共查询到20条相似文献,搜索用时 15 毫秒
1.
Inward Rectifying K Channels in the Plasma Membrane of Arabidopsis thaliana 总被引:1,自引:0,他引:1 下载免费PDF全文
Ion channels in the plasma membrane of protoplasts isolated from cultured cells of Arabidopsis thaliana were studied by means of the patch-clamp technique applied in the whole-cell configuration. In some protoplasts, depolarizing pulses and, in other protoplasts, hyperpolarizing pulses elicited time-dependent currents; both kinds of current were only rarely observed in the same protoplast. The hyperpolarization-activated inward rectifying currents, the focus of this paper, appeared to be due to the relatively slow opening of channels (activation time constant = 150 to 300 milliseconds), which closed at positive potentials. The reversal potential of this current, measured in the presence of different ion concentrations (symmetrical or asymmetrical K+ and Cl− or gluconate), was always close to the electrochemical equilibrium potential of K+. The currents were inhibited by 10 millimolar tetraethylammonium, a K+ channel blocker. These data show that the hyperpolarization-activated currents flow through K+ channels, which can provide a pathway for the passive diffusion of K+ down its electrochemical gradient. 相似文献
2.
Plant growth requires a continuous supply of intracellular solutes in order to drive cell elongation. Ion fluxes through
the plasma membrane provide a substantial portion of the required solutes. Here, patch clamp techniques have been used to
investigate the electrical properties of the plasma membrane in protoplasts from the rapid growing tip of maize coleoptiles.
Inward currents have been measured in the whole cell configuration from protoplasts of the outer epidermis and from the cortex.
These currents are essentially mediated by K+ channels with a unitary conductance of about 12 pS. The activity of these channels was stimulated by negative membrane voltage
and inhibited by extracellular Ca2+ and/or tetraethylammonium-CI (TEA). The kinetics of voltage- and Ca2+-gating of these channels have been determined experimentally in some detail (steady-state and relaxation kinetics). Various
models have been tested for their ability to describe these experimental data in straightforward terms of mass action. As
a first approach, the most appropriate model turned out to consist of an active state which can equilibrate with two inactive
states via independent first order reactions: a fast inactivation/activation by Ca2+-binding and -release, respectively (rate constants >>103 sec−1) and a slower inactivation/activation by positive/negative voltage, respectively (voltage-dependent rate constants in the
range of 103 sec−1).
With 10 mm K+ and 1 mm Ca2+ in the external solution, intact coleoptile cells have a membrane voltage (V) of −105 ± 7 mV. At this V, the density and open probability of the inward-rectifying channels is sufficient to mediate K+ uptake required for cell elongation. Extracellular TEA or Ca2+, which inhibit the K+ inward conductance, also inhibit elongation of auxin-depleted coleoptile segments in acidic solution. The comparable effects
of Ca2+ and TEA on both processes and the similar Ca2+ concentration required for half maximal inhibition of growth (4.3 mm Ca2+) and for conductance (1.2 mm Ca2+) suggest that K+ uptake through the inward rectifier provides essential amounts of solute for osmotic driven elongation of maize coleoptiles.
Received: 6 June 1995/Revised: 12 September 1995 相似文献
3.
Potassium channels allow the selective flux of K+ excluding the smaller, and more abundant in the extracellular solution, Na+ ions. Here we show that Shab is a typical K+ channel that excludes Na+ under bi-ionic, Nao/Ki or Nao/Rbi, conditions. However, when internal K+ is replaced by Cs+ (Nao/Csi), stable inward Na+ and outward Cs+ currents are observed. These currents show that Shab selectivity is not accounted for by protein structural elements alone, as implicit in the snug-fit model of selectivity. Additionally, here we report the block of Shab channels by external Ca2+ ions, and compare the effect that internal K+ replacement exerts on both Ca2+ and TEA block. Our observations indicate that Ca2+ blocks the channels at a site located near the external TEA binding site, and that this pore region changes conformation under conditions that allow Na+ permeation. In contrast, the latter ion conditions do not significantly affect the binding of quinidine to the pore central cavity. Based on our observations and the structural information derived from the NaK bacterial channel, we hypothesize that Ca2+ is probably coordinated by main chain carbonyls of the pore´s first K+-binding site. 相似文献
4.
