首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为探究聚苯乙烯纳米塑料-植物蛋白冠的形成过程以及蛋白冠的形成对植物可能造成的影响,本研究选用3种平均粒径为200nm不同表面修饰的聚苯乙烯纳米塑料微球和新几内亚凤仙(Impatiens hawkeri)为对象,将3种聚苯乙烯纳米塑料分别与新几内亚凤仙的叶蛋白提取物进行反应,反应时间分别为2、4、8、16、24、36 h。利用扫描电镜(scanning electron microscopy, SEM)观察其形貌变化,原子力显微镜(atomic force microscopy, AFM)进行表面粗糙度测定,使用纳米粒度和zeta电位分析仪测定水合粒径及zeta电位,液相色谱-串联质谱(liquid chromatography-tandem mass spectrometry, LC-MS/MS)鉴定蛋白冠的蛋白成分。从生物学过程、细胞组分以及分子功能3个方面对蛋白进行分类,研究不同表面修饰的纳米塑料对蛋白的吸附选择,探究聚苯乙烯纳米塑料-植物蛋白冠的形成与特征,预测蛋白冠对植物造成的可能影响。结果表明:随着反应时间增加,纳米塑料的形貌变化越发明显,表现为尺寸和粗糙度的增加和稳定性的增...  相似文献   

2.
Nanoparticle (NP)–protein complexes exhibit the “correct identity” of NP in biological media. Therefore, protein–NP interactions should be closely explored to understand and modulate the nature of NPs in medical implementations. This review focuses mainly on the physicochemical parameters such as dimension, surface chemistry, morphology of NPs, and influence of pH on the formation of protein corona and conformational changes of adsorbed proteins by different kinds of techniques. Also, the impact of protein corona on the colloidal stability of NPs is discussed. Uncontrolled protein attachment on NPs may bring unwanted impacts such as protein denaturation and aggregation. In contrast, controlled protein adsorption by optimal concentration, size, pH, and surface modification of NPs may result in potential implementation of NPs as therapeutic agents especially for disaggregation of amyloid fibrils. Also, the effect of NPs-protein corona on reducing the cytotoxicity and clinical implications such as drug delivery, cancer therapy, imaging and diagnosis will be discussed. Validated correlative physicochemical parameters for NP–protein corona formation frequently derived from protein corona fingerprints of NPs which are more valid than the parameters obtained only on the base of NP features. This review may provide useful information regarding the potency as well as the adverse effects of NPs to predict their behavior in vivo.  相似文献   

3.
Nanoparticle (NP) exposure to biological fluids in the body results in protein binding to the NP surface, which forms a protein coating that is called the “protein corona”. To simplify studies of protein–NP interactions and protein corona formation, NPs are incubated with biological solutions, such as human serum or human plasma, and the effects of this exposure are characterized in vitro. Yet, how NP exposure to these two different biological milieus affects protein corona composition and cell response has not been investigated. Here, we explore the differences between the protein coronas that form when NPs are incubated in human serum versus human plasma. NP characterization indicated that NPs that were exposed to human plasma had higher amounts of proteins bound to their surfaces, and were slightly larger in size than those exposed to human serum. In addition, significant differences in corona composition were also detected with gel electrophoresis and liquid chromatography–mass spectrometry/mass spectrometry, where a higher fraction of coagulation proteins and complement factors were found on the plasma-exposed NPs. Flow cytometry and confocal microscopy showed that the uptake of plasma-exposed NPs was higher than that of serum-exposed NPs by RAW 264.7 macrophage immune cells, but not by NIH 3T3 fibroblast cells. This difference is likely due to the elevated amounts of opsonins, such as fibrinogen, on the surfaces of the NPs exposed to plasma, but not serum, because these components trigger NP internalization by immune cells. As the human plasma better mimics the composition of the in vivo environment, namely blood, in vitro protein corona studies should employ human plasma, and not human serum, so the biological phenomena that is observed is more similar to that occurring in vivo.  相似文献   

