首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Although prostate cancer typically runs an indolent course, a subset of men develop aggressive, fatal forms of this disease. We hypothesize that germline variation modulates susceptibility to aggressive prostate cancer. The goal of this work is to identify susceptibility genes using the C57BL/6-Tg(TRAMP)8247Ng/J (TRAMP) mouse model of neuroendocrine prostate cancer. Quantitative trait locus (QTL) mapping was performed in transgene-positive (TRAMPxNOD/ShiLtJ) F2 intercross males (n = 228), which facilitated identification of 11 loci associated with aggressive disease development. Microarray data derived from 126 (TRAMPxNOD/ShiLtJ) F2 primary tumors were used to prioritize candidate genes within QTLs, with candidate genes deemed as being high priority when possessing both high levels of expression-trait correlation and a proximal expression QTL. This process enabled the identification of 35 aggressive prostate tumorigenesis candidate genes. The role of these genes in aggressive forms of human prostate cancer was investigated using two concurrent approaches. First, logistic regression analysis in two human prostate gene expression datasets revealed that expression levels of five genes (CXCL14, ITGAX, LPCAT2, RNASEH2A, and ZNF322) were positively correlated with aggressive prostate cancer and two genes (CCL19 and HIST1H1A) were protective for aggressive prostate cancer. Higher than average levels of expression of the five genes that were positively correlated with aggressive disease were consistently associated with patient outcome in both human prostate cancer tumor gene expression datasets. Second, three of these five genes (CXCL14, ITGAX, and LPCAT2) harbored polymorphisms associated with aggressive disease development in a human GWAS cohort consisting of 1,172 prostate cancer patients. This study is the first example of using a systems genetics approach to successfully identify novel susceptibility genes for aggressive prostate cancer. Such approaches will facilitate the identification of novel germline factors driving aggressive disease susceptibility and allow for new insights into these deadly forms of prostate cancer.  相似文献   

2.
Macrophage inhibitory cytokine-1 (MIC-1/GDF15), a divergent member of the TGF-β superfamily, is over-expressed by many common cancers including those of the prostate (PCa) and its expression is linked to cancer outcome. We have evaluated the effect of MIC-1/GDF15 overexpression on PCa development and spread in the TRAMP transgenic model of spontaneous prostate cancer. TRAMP mice were crossed with MIC-1/GDF15 overexpressing mice (MIC-1(fms)) to produce syngeneic TRAMP(fmsmic-1) mice. Survival rate, prostate tumor size, histopathological grades and extent of distant organ metastases were compared. Metastasis of TC1-T5, an androgen independent TRAMP cell line that lacks MIC-1/GDF15 expression, was compared by injecting intravenously into MIC-1(fms) and syngeneic C57BL/6 mice. Whilst TRAMP(fmsmic-1) survived on average 7.4 weeks longer, had significantly smaller genitourinary (GU) tumors and lower PCa histopathological grades than TRAMP mice, more of these mice developed distant organ metastases. Additionally, a higher number of TC1-T5 lung tumor colonies were observed in MIC-1(fms) mice than syngeneic WT C57BL/6 mice. Our studies strongly suggest that MIC-1/GDF15 has complex actions on tumor behavior: it limits local tumor growth but may with advancing disease, promote metastases. As MIC-1/GDF15 is induced by all cancer treatments and metastasis is the major cause of cancer treatment failure and cancer deaths, these results, if applicable to humans, may have a direct impact on patient care.  相似文献   