Elsa Ronzier Claire Corratgé-Faillie Frédéric Sanchez Karine Prado Christian Brière Nathalie Leonhardt Jean-Baptiste Thibaud Tou Cheu Xiong 《Plant physiology》2014,166(1):314-326
Ca2+-dependent protein kinases (CPKs) form a large family of 34 genes in Arabidopsis (Arabidopsis thaliana). Based on their dependence on Ca2+, CPKs can be sorted into three types: strictly Ca2+-dependent CPKs, Ca2+-stimulated CPKs (with a significant basal activity in the absence of Ca2+), and essentially calcium-insensitive CPKs. Here, we report on the third type of CPK, CPK13, which is expressed in guard cells but whose role is still unknown. We confirm the expression of CPK13 in Arabidopsis guard cells, and we show that its overexpression inhibits light-induced stomatal opening. We combine several approaches to identify a guard cell-expressed target. We provide evidence that CPK13 (1) specifically phosphorylates peptide arrays featuring Arabidopsis K+ Channel KAT2 and KAT1 polypeptides, (2) inhibits KAT2 and/or KAT1 when expressed in Xenopus laevis oocytes, and (3) closely interacts in plant cells with KAT2 channels (Förster resonance energy transfer-fluorescence lifetime imaging microscopy). We propose that CPK13 reduces stomatal aperture through its inhibition of the guard cell-expressed KAT2 and KAT1 channels.Stomata are microscopic organs at the leaf surface, each made of two so-called guard cells forming a pore. Opening or closing these pores is the way through which plants control their gas exchanges with the atmosphere (i.e. carbon dioxide uptake to feed the photosynthetic process and transpirational loss of water vapor). Stomatal movements result from osmotically driven fluxes of water, which follow massive exchanges of solutes, including K+ ions, between the guard cells and the surrounding tissues (Hetherington, 2001; Nilson and Assmann, 2007).Both Ca2+-dependent and Ca2+-independent signaling pathways are known to control stomatal movements (MacRobbie, 1993, 1998; Blatt, 2000; Webb et al., 2001; Mustilli et al., 2002; Israelsson et al., 2006; Marten et al., 2007; Laanemets et al., 2013). In particular, Ca2+ signals have been reported to promote stomatal closure through the inhibition of inward K+ channels and the activation of anion channels (Blatt, 1991, 1992, 2000; Thiel et al., 1992; Grabov and Blatt, 1999; Schroeder et al., 2001; Hetherington and Brownlee, 2004; Mori et al., 2006; Marten et al., 2007; Geiger et al., 2010; Brandt et al., 2012; Scherzer et al., 2012). However, little is known about the molecular identity of the links between Ca2+ events and Shaker K+ channel activity. Several kinases and phosphatases are believed to be involved in both the Ca2+-dependent and Ca2+-independent signaling pathways. Plants express two large kinase families whose activity is related to Ca2+ signaling. Firstly, CBL-interacting protein kinases (CIPKs; 25 genes in Arabidopsis [Arabidopsis thaliana]) are indirectly controlled by their interaction with a set of calcium sensors, the calcineurin B-like proteins (CBLs; 10 genes in Arabidopsis). This complex forms a fascinating network of potential Ca2+ signaling decoders (Luan, 2009; Weinl and Kudla, 2009), which have been addressed in numerous reports (Xu et al., 2006; Hu et al., 2009; Batistic et al., 2010; Held et al., 2011; Chen et al., 2013). In particular, some CBL-CIPK pairs have been shown to regulate Shaker channels such as Arabidopsis K+ Transporter1 (AKT1; Xu et al., 2006; Lan et al., 2011) or AKT2 (Held et al., 2011). Second, Ca2+-dependent protein kinases (CPKs) form an even larger family (34 genes in Arabidopsis) of proteins combining a kinase domain with the ability to bind Ca2+, thanks to the so-called EF hands (Harmon et al., 2000; Harper et al., 2004). CPKs, which, interestingly, are not found in animal cells, exhibit different calcium dependencies (Boudsocq et al., 2012). With respect to this, three types of CPKs can be considered: strictly Ca2+-dependent CPKs, Ca2+-stimulated CPKs (with a significant basal activity in the absence of Ca2+), and essentially Ca2+-insensitive CPKs (however, structurally close to kinases of groups 1 and 2).Pioneering work by Luan et al. (1993) demonstrated in Vicia faba guard cells that inward K+ channels were regulated by some Ca2+-dependent kinases. Then, such a Ca2+-dependent kinase was purified from guard cell protoplasts of V. faba and shown to actually phosphorylate the in vitro-translated KAT1 protein, a Shaker channel subunit natively expressed in Arabidopsis guard cells (Li et al., 1998). KAT1 regulation by CPK was shown by the inhibition of KAT1 