4.
Given the increasing variety of manufactured nanomaterials, suitable, robust, standardized in vitro screening methods are needed to study the mechanisms by which they can interact with biological systems. The in vitro evaluation of interactions of nanoparticles (NPs) with living cells is challenging due to the complex behaviour of NPs, which may involve dissolution, aggregation, sedimentation and formation of a protein corona. These variable parameters have an influence on the surface properties and the stability of NPs in the biological environment and therefore also on the interaction of NPs with cells. We present here a study using 30 nm and 80 nm fluorescently-labelled silicon dioxide NPs (Rubipy-SiO2 NPs) to evaluate the NPs dispersion behaviour up to 48 hours in two different cellular media either supplemented with 10% of serum or in serum-free conditions. Size-dependent differences in dispersion behaviour were observed and the influence of the living cells on NPs stability and deposition was determined. Using flow cytometry and fluorescence microscopy techniques we studied the kinetics of the cellular uptake of Rubipy-SiO2 NPs by A549 and CaCo-2 cells and we found a correlation between the NPs characteristics in cell media and the amount of cellular uptake. Our results emphasize how relevant and important it is to evaluate and to monitor the size and agglomeration state of nanoparticles in the biological medium, in order to interpret correctly the results of the in vitro toxicological assays.  相似文献   

5.
BackgroundAccumulating evidence from the experimental and computational studies indicated that the functional properties of proteins are different between in vitro and living cells, raising the necessity to examine the protein structure under the native intracellular milieu. To gain structural information of the proteins inside the living cells at an atomic resolution, in-cell NMR method has been developed for the past two decades.Scope of reviewIn this review, we will overview the recent progress in the methodological developments and the biological applications of in-cell NMR, and discuss the advances and challenges in this filed.Major conclusionsA number of methods were developed to enrich the isotope-labeled proteins inside the cells, enabling the in-cell NMR observation of bacterial cells as well as eukaryotic cells. In-cell NMR has been applied to various biological systems, including de novo structure determinations, protein/protein or protein/drug interactions, and monitoring of chemical reactions exerted by the endogenous enzymes. The bioreactor system, in which the cells in the NMR tube are perfused by fresh culture medium, enabled the long-term in-cell NMR measurements, and the real-time observations of intracellular responses upon external stimuli.General significanceIn-cell NMR has become a unique technology for its ability to obtain the function-related structural information of the target proteins under the physiological or pathological cellular environments, which cannot be reconstituted in vitro.  相似文献   

6.
摘要 目的:研究阿尔茨海默病(Alzhemer''s disease,AD)模型鼠中聚乙二醇聚乳酸(poly(ethylene glycol)-poly(l-lactide),PEG-PLA)纳米粒表面蛋白冠组成及其对脑内递送特性的影响。方法:制备PEG-PLA纳米粒,测定纳米粒的zeta电位及粒径,采用透射电子显微镜观察纳米粒形态。通过双光子显微镜观察APP/PS1小鼠与野生型(Wild Type,WT)小鼠脑内PEG-PLA纳米粒分布特性。采用液相色谱-质谱联用(LC-MS)技术对PEG-PLA纳米粒分别与APP/PS1小鼠和WT小鼠血浆孵育形成的两种不同蛋白冠进行蛋白组学分析。结果:制备的PEG-PLA纳米粒粒径均一,分散性较好。静脉注射PEG-PLA后,APP/PS1小鼠脑内纳米粒量明显高于WT小鼠。蛋白质组学结果显示,APP/PS1小鼠血浆孵育组PEG-PLA纳米粒表面蛋白冠中凝聚素(Clusterin)明显高于WT小鼠血浆孵育组,该蛋白与纳米粒逃避机体清除有关。此外,纳米粒蛋白冠中血管性血友病因子(Von Willebrand factor)、玻连蛋白(Vitronectin)、肌球蛋白重链-9(Myosin-9)等参与细胞粘附作用相关蛋白在APP/PS1小鼠血浆孵育组也明显多于WT小鼠血浆孵育组。结论:PEG-PLA纳米粒在AD模型小鼠中表现出的高入脑量,可能与AD疾病影响纳米粒蛋白冠组成有关。  相似文献   

7.
Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as promising contrast agents for magnetic resonance imaging. The influence of different surface coatings on the biocompatibility of SPIONs has been addressed, but the potential impact of the so-called corona of adsorbed proteins on the surface of SPIONs on their biological behavior is less well studied. Here, we determined the composition of the plasma protein corona on silica-coated versus dextran-coated SPIONs using mass spectrometry-based proteomics approaches. Notably, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed distinct protein corona compositions for the two different SPIONs. Relaxivity of silica-coated SPIONs was modulated by the presence of a protein corona. Moreover, the viability of primary human monocyte-derived macrophages was influenced by the protein corona on silica-coated, but not dextran-coated SPIONs, and the protein corona promoted cellular uptake of silica-coated SPIONs, but did not affect internalization of dextran-coated SPIONs.  相似文献   