3.
Prostate cancer (PCa) remains the second-leading cause of cancer-related deaths in American men with an estimated mortality of more than 26,000 in 2016 alone. Aggressive and metastatic tumors are treated with androgen deprivation therapies (ADT); however, the tumors acquire resistance and develop into lethal castration resistant prostate cancer (CRPC). With the advent of better therapeutics, the incidences of a more aggressive neuroendocrine prostate cancer (NEPC) variant continue to emerge. Although de novo occurrences of NEPC are rare, more than 25% of the therapy-resistant patients on highly potent new-generation anti-androgen therapies end up with NEPC. This, along with previous observations of an increase in the number of such NE cells in aggressive tumors, has been suggested as a mechanism of resistance development during prostate cancer progression. Dovitinib (TKI-258/CHIR-258) is a pan receptor tyrosine kinase (RTK) inhibitor that targets VEGFR, FGFR, PDGFR, and KIT. It has shown efficacy in mouse-model of PCa bone metastasis, and is presently in clinical trials for several cancers. We observed that both androgen receptor (AR) positive and AR-negative PCa cells differentiate into a NE phenotype upon treatment with Dovitinib. The NE differentiation was also observed when mice harboring PC3-xenografted tumors were systemically treated with Dovitinib. The mechanistic underpinnings of this differentiation are unclear, but seem to be supported through MAPK-, PI3K-, and Wnt-signaling pathways. Further elucidation of the differentiation process will enable the identification of alternative salvage or combination therapies to overcome the potential resistance development.  相似文献   

4.
Significant evidence suggests protective effects of flavonoids against obesity in animal models, but these often do not translate to humans. One explanation for this disconnect is use of a few mouse strains (notably C57BL/6 J) in obesity studies. Obesity is a multifactorial disease. The underlying causes are not fully replicated by the high-fat C57BL/6 J model, despite phenotypic similarities. Furthermore, the impact of genetic factors on the activities of flavonoids is unknown. This study was designed to explore how diverse mouse strains respond to diet-induced obesity when fed a representative flavonoid. A subset of Collaborative Cross founder strains (males and females) were placed on dietary treatments (low-fat, high-fat, high-fat with quercetin, high-fat with quercetin and antibiotics) longitudinally. Diverse responses were observed across strains and sexes. Quercetin appeared to moderately blunt weight gain in male C57 and both sexes of 129S1/SvImJ mice, and slightly increased weight gain in female C57 mice. Surprisingly, quercetin dramatically blunted weight gain in male, but not female, PWK/PhJ mice. For female mice, quercetin blunted weight gain (relative to the high-fat phase) in CAST/PhJ, PWK/EiJ and WSB/EiJ mice compared to C57. Antibiotics did not generally result in loss of protective effects of quercetin. This highlights complex interactions between genetic factors, sex, obesity stimuli, and flavonoid intake, and the need to move away from single inbred mouse models to enhance translatability to diverse humans. These data justify use of genetically diverse Collaborative Cross and Diversity Outbred models which are emerging as invaluable tools in the field of personalized nutrition.  相似文献   

5.
The spectra and dose response for mutations at expanded simple tandem repeat (ESTR) loci in the germline of male mice acutely exposed to low-LET X or gamma rays at pre-meiotic stages of spermatogenesis were compared in five strains of laboratory mice. Most mutation events involved the gain or loss of a relatively small number of repeat units, and the distributions of length changes were indistinguishable between the exposed and control males. Overall, a significant bias toward gains of repeats was detected, with approximately 60% of mutants showing gains. The values for ESTR mutation induction did not differ substantially between strains. The highest values of doubling dose were obtained for two genetically related strains, BALB/c and C.B17 (mean value 0.98 Gy). The estimates of doubling dose for three other strains (CBA/H, C57BL/6 x CBA/H F1 and 129SVJ x C57BL/6) were lower, with a mean value of 0.44 Gy. The dose response for ESTR mutation across all five strains was very close to that for the specific loci (Russell 7-locus test). The mechanisms of ESTR mutation induction and applications of this system for monitoring radiation-induced mutation in the mouse germline are discussed.  相似文献   

6.
Nonalcoholic fatty liver disease (NAFLD) is a major health problem worldwide. Currently, there is a lack of conclusive information to clarify the molecular events and mechanisms responsible for the progression of NAFLD to fibrosis and cirrhosis and, more importantly, for differences in interindividual disease severity. The aim of this study was to investigate a role of interindividual differences in iron metabolism among inbred mouse strains in the pathogenesis and severity of fibrosis in a model of NAFLD. Feeding male A/J, 129S1/SvImJ and WSB/EiJ mice a choline- and folate-deficient diet caused NAFLD-associated liver injury and iron metabolism abnormalities, especially in WSB/EiJ mice. NAFLD-associated fibrogenesis was correlated with a marked strain- and injury-dependent increase in the expression of iron metabolism genes, especially transferrin receptor (Tfrc), ferritin heavy chain (Fth1), and solute carrier family 40 (iron-regulated transporter), member 1 (Slc40a1, Fpn1) and their related proteins, and pronounced down-regulation of the iron regulatory protein 1 (IRP1), with the magnitude being A/J<129S1/SvImJ<WSB/EiJ. Mechanistically, down-regulation of IRP1 was linked to an increased expression of microRNAs miR-200a and miR-223, which was negatively correlated with IRP1. The results of this study demonstrate that the interstrain variability in the extent of fibrogenesis was associated with a strain-dependent deregulation of hepatic iron homeostasis.  相似文献   