currents after the coexpression of KAT1 and CDPK from soybean (Glycine max) in oocytes (Berkowitz et al., 2000). Since then, several cpk mutant lines of Arabidopsis have been shown to be impaired in stomatal movements, for example cpk10 (Ca2+ insensitive), cpk4/cpk11 (Ca2+ dependent), and cpk3/cpk6/cpk23 (Ca2+ dependent; Mori et al., 2006; Geiger et al., 2010; Munemasa et al., 2011; Hubbard et al., 2012).Of the nine genes encoding voltage-dependent K+ channels (Shaker) in Arabidopsis (Véry and Sentenac, 2002, 2003; Lebaudy et al., 2007; Hedrich, 2012), six are expressed in guard cells and play a role in stomatal movements: the Gated Outwardly-Rectifying K+ (GORK) gene, encoding an outward K+ channel subunit, and the AKT1, AKT2, Arabidopsis K+ Rectifying Channel1 (AtKC1), KAT1, and KAT2 genes, encoding inward K+ channel subunits (Pilot et al., 2001; Szyroki et al., 2001; Hosy et al., 2003; Pandey et al., 2007; Lebaudy et al., 2008a). Shaker channels result from the assembly of four subunits, and it has been shown that inward subunits tend to heterotetramerize, thus potentially widening the functional and regulatory scope of inward K+ conductance in guard cells (Xicluna et al., 2007; Jeanguenin et al., 2008; Lebaudy et al., 2008a, 2010). Inhibition of inward K+ channels has been shown to reduce stomatal opening (Liu et al., 2000; Kwak et al., 2001). This has grounded a strategy for disrupting inward K+ channel conductance in guard cells by expressing a nonfunctional KAT2 subunit (dominant negative mutation) in a kat2 knockout Arabidopsis line. The resulting Arabidopsis lines, named kincless, have no functional inward K+ channels and exhibit delayed stomatal opening (Lebaudy et al., 2008b) with, in the long term, a biomass reduction compared with the Arabidopsis wild-type line.Among the CPKs presumably expressed in Arabidopsis guard cells (Leonhardt et al., 2004), we looked for CPK13, which belongs to the atypical Ca2+-insensitive type of CPKs (Kanchiswamy et al., 2010; Boudsocq et al., 2012; Liese and Romeis, 2013) and whose role remains unknown in stomatal movements. Here, we confirm first that CPK13 kinase activity is independent of Ca2+ and show that CPK13 expression is predominant in Arabidopsis guard cells using CPK13-GUS lines. We then report that overexpression of CPK13 in Arabidopsis induces a dramatic default in stomatal aperture. Based on the previously reported kincless phenotype (Lebaudy et al., 2008b), we propose that CPK13 could reduce the activity of inward K+ channels in guard cells, particularly that of KAT2. We confirm this hypothesis by voltage-clamp experiments and show an inhibition of KAT2 and KAT1 activity by CPK13 (but not that of AKT2). In addition, we present peptide array phosphorylation assays showing that CPK13 targets, with some specificity, several KAT2 and KAT1 polypeptides. Finally, we demonstrate that KAT2 and CPK13 interact in planta using Förster resonance energy transfer (FRET)-fluorescence lifetime imaging microscopy (FLIM). 相似文献
5.
Ogawa Noriyuki; Yabuta Naohiro; Ueno Yoshihisa; Izui Katsura 《Plant & cell physiology》1998,39(10):1010-1019
Phosphoenolpyruvate carboxylase (PEPC) [EC 4.1.1.31
[EC]
] of plantsundergoes regulatory phosphorylation in response to light ornutritional conditions. However, the nature of protein kinase(s)for this phosphorylation has not yet been fully elucidated.We separated a Ca2+-requiring protein kinase from Ca2+-independentone, both of which can phosphorylate maize leaf PEPC and characterizedthe former kinase after partial purification. Several linesof evidence indicated that the kinase is one of the characteristicCa2+-dependent but calmodulin-independent protein kinase (CDPK).Although the Mr, of native CDPK was estimated to be about 100kDa by gel permeation chromatography, in situ phosphorylationassay of CDPK in a SDS-polyacrylamide gel revealed that thesubunit has an Mr of about 50 kDa suggesting dimer formationor association with other protein(s). Several kinetic parameterswere also obtained using PEPC as a substrate. Although the CDPKshowed an ability of regulatory phosphorylation (Ser-15 in maizePEPC), no significant desensitization to feedback inhibitor,malate, could be observed presumably due to low extent of phosphorylation.The kinase was not specific to PEPC but phosphorylated a varietyof synthetic peptides. The possible physiological role of thiskinase was discussed.
1Present address: NEOS Central Research Laboratory, 1-1 Ohike-machi,Kosei-cho, Shiga, 520-3213 Japan.
2Present address: Chugai Pharmaceutical Co., Ltd., 1-135 Komakado,Gotemba, 412-0038 Japan.