8.
BackgroundCarnosic acid (CA) is one of the main constituents in rosemary extract. It possesses valuable pharmacological properties, including anti-oxidant, anti-inflammatory, anti-microbial and anti-cancer activities. Numerous in vitro and in vivo studies investigated the anticancer profile of CA and emphasized its potentiality for cancer treatment. Nevertheless, the role of multidrug-resistance (MDR) related mechanisms for CA's anticancer effect is not yet known.PurposeWe investigated the cytotoxicity of CA against known mechanisms of anticancer drug resistance (P-gp, ABCB5, BCRP, EGFR and p53) and determined novel putative molecular factors associated with cellular response towards CA.Study designCytotoxicity assays, bioinformatic analysis, flow cytometry and western blotting were performed to identify the mode of action of CA towards cancer cells.MethodsThe cytotoxicity to CA was assessed using the resazurin assays in cell lines expressing the mentioned resistance mechanisms. A pharmacogenomic characterization of the NCI 60 cell line panel was applied via COMPARE, hierarchical cluster and network analyses. Flow cytometry was used to detect cellular mode of death and ROS generation. Changes in proteins-related to apoptosis were determined by Western blotting.ResultsCell lines expressing ABC transporters (P-gp, BCRP or ABCB5), mutant EGFR or p53 were not cross-resistant to CA compared to their parental counterparts. By pharmacogenomic approaches, we identified genes that belong to different functional groups (e.g. signal transduction, regulation of cytoskeleton and developmental regulatory system). These genes were predicted as molecular determinants that mediate CA tumor cellular responses. The top affected biofunctions included cellular development, cellular proliferation and cellular death and survival. The effect of CA-mediated apoptosis in leukemia cells, which were recognized as the most sensitive tumor type, was confirmed via flow cytometry and western blot analysis.ConclusionCA may provide a novel treatment option to target refractory tumors and to effectively cooperate with established chemotherapy. Using pharmacogenomic approaches and network pharmacology, the relationship between cancer complexity and multi-target potentials of CA was analyzed and many putative molecular determinants were identified. They could serve as novel targets for CA and further studies are needed to translate the possible implications to clinical cancer treatment.  相似文献   

9.
BackgroundHere we describe a new class of cryptides (peptides encrypted within a larger protein) with antimicrobial properties, named schistocins, derived from SmKI-1, a key protein in Shistosoma mansoni survival. This is a multi-functional protein with biotechnological potential usage as a therapeutic molecule in inflammatory diseases and to control schistosomiasis.MethodsWe used our algorithm enCrypted, to perform an in silico proteolysis of SmKI-1 and a screening for potential antimicrobial activity. The selected peptides were chemically synthesized, tested in vitro and evaluated by both structural (CD, NMR) and biophysical (ITC) studies to access their structure-function relationship.ResultsEnCrypted was capable of predicting AMPs in SmKI-1. Our biophysical analyses described a membrane-induced conformational change from random coil-to-α-helix and a peptide-membrane equilibrium for all schistocins. Our structural data allowed us to suggest a well-known mode of peptide-membrane interaction in which electrostatic attraction between the cationic peptides and anionic membranes results in the bilayer disordering. Moreover, the NMR H/D exchange data with the higher entropic contribution observed for the peptide-membrane interaction showed that schistocins have different orientations upon the membrane.ConclusionsThis work demonstrate the robustness for using the physicochemical features of predicted peptides in the identification of new bioactive cryptides. Besides, it demonstrates the relevance of combining these analyses with biophysical methods to understand the peptide-membrane affinity and improve further algorithms.General significanceBioprospecting cryptides can be conducted through data mining of protein databases demonstrating the success of our strategy. The peptides-based agents derived from SmKI-1 might have high impact for system-biology and biotechnology.  相似文献   