7.
8.
Bone metastasis is the major cause of morbidity and mortality of prostate cancer (PCa). Fibroblast growth factor 9 (FGF9) has been reported to promote PCa bone metastasis. However, the mechanism by which overexpression of FGF9 promotes PCa progression and metastasis is still unknown. Herein, we report that transgenic mice forced to express FGF9 in prostate epithelial cells (F9TG) developed high grade prostatic intraepithelial neoplasia (PIN) in an expression level- and time-dependent manner. Moreover, FGF9/TRAMP bigenic mice (F9TRAMP) grew advanced PCa earlier and had higher frequencies of metastasis than TRAMP littermates. We observed tumor microenvironmental changes including hypercellularity and hyperproliferation in the stromal compartment of F9TG and F9TRAMP mice. Expression of TGFβ1, a key signaling molecule overexpressed in reactive stroma, was increased in F9TG and F9TRAMP prostates. Both in vivo and in vitro data indicated that FGF9 promoted TGFβ1 expression via increasing cJun-mediated signaling. Moreover, in silico analyses showed that the expression level of FGF9 was positively associated with expression of TGFβ1 and its downstream signaling molecules in human prostate cancers. Collectively, our data demonstrated that overexpressing FGF9 in PCa cells augmented the formation of reactive stroma and promoted PCa initiation and progression.  相似文献   

9.
Hst-3: an X-linked hybrid sterility gene   总被引:4,自引:0,他引:4  
A gene, Hst-3, responsible for sterility in F1 males from crosses between Mus spretus and laboratory strains of mice such as C57BL/6, has been localized on the distal part of the X chromosome, using both DNA probes and biochemical markers on a panel of F1(C57BL/6 x SEG) x C57BL/6 backcross males. This gene may be a model for studying mammalian hybrid sterility.  相似文献   

10.
The mode of inheritance of hydronephrosis was investigated by crossing inbred DDD mice having a high incidence of hydronephrosis and C57BL/6 mice having normal kidneys. In the males, incidences of hydronephrosis in F1 animals were intermediate between the two parental strains at a rate of 32.6% in (DDD x C57BL/6)F1 and 23.4% in reciprocal F1. The same tendency was observed in F2 male animals. In BCF1 males, the number of affected mice was higher in (C57BL/6 x DDD) F1 x DDD (72.4%) than in (DDD x C57BL/6)F1 x C57BL/6 (11.1%). A few affected mice were found among the females of hybrids F1, F2 and BCF1. These results suggested that hydronephrosis in the DDD strain of mice was controlled by polygenes, and that male hormones may have some effect on the occurrence of hydronephrosis.  相似文献   