4N.O. and N.Y. contributed equally to this work. 相似文献
6.
7.
Chun-Long Li Mei Wang Xiao-Meng Wu Dong-Hua Chen Hong-Jun Lv Jian-Lin Shen Zhu Qiao Wei Zhang 《Plant physiology》2016,170(2):1090-1104
8.
Partial Purification and Characterization of a Ca2+-Dependent Protein Kinase from Pea Nuclei 总被引:3,自引:8,他引:3 下载免费PDF全文
Almost all the Ca2+-dependent protein kinase activity in nuclei purified from etiolated pea (Pisum sativum, L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.3 molar NaCl. This protein kinase can be further purified 80,000-fold by salt fractionation and high performance liquid chromatography, after which it has a high specific activity of about 100 picomoles per minute per microgram in the presence of Ca2+ and reaches half-maximal activation at about 3 ×10−7 molar free Ca2+, without calmodulin. It is a monomer with a molecular weight near 90,000. It can efficiently use histone III-S, ribosomal S6 protein, and casein as artificial substrates, but it phosphorylates phosvitin only weakly. Its Ca2+-dependent kinase activity is half-maximally inhibited by 0.1 millimolar chlorpromazine, by 35 nanomolar K-252a and by 7 nanomolar staurosporine. It is insensitive to sphingosine, an inhibitor of protein kinase C, and to basic polypeptides that block other Ca2+-dependent protein kinases. It is not stimulated by exogenous phospholipids or fatty acids. In intact isolated pea nuclei it preferentially phosphorylates several chromatin-associated proteins, with the most phosphorylated protein band being near the same molecular weight (43,000) as a nuclear protein substrate whose phosphorylation has been reported to be stimulated by phytochrome in a calcium-dependent fashion. 相似文献
9.
The regulation of pollen development and pollen tube growth is a complicated biological process that is crucial for sexual reproduction in flowering plants. Annexins are widely distributed from protists to higher eukaryotes and play multiple roles in numerous cellular events by acting as a putative “linker” between Ca2+ signaling, the actin cytoskeleton and the membrane, which are required for pollen development and pollen tube growth. Our recent report suggested that downregulation of the function of Arabidopsis annexin 5 (Ann5) in transgenic Ann5-RNAi lines caused severely sterile pollen grains. However, little is known about the underlying mechanisms of the function of Ann5 in pollen. This study demonstrated that Ann5 associates with phospholipid membrane and this association is stimulated by Ca2+ in vitro. Brefeldin A (BFA) interferes with endomembrane trafficking and inhibits pollen germination and pollen tube growth. Both pollen germination and pollen tube growth of Ann5-overexpressing plants showed increased resistance to BFA treatment, and this effect was regulated by calcium. Overexpression of Ann5 promoted Ca2+-dependent cytoplasmic streaming in pollen tubes in vivo in response to BFA. Lactrunculin (LatB) significantly prohibited pollen germination and tube growth by binding with high affinity to monomeric actin and preferentially targeting dynamic actin filament arrays and preventing actin polymerization. Overexpression of Ann5 did not affect pollen germination or pollen tube growth in response to LatB compared with wild-type, although Ann5 interacts with actin filaments in a manner similar to some animal annexins. In addition, the sterile pollen phenotype could be only partially rescued by Ann5 mutants at Ca2+-binding sites when compared to the complete recovery by wild-type Ann5. These data demonstrated that Ann5 is involved in pollen development, germination and pollen tube growth through the promotion of endomembrane trafficking modulated by calcium. Our results provide reliable molecular mechanisms that underlie the function of Ann5 in pollen. 相似文献
10.