10.
BackgroundAlkylated DNA-protein alkyltransferases (AGTs) are conserved proteins that repair alkylation damage in DNA by using a single-step mechanism leading to irreversible alkylation of the catalytic cysteine in the active site. Trans-alkylation induces inactivation and destabilization of the protein, both in vitro and in vivo, likely triggering conformational changes. A complete picture of structural rearrangements occurring during the reaction cycle is missing, despite considerable interest raised by the peculiarity of AGT reaction, and the contribution of a functional AGT in limiting the efficacy of chemotherapy with alkylating drugs.MethodsAs a model for AGTs we have used a thermostable ortholog from the archaeon Sulfolobus solfataricus (SsOGT), performing biochemical, structural, molecular dynamics and in silico analysis of ligand-free, DNA-bound and mutated versions of the protein.ResultsConformational changes occurring during lesion recognition and after the reaction, allowed us to identify a novel interaction network contributing to SsOGT stability, which is perturbed when a bulky adduct between the catalytic cysteine and the alkyl group is formed, a mandatory step toward the permanent protein alkylation.ConclusionsOur data highlighted conformational changes and perturbation of intramolecular interaction occurring during lesion recognition and catalysis, confirming our previous hypothesis that coordination between the N- and C-terminal domains of SsOGT is important for protein activity and stability.General significanceA general model of structural rearrangements occurring during the reaction cycle of AGTs is proposed. If confirmed, this model might be a starting point to design strategies to modulate AGT activity in therapeutic settings.  相似文献   

11.
12.
Protein misfolding and deposition underlie an increasing number of debilitating human disorders and constitute a problem of major concern in biotechnology. In the last years, in vitro studies have provided valuable insights into the physicochemical principles underlying protein aggregation. Nevertheless, information about the determinants of protein deposition within the cell is scarce and only a few systematic studies comparing in vitro and in vivo data have been reported. Here, we have used the SH3 domain of α-spectrin as a model globular protein in an attempt to understand the relationship between protein aggregation in the test-tube and in the more complex cellular environment. The investigation of the aggregation in Escherichia coli of this domain and a large set of mutants, together with the analysis of their sequential and conformational properties allowed us to evaluate the contribution of different polypeptidic factors to the cellular deposition of globular proteins. The data presented here suggest that the rules that govern in vitro protein aggregation are also valid in in vivo contexts. They also provide relevant insights into intracellular protein deposition in both conformational diseases and recombinant protein production.  相似文献   

13.
Multimodal, molecular imaging allows the visualization of biological processes at cellular, subcellular, and molecular-level resolutions using multiple, complementary imaging techniques. These imaging agents facilitate the real-time assessment of pathways and mechanisms in vivo, which enhance both diagnostic and therapeutic efficacy. This article presents the protocol for the synthesis of biofunctionalized Prussian blue nanoparticles (PB NPs) - a novel class of agents for use in multimodal, molecular imaging applications. The imaging modalities incorporated in the nanoparticles, fluorescence imaging and magnetic resonance imaging (MRI), have complementary features. The PB NPs possess a core-shell design where gadolinium and manganese ions incorporated within the interstitial spaces of the PB lattice generate MRI contrast, both in T1 and T2-weighted sequences. The PB NPs are coated with fluorescent avidin using electrostatic self-assembly, which enables fluorescence imaging. The avidin-coated nanoparticles are modified with biotinylated ligands that confer molecular targeting capabilities to the nanoparticles. The stability and toxicity of the nanoparticles are measured, as well as their MRI relaxivities. The multimodal, molecular imaging capabilities of these biofunctionalized PB NPs are then demonstrated by using them for fluorescence imaging and molecular MRI in vitro.  相似文献   

14.
BackgroundThere have been many researches on the effects of flavonoids on tumor treatment or adjuvant therapy, but there are few studies revealing their epigenetic effect on tumors. Hesperetin is a common citrus flavanone widely distributed among citrus fruits. The role of hesperetin in gastric cancer metastasis is unclear.PurposeTo investigate the effect of hesperetin on gastric cancer metastasis and its underlying mechanism.MethodsWe used cancer cell lines cultured in medium and nude mice implantation as in vitro and in vivo models to investigate the impact of hesperetin treatment on the migration and invasion of gastric cancer cells. The molecular biological experiments such as transwell assay, western blotting, qPCR, ChIP-qPCR, immunostaining and transfection were conducted to explore the molecular mechanisms.ResultsWe found that hesperetin obviously reduced the protein abundance of DOT1L and the methylation of histone H3K79 in a variety of cells. In gastric cancer cells, the treatment of hesperetin decreased cell migration and invasion and the expression of genes closely related to the metastatic capability. Mechanistically, hesperetin affected the stability of DOT1L protein by regulating the activity of CBP.ConclusionThese findings highlight the epigenetic effect of hesperetin and provide a new perspective to understand the tumor suppressive effect of flavonoids.  相似文献   

15.