11.
Neuroendocrine tumor cells (NETCs) are commonly observed in prostate cancer. Their presence is associated with castration resistance, metastasis and poor prognosis. Cellular and molecular mechanisms for NETC initiation and growth are unknown. TRAMP mice develop heterogeneous adenocarcinomas induced by expression of the SV40-T/t oncogene in prostate epithelial cells. Here, we demonstrate prostate tumors in TRAMP mice with a mixed genetic background are characterized mostly by atypical hyperplasia (AH) containing steroid receptor coactiator-3-positive, androgen receptor-positive and synaptophysin-negative (SRC-3+/AR+/Syp-) cells. Few SRC-3+/AR-/Syp+ NETCs are present in their prostates. We generated TRAMP mice in which SRC-3 was specifically ablated in AR+/Syp- prostatic epithelial cells (termed PE3KOT mice). In these animals, we observed a substantial reduction in SRC-3-/AR+/Syp- AH tumor growth. There was a corresponding increase in SRC-3-/AR+/Syp- phyllodes lesions, suggesting SRC-3 knockout can convert aggressive AH tumors with mostly epithelial tumor cells into less aggressive phyllodes lesions with mostly stromal tissue. Surprisingly, PE3KOT mice developed many more SRC-3+/AR-/Syp+ NETCs versus control TRAMP mice, indicating SRC-3 expression was retained in NETCs. In contrast, TRAMP mice with global SRC-3 knockout did not develop any NETC, indicating SRC-3 is required for developing NETC. Analysis of cell-differentiating markers revealed that these NETCs might not be derived from the mature AR-/Syp+ neuroendocrine cells or the AR+/Syp- luminal epithelial tumor cells. Instead, these NETCs might originate from the SV40-T/t-transformed intermediate/progenitor epithelial cells. In summary, SRC-3 is required for both AR+/Syp- AH tumor growth and AR-/Syp+ NETC development, suggesting SRC-3 is a target for inhibiting aggressive prostate cancer containing NETCs.  相似文献   

12.
Morphometrical observations were carried out on the mandibles of chimeras made from the embryos of C57BL/6 and BALB/c mice to compare with the two strains and their reciprocal F1 crosses. The results of the principal component analysis indicate that the first principal component (PC1) and the second principal component (PC2) extracted might be acceptable as size and shape factors, respectively. Variations of both PC1 and PC2 were generally larger in the chimeras than in the two component strains and their F1 crosses. The mean PC1 value of the chimeras was larger than that of the two component inbred strains, and it was similar to that of F1 crosses, or slightly larger. The overall size of the mandible represented by PC1 tended to be larger in the chimeras consisting of two component cells that were approximately equivalent than in those that shifted to either cell population. The above trend was observed in both sexes. These results indicate that chimeric heterosis due to the interaction between genetically different cells (C57BL/6 and BALB/c) has some relation to mandible size. The mean PC2 value, which was accepted as shape factor, was intermediate between the two inbred strains. The mandible size (PC1) and shape (PC2) were bilaterally symmetrical, except for the shape in the female chimeras and in (C57BL/6 x BALB/c)F1.  相似文献   

13.
Prostate cancer (PC) is a leading cause of death in men however the factors that regulate its progression and eventual metastasis to bone remain unclear. Here we show that WISP1/CCN4 expression in prostate cancer tissues was up-regulated in early stages of the disease and, further, that it correlated with increased circulating levels of WISP1 in the sera of patients at early stages of the disease. WISP1 was also elevated in the mouse prostate cancer model TRAMP in the hypoplastic diseased tissue that develops prior to advanced carcinoma formation. When the ability of anti-WISP1 antibodies to reduce the spread of PC3-Luc cells to distant sites was tested it showed that twice weekly injections of anti-WISP1 antibodies reduced the number and overall size of distant tumors developed after intracardiac (IC) injection of PC3-Luc cells in mice. The ability of antibodies against WISP1 to inhibit growth of PC3-Luc cancer cells in mice was also evaluated and showed that twice weekly injections of anti-WISP1 antibodies reduced local tumor growth when examined in xenografts. To better understand the mechanism of action, the migration of PC3-Luc cells through membranes with or without a Matrigel™ barrier showed the cells were attracted to WISP1, and that this attraction was inhibited by treatment with anti-WISP1 antibodies. We also show the expression of WISP1 at the bone-tumor interface and in the stroma of early grade cancers suggested WISP1 expression is well placed to play roles in both fostering growth of the cancer and its spread to bone. In summary, the up-regulation of WISP1 in the early stages of cancer development coupled with its ability to inhibit spread and growth of prostate cancer cells makes it both a potential target and an accessible diagnostic marker for prostate cancer.  相似文献   