Caleb M. Rounds Eric Lubeck Peter K. Hepler Lawrence J. Winship 《Plant physiology》2011,157(1):175-187
We have used propidium iodide (PI) to investigate the dynamic properties of the primary cell wall at the apex of Arabidopsis (Arabidopsis thaliana) root hairs and pollen tubes and in lily (Lilium formosanum) pollen tubes. Our results show that in root hairs, as in pollen tubes, oscillatory peaks in PI fluorescence precede growth rate oscillations. Pectin forms the primary component of the cell wall at the tip of both root hairs and pollen tubes. Given the electronic structure of PI, we investigated whether PI binds to pectins in a manner analogous to Ca2+ binding. We first show that Ca2+ is able to abrogate PI growth inhibition in a dose-dependent manner. PI fluorescence itself also relies directly on the amount of Ca2+ in the growth solution. Exogenous pectin methyl esterase treatment of pollen tubes, which demethoxylates pectins, freeing more Ca2+-binding sites, leads to a dramatic increase in PI fluorescence. Treatment with pectinase leads to a corresponding decrease in fluorescence. These results are consistent with the hypothesis that PI binds to demethoxylated pectins. Unlike other pectin stains, PI at low yet useful concentration is vital and specifically does not alter the tip-focused Ca2+ gradient or growth oscillations. These data suggest that pectin secretion at the apex of tip-growing plant cells plays a critical role in regulating growth, and PI represents an excellent tool for examining the role of pectin and of Ca2+ in tip growth.The apical wall of tip-growing cells participates directly in the process of growth regulation (McKenna et al., 2009; Winship et al., 2010), yet few methods permit monitoring the wall properties of living cells. Despite this, several recent studies have enhanced our understanding of the apical cell wall. Chemical analyses of isolated pollen tube wall material have revealed a complex mixture of pectic polysaccharides with regions comprising long sequences of polygalacturonic acid. Important patterns of pectin methoxylation have been detected using immunocytochemical approaches, but these are limited to fixed cells (Dardelle et al., 2010). In a recent study, Parre and Geitmann (2005) used microindentation to show significant correlations between wall strength and growth rate. None of these techniques allow for easy investigation of the cell wall during growth.In an earlier study, we found that propidium iodide (PI) vitally stains pollen tubes of lily (Lilium formosanum) and tobacco (Nicotiana tabacum) and in particular reveals with great clarity the thickened apical cell wall (Fig. 1; McKenna et al., 2009). In addition, the apical PI fluorescence oscillates and in lily pollen tubes correlates tightly with oscillations in wall thickness measured by differential interference contrast (DIC) optics. Finally, these studies indicated that the PI fluorescence predicted cell growth rates with high confidence, suggesting that PI binding may provide useful information about the physical and chemical properties of the cell wall.Open in a separate windowFigure 1.PI fluorescence and growth rate oscillate in lily pollen tubes (A and B), Arabidopsis root hairs (C–E), and Arabidopsis pollen tubes (F and G). A, The top panel shows a DIC image of a lily pollen tube, and the bottom panel shows PI fluorescence of the same tube. The PI fluorescence is pseudocolored, with white representing high signal and blue representing low signal. Bar = 10 μm. B, Growth rate (blue) and PI fluorescence (red) are plotted on a line graph. Both oscillate with the same period but with different phases. C, DIC image (top panel) and PI fluorescence image (bottom panel) of an Arabidopsis root hair. Bar = 10 μm. D, Two PI fluorescence images of the same root hair focused on the apex representing peak (top) and trough (bottom) PI signals. Bar = 5 μm. E, A line graph showing the growth rate (blue) and peak PI fluorescence at the apex (red) for the same root hair shown in C and D. F, The top panel shows a DIC image of an Arabidopsis pollen tube, and the bottom panel shows PI fluorescence of the same tube. The PI fluorescence is pseudocolored, with white representing high signal and blue representing low signal. Bar = 5 μm. G, Growth rate (blue) and PI fluorescence (red) are plotted on a line graph. Both oscillate with the same period but with different phases. The growth rate between individual 3-s frames was smaller than the pixel size for our optics in both Arabidopsis cell types; to remove the noise this generated, a four-image (pollen) or five-image (root hair) running average is shown. A.U., Arbitrary units.PI is commonly used to visualize plant cell walls by wide-field fluorescence and confocal microscopy (Fiers et al., 2005; Tian et al., 2006; Estevez et al., 2008) and to select viable cells during cell sorting (Deitch et al., 1982; Jones and Senft, 1985). A positively charged phenanthridine derivative, the propidium ion stains cell walls but does not pass through the intact cell membranes of living cells. It readily diffuses into dead cells and forms highly fluorescent complexes by intercalation between base pairs of double-stranded nucleic acids, thus acting as an excellent indicator for cell vitality (Hudson et al., 1969). Binding to cell walls presumably occurs by a different mechanism, since it is not accompanied by the dramatic increase in fluorescence and shift in absorption and emission maxima observed when PI binds to nucleic acids. The mechanism of PI binding needs further exploration, as does the potential for broader use in other tip-growing plant cells.In this report, we test two hypotheses: first, that PI stains other tip-growing cells with pectin-containing cell walls; and second, that PI and Ca2+ bind to the same sites in these walls. This binding would occur through the interaction of partial positive charges caused by localized deficits in π-orbital electrons associated with three of the four nitrogen atoms of PI (Luedtke et al., 2005) coordinating with negatively charged carboxyl and hydroxyl groups on homogalacturonans (HGs), as has been suggested in Oedogonium bharuchae (Estevez et al., 2008).Our findings indicate that both hypotheses are satisfied. Notably, oscillatory changes in apical PI fluorescence occur and are observed to anticipate oscillations in growth rate in Arabidopsis (Arabidopsis thaliana) root hairs and Arabidopsis pollen tubes. In addition, competition studies indicate that PI and Ca2+ bind to the same sites in cell walls. Supporting these studies, we demonstrate that pectin methyl esterase (PME) creates more sites for PI binding, presumably by demethoxylating HGs as they are secreted, and that pectinase reduces PI fluorescence dramatically. However, unlike other pectin-binding dyes, PI does not block Ca2+ channels at the concentration used in live cell studies, nor does it alter oscillatory growth characteristics. Our findings provide evidence that PI may be employed as a quantitative measure of Ca2+-binding sites and thus may have use as an indicator of the degree of cross-linking of HGs and of cell wall extensibility. 相似文献
11.