Background

We introduce a promising methodology to identify new therapeutic targets in cancer. Proteins bind to nanoparticles to form a protein corona. We modulate this corona by using surface-engineered nanoparticles, and identify protein composition to provide insight into disease development.

Methods/Principal Findings

Using a family of structurally homologous nanoparticles we have investigated the changes in the protein corona around surface-functionalized gold nanoparticles (AuNPs) from normal and malignant ovarian cell lysates. Proteomics analysis using mass spectrometry identified hepatoma-derived growth factor (HDGF) that is found exclusively on positively charged AuNPs (+AuNPs) after incubation with the lysates. We confirmed expression of HDGF in various ovarian cancer cells and validated binding selectivity to +AuNPs by Western blot analysis. Silencing of HDGF by siRNA resulted s inhibition in proliferation of ovarian cancer cells.

Conclusion

We investigated the modulation of protein corona around surface-functionalized gold nanoparticles as a promising approach to identify new therapeutic targets. The potential of our method for identifying therapeutic targets was demonstrated through silencing of HDGF by siRNA, which inhibited proliferation of ovarian cancer cells. This integrated proteomics, bioinformatics, and nanotechnology strategy demonstrates that protein corona identification can be used to discover novel therapeutic targets in cancer.  相似文献   

16.
Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that are activated by growth factor and G-protein-coupled receptors and propagate intracellular signals for growth, survival, proliferation, and metabolism. p85α, a modular protein consisting of five domains, binds and inhibits the enzymatic activity of class IA PI3K catalytic subunits. Here, we describe the structural states of the p85α dimer, based on data from in vivo and in vitro solution characterization. Our in vitro assembly and structural analyses have been enabled by the creation of cysteine-free p85α that is functionally equivalent to native p85α. Analytical ultracentrifugation studies showed that p85α undergoes rapidly reversible monomer-dimer assembly that is highly exothermic in nature. In addition to the documented SH3-PR1 dimerization interaction, we identified a second intermolecular interaction mediated by cSH2 domains at the C-terminal end of the polypeptide. We have demonstrated in vivo concentration-dependent dimerization of p85α using fluorescence fluctuation spectroscopy. Finally, we have defined solution conditions under which the protein is predominantly monomeric or dimeric, providing the basis for small angle x-ray scattering and chemical cross-linking structural analysis of the discrete dimer. These experimental data have been used for the integrative structure determination of the p85α dimer. Our study provides new insight into the structure and assembly of the p85α homodimer and suggests that this protein is a highly dynamic molecule whose conformational flexibility allows it to transiently associate with multiple binding proteins.  相似文献   

17.
BackgroundCarnivorous plants possess diverse sets of enzymes with novel functionalities applicable to biotechnology, proteomics, and bioanalytical research. Chitinases constitute an important class of such enzymes, with future applications including human-safe antifungal agents and pesticides. Here, we compare chitinases from the genome of the carnivorous plant Drosera capensis to those from related carnivorous plants and model organisms.MethodsUsing comparative modeling, in silico maturation, and molecular dynamics simulation, we produce models of the mature enzymes in aqueous solution. We utilize network analytic techniques to identify similarities and differences in chitinase topology.ResultsHere, we report molecular models and functional predictions from protein structure networks for eleven new chitinases from D. capensis, including a novel class IV chitinase with two active domains. This architecture has previously been observed in microorganisms but not in plants. We use a combination of comparative and de novo structure prediction followed by molecular dynamics simulation to produce models of the mature forms of these proteins in aqueous solution. Protein structure network analysis of these and other plant chitinases reveal characteristic features of the two major chitinase families.General significanceThis work demonstrates how computational techniques can facilitate quickly moving from raw sequence data to refined structural models and comparative analysis, and to select promising candidates for subsequent biochemical characterization. This capability is increasingly important given the large and growing body of data from high-throughput genome sequencing, which makes experimental characterization of every target impractical.  相似文献   