14.
Here, we show that apolipoprotein A1 (apoA1), the major protein component of high density lipoprotein (HDL), through both innate and adaptive immune processes, potently suppresses tumor growth and metastasis in multiple animal tumor models, including the aggressive B16F10L murine malignant melanoma model. Mice expressing the human apoA1 transgene (A1Tg) exhibited increased infiltration of CD11b+ F4/80+ macrophages with M1, anti-tumor phenotype, reduced tumor burden and metastasis, and enhanced survival. In contrast, apoA1-deficient (A1KO) mice showed markedly heightened tumor growth and reduced survival. Injection of human apoA1 into A1KO mice inoculated with tumor cells remarkably reduced both tumor growth and metastasis, enhanced survival, and promoted regression of both tumor and metastasis burden when administered following palpable tumor formation and metastasis development. Studies with apolipoprotein A2 revealed the anti-cancer therapeutic effect was specific to apoA1. In vitro studies ruled out substantial direct suppressive effects by apoA1 or HDL on tumor cells. Animal models defective in different aspects of immunity revealed both innate and adaptive arms of immunity contribute to complete apoA1 anti-tumor activity. This study reveals a potent immunomodulatory role for apoA1 in the tumor microenvironment, altering tumor-associated macrophages from a pro-tumor M2 to an anti-tumor M1 phenotype. Use of apoA1 to redirect in vivo elicited tumor-infiltrating macrophages toward tumor rejection may hold benefit as a potential cancer therapeutic.  相似文献   

15.
The increasing use of ES cell lines from strains other than 129, in particular C57BL/6, has greatly reduced the time taken to generate gene knockouts on a defined genetic background. Generally, C57BL/6 ES cell lines transmit less efficiently through the germline than 129 lines; consequently the burden on animal husbandry at this stage is increased. Genotyping sperm from chimaeric males may be used to identify mice which are transmitting the manipulated allele, however it requires that the mice be culled and the sperm used for IVF. Here we describe a quick and reliable method for genotyping copulatory plugs. Males which produce a positive result can then be naturally mated. Thus far we have observed a perfect correlation between copulatory plug genotype and germline transmission, accompanied by considerable savings in mouse numbers and resources.  相似文献   

16.
Functional genetic analyses in mice rely on efficient and in-depth characterization of the behavioral spectrum. Automated home-cage observation can provide a systematic and efficient screening method to detect unexplored, novel behavioral phenotypes. Here, we analyzed high-throughput automated home-cage data using existing and novel concepts, to detect a plethora of genetic differences in spontaneous behavior in a panel of commonly used inbred strains (129S1/SvImJ, A/J, C3H/HeJ, C57BL/6J, BALB/cJ, DBA/2J, NOD/LtJ, FVB/NJ, WSB/EiJ, PWK/PhJ and CAST/EiJ). Continuous video-tracking observations of sheltering behavior and locomotor activity were segmented into distinguishable behavioral elements, and studied at different time scales, yielding a set of 115 behavioral parameters of which 105 showed highly significant strain differences. This set of 115 parameters was highly dimensional; principal component analysis identified 26 orthogonal components with eigenvalues above one. Especially novel parameters of sheltering behavior and parameters describing aspects of motion of the mouse in the home-cage showed high genetic effect sizes. Multi-day habituation curves and patterns of behavior surrounding dark/light phase transitions showed striking strain differences, albeit with lower genetic effect sizes. This spontaneous home-cage behavior study demonstrates high dimensionality, with a strong genetic contribution to specific sets of behavioral measures. Importantly, spontaneous home-cage behavior analysis detects genetic effects that cannot be studied in conventional behavioral tests, showing that the inclusion of a few days of undisturbed, labor extensive home-cage assessment may greatly aid gene function analyses and drug target discovery.  相似文献   