A Ca2+-dependent protein kinase (CDPK) that has been partiallypurified and characterized previously [Yuasa and Muto (1992)Arch. Biochem. Biophys. 296: 175] was further purified to about20,000-fold from the soluble fraction of Dunaliella tertiolecta.The enzyme preparation contained 60- and 52-kDa polypeptidesboth of which phosphorylated casein as a substrate. Both polypeptidesshowed a Ca2+-dependent increase in mobility during SDS-PAGEand 45Ca2+-binding activity after SDS-PAGE and electroblottingonto a nitrocellulose membrane, suggesting that both the 60-and 52-kDa CDPKs directly bind Ca2+. The protein kinase inhibitors,K-252a and staurosporine, inhibited the CDPK competitively withrespect to ATP. An antibody raised against the 60-kDa CDPK crossreactedwith both the 60- and 52-kDa polypeptides. Both molecular specieswere autophosphorylated in the presence of Ca2+, and a highlyphosphorylated 80-kDa band appeared in addition to these phosphorylatedbands at 60 and 52 kDa in SDS-PAGE. However, the specific activityof CDPK was not changed by prior autophosphorylation when theautophosphorylated enzyme was assayed as a mixture of thesephosphorylated molecular species. Only the 60-kDa polypeptidewas immunodetected in subcellular fractions of Dunaliella cells.The 52-kDa polypeptide increased during storage of the enzyme.These results suggest that the 52-kDa polypeptide is a proteolyticartifact produced during purification. Immunoreactive bandsof 60-kDa were detected in extracts of several green algae butnot in extracts of higher plants or a brown alga.
1This research was partly supported by Grants-in-Aid from theMinistry of Education, Science and Culture, Japan (No. 06454013and 06304023) and Research Fellowship of the Japan Society forthe Promotion of Science for Young Sciencists.
2Research Fellow (PD) of the Japan Society for the Promotionof Science. 相似文献
12.
H.M. Staines W. Chang J.C. Ellory T. Tiffert K. Kirk V.L. Lew 《The Journal of membrane biology》1999,172(1):13-24
Previous reports have indicated that Plasmodium falciparum-infected red cells (pRBC) have an increased Ca2+ permeability. The magnitude of the increase is greater than that normally required to activate the Ca2+-dependent K+ channel (K
Ca
channel) of the red cell membrane. However, there is evidence that this channel remains inactive in pRBC. To clarify this
discrepancy, we have reassessed both the functional status of the K
Ca
channel and the Ca2+ permeability properties of pRBC. For pRBC suspended in media containing Ca2+, K
Ca
channel activation was elicited by treatment with the Ca2+ ionophore A23187. In the absence of ionophore the channel remained inactive. In contrast to previous claims, the unidirectional
influx of Ca2+ into pRBC in which the Ca2+ pump was inhibited by vanadate was found to be within the normal range (30–55 μmol (1013 cells · hr)−1), provided the cells were suspended in glucose-containing media. However, for pRBC in glucose-free media the Ca2+ influx increased to over 1 mmol (1013 cells · hr)−1, almost an order of magnitude higher than that seen in uninfected erythrocytes under equivalent conditions. The pathway responsible
for the enhanced influx of Ca2+ into glucose-deprived pRBC was expressed at approximately 30 hr post-invasion, and was inhibited by Ni2+. Possible roles for this pathway in pRBC are considered.
Received: 12 May 1999/Revised: 8 July 1999 相似文献
13.