18.
BackgroundRibosome-binding factor A from the pathogenic bacterium Pseudomonas aeruginosa (PaRbfA) is a small ribosome assembly factor, composed by a single KH domain, involved in the maturation of the 30S subunit. These domains are characterized by the ability to bind RNA or ssDNA and are often located in proteins involved in a variety of cellular functions. However, although the ability of proteins to fold properly, to misfold or to aggregate is of paramount importance for their cellular functions, limited information is available on these dynamic properties in the case of KH domains.MethodsPaRbfA thermodynamic stability and folding mechanism: Far-UV CD and fluorescence spectroscopy, stopped-flow kinetics and chevron plot analysis, site-directed mutagenesis. Fibrils characterization: FT-IR spectroscopy, Thioflavin T fluorescence, Transmission Electron Microscopy (TEM) and X-ray fibrils diffraction.ResultsQuantitative analysis of the (un)folding kinetics of PaRbfA show that, in vitro, the protein folds via a 3-states mechanism involving a transiently populated folding intermediate. We also provide experimental evidences that PaRbfA can form ordered fibrils endowed with cross-β structure even in mild conditions.ConclusionThese results lead to the hypothesis that the folding intermediate of PaRbfA may expose (some of) the predicted amyloidogenic regions, which could act as aggregation nuclei in the fibrillogenesis.General significanceThe methodological approach presented herein could be readily adapted to verify the ability of other KH domain proteins to form cross-β structured fibrils and to transiently populate a folding intermediate.  相似文献   

19.
The aim of the present study was to utilize chitosan (CS) nanoparticles for the intracellular delivery of the poorly cell-penetrating antibiotic, ceftriaxone sodium (CTX). In vitro characterization of (CTX-CS) nanoparticles was conducted leading to an optimized formula that was assessed for its biocompatibility to blood (hemolysis test) and cells (MTT assay). Progressively, confocal laser scanning microscopy (CLSM), cellular uptake (microfluorimetry), and antibacterial activity of the nanoparticles were investigated in two cell lines: Caco-2 and macrophages J774.2 pre-infected with Salmonella typhimurium. Results showed that the optimized formula had size 210 nm, positive zeta potential (+30 mV) and appreciable entrapment efficiency for CTX (45%) and included a biphasic release pattern. The nanoparticles were biocompatible and were internalized by cells as verified by CLSM whereas microfluorimetry indicated substantial cellular uptake. Moreover, the CTX–chitosan nanoparticles showed a significant reduction in the count of intracellular S. typhimurium in Caco-2 and macrophages J774.2. This reduction was significantly higher than that obtained in case of placebo nanoparticles, CTX, and CTX–chitosan solutions and might be attributed to enhanced endocytic uptake of the nanoaprticles and antibacterial effect of the chitosan polymer. In conclusion, the results provide evidence for the potential use of chitosan nanoparticles to enhance the intracellular delivery and antibacterial effect of CTX in enterocytes and macrophages.Key words: ceftriaxone sodium, chitosan nanoparticles, enterocytes, intracellular delivery, macrophages  相似文献   

20.
Immediately upon contact with blood, nanosized drug delivery systems become coated with a so-called protein corona. The quantitative and qualitative composition of the corona defines not only the behavior of the nanocarrier in the circulation but, ultimately, the pharmacokinetics and biodistribution of the encapsulated drug as well. In turn, the composition of the protein corona depends on the surface properties of the nanoparticles, such as size and distribution of charge and functional groups on the particle surface. Liposomes belong to the most bio- and hemocompatible drug delivery systems feasible for intravenous route of administration required in chemotherapy of metastasizing tumors. However, knowledge on the interactions of liposomes of various compositions with blood plasma proteins remains fragmentary. Moreover, all nanosized drug delivery systems are potential targets for the innate immunity system, primarily the complement (C) system, which underlies frequent cases of hypersensitivity reactions. Recently, in a panel of in vitro hemocompatibility tests, we demonstrated that liposomes built of natural phospholipids — egg phosphatidylcholine and phosphatidylinositol from Saccharomyces cerevisiae — and loaded with diglyceride conjugates of anticancer drugs melphalan and methotrexate, did not affect the morphology and numbers of the main blood cell types. While preparations with melphalan prodrug were also inert in coagulation and C activation tests, methotrexate-loaded liposomes caused impaired coagulation and C activation. The aim of this work was to study the interactions of liposomes carrying prodrugs of melphalan and methotrexate with blood plasma proteins in vitro. Data on protein binding capacity of liposomes obtained with classical gel permeation chromatography techniques allowed for prediction of rather rapid elimination of the liposomes from circulation. A number of differences revealed through immunoblotting of the liposome-bound proteins agree with the previously obtained data on C activation. The possible mechanism of C activation by methotrexate-containing liposomes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号