17.
In contrast to Ag-specific alphabeta T cells, gammadelta T cells can kill malignantly transformed cells in a manner that does not require the recognition of tumor-specific Ags. Although such observations have contributed to the emerging view that gammadelta T cells provide protective innate immunosurveillance against certain malignancies, particularly those of epithelial origin, they also provide a rationale for developing novel clinical approaches to exploit the innate antitumor properties of gammadelta T cells for the treatment of cancer. Using TRAMP, a transgenic mouse model of prostate cancer, proof-of-concept studies were performed to first establish that gammadelta T cells can indeed provide protective immunosurveillance against spontaneously arising mouse prostate cancer. TRAMP mice, which predictably develop prostate adenocarcinoma, were backcrossed with gammadelta T cell-deficient mice (TCRdelta(-/-) mice) yielding TRAMP x TCRdelta(-/-) mice, a proportion of which developed more extensive disease compared with control TRAMP mice. By extension, these findings were then used as a rationale for developing an adoptive immunotherapy model for treating prostate cancer. Using TRAMP-C2 cells derived from TRAMP mice (C57BL/6 genetic background), disease was first established in otherwise healthy wild-type C57BL/6 mice. In models of localized and disseminated disease, tumor-bearing mice treated i.v. with supraphysiological numbers of syngeneic gammadelta T cells (C57BL/6-derived) developed measurably less disease compared with untreated mice. Disease-bearing mice treated i.v. with gammadelta T cells also displayed superior survival compared with untreated mice. These findings provide a biological rationale for clinical trials designed to adoptively transfer ex vivo expanded autologous gammadelta T cells for the treatment of prostate cancer.  相似文献   

18.
Immunity to a syngeneic methylcholanthrene-induced tumor was studied in (C57BL/6 X C3H)F1 males, treated continuously from birth with a rabbit anti-mouse IgM serum. Such mice have been shown to be selectively depleted of Ig-bearing lymphocytes and incapable of synthesizing antibodies. In the experiments reported, a heightened resistance of these mice to the syngeneic fibrosarcoma was demonstrated. This resistance was manifest in significantly slower tumor growth at the site of injection, as well as a lower incidence of spontaneous pulmonary metastasis.  相似文献   

19.
Intestinal microbial community structure is driven by host genetics in addition to environmental factors such as diet. In comparison with environmental influences, the effect of host genetics on intestinal microbiota, and how host-driven differences alter host metabolism is unclear. Additionally, the interaction between host genetics and diet, and the impact on the intestinal microbiome and possible down-stream effect on host metabolism is not fully understood, but represents another aspects of inter-individual variation in disease risk. The objectives of this study were to investigate how diet and genetic background shape microbial communities, and how these diet- and genetic-driven microbial differences relate to cardiometabolic phenotypes. To determine these effects, we used the 8 progenitor strains of the collaborative cross/diversity outbred mapping panels (C57BL/6J, A/J, NOD/ShiLtJ, NZO/HILtJ, WSB/EiJ, CAST/EiJ, PWK/PhJ, and 129S1/SvImJ). 16s rRNA profiling of enteric microbial communities in addition to the assessment of phenotypes central to cardiometabolic health was conducted under baseline nutritional conditions and in response to diets varying in atherogenic nutrient (fat, cholesterol, cholic acid) composition. These studies revealed strain-driven differences in enteric microbial communities which were retained with dietary intervention. Diet–strain interactions were seen for a core group of cardiometabolic-related microbial taxa. In conclusion, these studies highlight diet and genetically regulated cardiometabolic-related microbial taxa. Furthermore, we demonstrate the progenitor model is useful for nutrigenomic-based studies and screens seeking to investigate the interaction between genetic background and the phenotypic and microbial response to diet.  相似文献   

20.
目的:观察干扰MMP-9和FAK双基因对恶性黑色素瘤高转移细胞B16F10体内转移的影响。方法:构建PGV102-MMP9-siRNA、PGV102-FAK-siRNA重组质粒载体,脂质体TM2000介导转染小鼠黑色素瘤B16F10细胞,RT-PCR检测基因的干扰效果;建立C57BL/6小鼠皮下移植瘤模型观察细胞在体成瘤和肿瘤的生长情况,常规组织切片,H&E染色观察肿瘤组织病理学特征;经C57BL/6小鼠尾静脉注射细胞5×105个/只,24天后计数小鼠肺转移结节数评价肿瘤细胞在体迁移能力。结果:RT-PCR结果表明,重组质粒转染细胞组的MMP-9和FAK的mRNA水平显著低于正常细胞组(P<0.01),转染细胞组C57BL/6小鼠皮下成瘤的肿瘤生长速率、黑色素瘤肺转移结节数明显低于正常细胞组(P<0.01)。结论:干扰B16F10细胞MMP-9和FAK双基因可明显抑制小鼠体内恶性肿瘤的生长和迁移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号