Partial Purification and Characterization of a Ca2+-Dependent Protein Kinase from the Green Alga, Dunaliella salina 总被引:1,自引:6,他引:1 下载免费PDF全文
A calcium-dependent protein kinase was partially purified and characterized from the green alga Dunaliella salina. The enzyme was activated at free Ca2+ concentrations above 10−7 molar. and half-maximal activation was at about 3 × 10−7 molar. The optimum pH for its Ca2+-dependent activity was 7.5. The addition of various phospholipids and diolein had no effects on enzyme activity and did not alter the sensitivity of the enzyme toward Ca2+. The enzyme was inhibited by calmodulin antagonists, N-(6-aminohexyl)-1-naphthalene sulfonamide and N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide in a dose-dependent manner while the protein kinase C inhibitor, sphingosine, had little effect on enzyme activity up to 800 micromolar. Immunoassay showed some calmodulin was present in the kinase preparations. However, it is unlikely the kinase was calmodulin regulated, since it still showed stimulation by Ca2+ in gel assays after being electrophoretically separted from calmodulin by two different methods. This gel method of detection of the enzyme indicated that a protein band with an apparent molecular weight of 40,000 showed protein kinase activity at each one of the several steps in the purification procedure. Gel assay analysis also showed that after native gel isoelectric focusing the partially purified kinase preparations had two bands with calcium-dependent activity, at isoelectric points 6.7 and 7.1. By molecular weight, by isoelectric point, and by a comparative immunoassay, the Dunaliella kinase appears to differ from at least some of the calcium-dependent, but calmodulin and phospholipid independent kinases described from higher plants. 相似文献
14.
Experiments on the effects of varying concentrations of Ca2+ on the Mg2+ + Na+-dependent ATPase activity of a highly purified preparation of dog kidney (Na+ + K+)-ATPase showed that Ca2+ was a partial inhibitor of this activity. When Ca2+ was added to the reaction mixture instead of Mg2+, there was a ouabain-sensitive Ca2+ + Na+-dependent ATPase activity the maximal velocity of which was 30 to 50% of that of Mg2+ + Na+-dependent activity. The apparent affinities of the enzyme for Ca2+ and CaATP seemed to be higher than those for Mg2+ and MgATP. Addition of K+, along with Ca2+ and Na+, increased the maximal velocity and the concentration of ATP required to obtain half-maximal velocity. The maximal velocity of the ouabain-sensitive Ca2+ + Na+ + K+-dependent ATPase was about two orders of magnitude smaller than that of Mg2+ + Na+ + K+-dependent activity. In agreement with previous observations, it was shown that in the presence of Ca2+, Na+, and ATP, an acid-stable phosphoenzyme was formed that was sensitive to either ADP or K+. The enzyme also exhibited a Ca2+ + Na+-dependent ADP-ATP exchange activity. Neither the inhibitory effects of Ca2+ on Mg2+-dependent activities, nor the Ca2+-dependent activities were influenced by the addition of calmodulin. Because of the presence of small quantities of endogenous Mg2+ in all reaction mixtures, it could not be determined whether the apparent Ca2+-dependent activities involved enzyme-substrate complexes containing Ca2+ as the divalent cation or both Ca2+ and Mg2+. 相似文献
15.
Using a patch-clamp technique in the whole-cell configuration, we studied the effect of a nitric oxide (NO) donor, nitroglycerin (NG), on outward transmembrane ion current in isolated smooth muscle cells (SMC) of the main pulmonary artery of the rabbit. We also studied the characteristics of unitary high-conductance Ca2+-dependent K+ channels (KCa channels) in the SMC membrane in the cell-attached and outside-out configurations. Nitroglycerin in a 10 M concentration increased the amplitude and intensified oscillations of outward transmembrane current induced by step depolarization. In this case, the threshold of activation of the current (–40 mV) did not change. If the potential was +70 mV, the transmembrane current in the presence of NG increased, as compared with the control, by 32.6 ± 19.4% (n = 6), on average. Simultaneous addition of 10 M NG and 1 mM tetraethylammonium chloride (TEA), a blocker of KCa channels, to the external solution at the potential of +70 mV decreased the amplitude of outward transmembrane current with respect to the control by 25.2 ± 11% (n = 6) and suppressed oscillations of this current. In the series of experiments carried out in the outside-out configuration (concentration of K+ ions in the external solution was 5.9 mM), we calculated the conductance of a single KCa channel, which was approximately 150 pS. In the case where the potential was equal to +40 mV, 1 mM TEA suppressed completely the current through unitary KCa channels. In the series of experiments performed in the cell-attached configuration, 100 M NG to a considerable extent intensified the activity of unitary high-conductance KCa channels by increasing the probability of the channel open state (P
0), on average, by 80 ± 1%, as compared with the control. In this case, NG did not influence the conductance of single KCa channels. We concluded that the NO donor NG increases the amplitude of outward transmembrane current in SMC of the rabbit main pulmonary artery by stimulation of the activity of TEA-sensitive high-conductance KCa channels. Our experiments carried out on single KCa channels demonstrated that the activating effect of NG on KCa channels is realized at the expense of an increase in the P
0 of these channels, but not of a change in the conductance of single channels. 相似文献
16.
