activity was monitored by infrared beam breaks. Metabolic monitoring studies were repeated during the 3-wk period of rapid OVX-induced weight gain. Component analysis of TEE was performed to determine the nonresting and resting portions of energy expenditure. Obesity was associated with a greater fluctuation in EB across the estrous cycle. Cycling obese rats were less active, expended more energy per movement, and oxidized more carbohydrate than lean rats. The changes in EB over the cycle in lean and obese rats were driven by changes in EI. Finally, OVX induced a large positive energy imbalance in obese and lean rats. This resulted primarily from an increase in EI in both groups, with little change in TEE following OVX. These observations reveal a dominant effect of obesity on EB, fuel utilization, and activity levels in cycling rats, which has implications for studies focused on obesity and EB in female rodents.  相似文献   

20.
Obesity is frequently associated with leptin resistance. The present study investigated whether leptin resistance in rats is present before obesity develops, and thus could underlie obesity induced by 16 wk exposure to a liquid, palatable, high-energy diet (HED). Before HED exposure, male Wistar rats (weighing between 330 and 360 g) received intravenous infusions of 20 microg leptin 2 h before dark (approximately 57 microg/kg rat). Relative to saline infusion, this caused a highly variable effect on food intake (ranging between -94 and +129%), with food intake suppression that appeared negatively correlated with HED-induced increases in body weight gain, caloric intake, adiposity, and plasma leptin levels. In contrast, leptin's thermogenic response was positively correlated to body weight gain linked to weights of viscera, but not to adiposity. Before HED exposure, leptin unexpectedly increased food intake in some rats (fi+, n = 8), whereas others displayed the normal reduction in food intake (fi-, n = 7). HED-exposed fi+ rats had higher plasma leptin levels, retroperitoneal fat pad weight, HED intake, and body weight gain than fi- and chow-fed rats. These parameters were also higher in HED-exposed fi-rats relative to chow rats, except for plasma leptin concentrations. It is concluded that leptin's reduced efficacy to suppress food intake could predict obesity on an HED. An unexpected orexigenic effect of leptin might potentially contribute to this as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号