Both signaling by nitric oxide (NO) and by the Ca2+/calmodulin (CaM)-dependent protein kinase II α isoform (CaMKIIα) are implicated in two opposing forms of synaptic plasticity underlying learning and memory, as well as in excitotoxic/ischemic neuronal cell death. For CaMKIIα, these functions specifically involve also Ca2+-independent autonomous activity, traditionally generated by Thr-286 autophosphorylation. Here, we demonstrate that NO-induced S-nitrosylation of CaMKIIα also directly generated autonomous activity, and that CaMKII inhibition protected from NO-induced neuronal cell death. NO induced S-nitrosylation at Cys-280/289, and mutation of either site abolished autonomy, indicating that simultaneous nitrosylation at both sites was required. Additionally, autonomy was generated only when Ca2+/CaM was present during NO exposure. Thus, generation of this form of CaMKIIα autonomy requires simultaneous signaling by NO and Ca2+. Nitrosylation also significantly reduced subsequent CaMKIIα autophosphorylation specifically at Thr-286, but not at Thr-305. A previously described reduction of CaMKII activity by S-nitrosylation at Cys-6 was also observed here, but only after prolonged (>5 min) exposure to NO donors. These results demonstrate a novel regulation of CaMKII by another second messenger system and indicate its involvement in excitotoxic neuronal cell death. 相似文献
17.
Venkat G. Magupalli Sumiko Mochida Jin Yan Xin Jiang Ruth E. Westenbroek Angus C. Nairn Todd Scheuer William A. Catterall 《The Journal of biological chemistry》2013,288(7):4637-4648
Ca2+/calmodulin-dependent protein kinase II (CaMKII) forms a major component of the postsynaptic density where its functions in synaptic plasticity are well established, but its presynaptic actions are poorly defined. Here we show that CaMKII binds directly to the C-terminal domain of CaV2.1 channels. Binding is enhanced by autophosphorylation, and the kinase-channel signaling complex persists after dephosphorylation and removal of the Ca2+/CaM stimulus. Autophosphorylated CaMKII can bind the CaV2.1 channel and synapsin-1 simultaneously. CaMKII binding to CaV2.1 channels induces Ca2+-independent activity of the kinase, which phosphorylates the enzyme itself as well as the neuronal substrate synapsin-1. Facilitation and inactivation of CaV2.1 channels by binding of Ca2+/CaM mediates short term synaptic plasticity in transfected superior cervical ganglion neurons, and these regulatory effects are prevented by a competing peptide and the endogenous brain inhibitor CaMKIIN, which blocks binding of CaMKII to CaV2.1 channels. These results define the functional properties of a signaling complex of CaMKII and CaV2.1 channels in which both binding partners are persistently activated by their association, and they further suggest that this complex is important in presynaptic terminals in regulating protein phosphorylation and short term synaptic plasticity. 相似文献
18.
19.
Using the patch-clamp technique the kinetics of whole-cell andsingle channel inwardly rectifying K+ currents were measuredin enzymatically-isolated protoplasts from Avena sativa mesophyllleaf cells. The hyperpolarization-activated whole-cell currenthad an initial K+ component (IKI) and a time-dependent K+ componentwhich reaches steady state (IKSS) within 500 ms. After an initialdelay, the activation of IKss and the deactivation of the tailK+ current (IKT) followed an exponential time course. The time-constantsof activation ( 相似文献
20.
A major protein in the postsynaptic density fraction is -CAM kinase II, the -subunit of the Ca2+/calmodulin-dependent protein kinase. Autophosphorylation of the postsynaptic density-associated CaM kinase II is likely to be a crucial event in the induction of activity-dependent synaptic modification. This study focuses on the regulation and consequences of Ca2+-independent autophosphorylation of the enzyme. In isolated postsynaptic densities, a sub-stochiometric level of autophosphorylation in the presence of Ca2+ is sufficient to trigger maximal Ca2+-independent autophosphorylation of -CaM Kinase II. A major fraction of the sites phosphorylated in the absence of Ca2+ can be dephosphorylated by the endogenous phosphatase activity in the preparation. Ca2+-independent autophosphorylation is correlated with a drastic decrease in calmodulin binding to postsynaptic densities. This may represent a physiological mechanism that lowers the calmodulin trapping capacity of the organelle, thus increasing the availability of calmodulin to other elements within a spine. 相似文献