首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We hypothesize that drug addiction can be viewed as the endpoint of a series of transitions from initial voluntary drug use through the loss of control over this behaviour, such that it becomes habitual and ultimately compulsive. We describe evidence that the switch from controlled to compulsive drug seeking represents a transition at the neural level from prefrontal cortical to striatal control over drug-seeking and drug-taking behaviours as well as a progression from ventral to more dorsal domains of the striatum, mediated by its serially interconnecting dopaminergic circuitry. These neural transitions depend upon the neuroplasticity induced by chronic self-administration of drugs in both cortical and striatal structures, including long-lasting changes that are the consequence of toxic drug effects. We further summarize evidence showing that impulsivity, a spontaneously occurring behavioural tendency in outbred rats that is associated with low dopamine D2/3 receptors in the nucleus accumbens, predicts both the propensity to escalate cocaine intake and the switch to compulsive drug seeking and addiction.  相似文献   

2.
As primary targets of a variety of abused drugs G-protein-coupled dopamine receptors in the brain play an important role in mediating the various drug-induced alterations in neural and psychological processes thought to underlie the transition from voluntary drug use to habitual and progressively compulsive drug-taking. This review considers the functional involvement of the five major dopamine receptor subtypes in drug reinforcement and reward and discusses the development of addiction as a series of learning transitions from initial goal-directed behaviour to pathological stimulus–response habits in which drug-seeking behaviours are automatically elicited and maintained by cues and stimuli associated with drug rewards.  相似文献   

3.
Belin D  Everitt BJ 《Neuron》2008,57(3):432-441
A neuroanatomical principle of striatal organization has been established through which ventral domains, including the nucleus accumbens, exert control over dorsal striatal processes mediated by so-called "spiraling," striato-nigro-striatal, circuitry. We have investigated the functional significance of this circuitry in the control over a cocaine-seeking habit by using an intrastriatal disconnection procedure that combined a selective, unilateral lesion of the nucleus accumbens core and infusion of a dopamine receptor antagonist into the contralateral dorsolateral striatum, thereby disrupting striato-midbrain-striatal serial connectivity bilaterally. We show that this disconnection selectively decreased drug-seeking behavior in rats extensively trained under a second-order schedule of cocaine reinforcement. These data thereby define the importance of interactions between ventral and dorsal domains of the striatum, mediated by dopaminergic transmission, in the neural mechanisms underlying the development and performance of cocaine-seeking habits that are a key characteristic of drug addiction.  相似文献   

4.
Exposure to addictive drugs causes changes in synaptic function within the striatal complex, which can either mimic or interfere with the induction of synaptic plasticity. These synaptic adaptations include changes in the nucleus accumbens (NAc), a ventral striatal subregion important for drug reward and reinforcement, as well as the dorsal striatum, which may promote habitual drug use. As the behavioral effects of drugs of abuse are long-lasting, identifying persistent changes in striatal circuits induced by in vivo drug experience is of considerable importance. Within the striatum, drugs of abuse have been shown to induce modifications in dendritic morphology, ionotropic glutamate receptors (iGluR) and the induction of synaptic plasticity. Understanding the detailed molecular mechanisms underlying these changes in striatal circuit function will provide insight into how drugs of abuse usurp normal learning mechanisms to produce pathological behavior.  相似文献   

5.
6.
Differing classes of abused drugs utilize different mechanisms of molecular pharmacological action yet the overuse of these same drugs frequently leads to the same outcome: addiction. Similarly, episodes of stress can lead to drug-seeking behaviors and relapse in recovering addicts. To overcome the labor-intensive headache of having to design a specific addiction-breaking intervention tailored to each drug it would be expedient to attack the cycle of addiction at targets common to such seemingly disparate classes of drugs of abuse. Recently, encouraging observations were made whereby stressful conditions and differing classes of drugs of abuse were found to impinge upon the same excitatory synapses on dopamine neurons in the midbrain. These findings will increase our understanding of the intricacies of addiction and LTP, and may lead to new interventions for breaking addiction.  相似文献   

7.
The conceptualization of drug addiction as a compulsive disorder with excessive drug intake and loss of control over intake requires motivational mechanisms. Opponent process as a motivational theory for the negative reinforcement of drug dependence has long required a neurobiological explanation. Key neurochemical elements involved in reward and stress within basal forebrain structures involving the ventral striatum and extended amygdala are hypothesized to be dysregulated in addiction to convey the opponent motivational processes that drive dependence. Specific neurochemical elements in these structures include not only decreases in reward neurotransmission such as dopamine and opioid peptides in the ventral striatum, but also recruitment of brain stress systems such as corticotropin-releasing factor (CRF), noradrenaline and dynorphin in the extended amygdala. Acute withdrawal from all major drugs of abuse produces increases in reward thresholds, anxiety-like responses and extracellular levels of CRF in the central nucleus of the amygdala. CRF receptor antagonists block excessive drug intake produced by dependence. A brain stress response system is hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence and to contribute to stress-induced relapse. The combination of loss of reward function and recruitment of brain stress systems provides a powerful neurochemical basis for the long hypothesized opponent motivational processes responsible for the negative reinforcement driving addiction.  相似文献   

8.
An understanding of the neurobiological basis of drug addiction requires examination of real-time (subsecond) cellular and chemical responses in the brain reward system during drug-seeking and drug-taking behavior. Electrophysiological and electrochemical studies in the rodent nucleus accumbens have examined changes in cell firing and rapid dopamine signaling during crucial periods of behavioral responding for drugs, and show the associative nature of those signals. These findings are considered with respect to the functional microcircuitry in the nucleus accumbens that underlies goal-directed behavior and the role of this circuit in drug addiction.  相似文献   

9.
Experimental genetic approaches to addiction   总被引:4,自引:0,他引:4  
Laakso A  Mohn AR  Gainetdinov RR  Caron MG 《Neuron》2002,36(2):213-228
Drugs of abuse are able to elicit compulsive drug-seeking behaviors upon repeated administration, which ultimately leads to the phenomenon of addiction. Evidence indicates that the susceptibility to develop addiction is influenced by sources of reinforcement, variable neuroadaptive mechanisms, and neurochemical changes that together lead to altered homeostasis of the brain reward system. Addiction is hypothesized to be a cycle of progressive dysregulation of the brain reward system that results in the compulsive use and loss of control over drug taking and the initiation of behaviors associated with drug seeking. The view that addiction represents a pathological state of reward provides an approach to identifying the factors that contribute to vulnerability, addiction, and relapse in genetic animal models.  相似文献   

10.
Addiction is almost universally held to be characterized by a loss of control over drug-seeking and consuming behavior. But the actions of addicts, even of those who seem to want to abstain from drugs, seem to be guided by reasons. In this paper, I argue that we can explain this fact, consistent with continuing to maintain that addiction involves a loss of control, by understanding addiction as involving an oscillation between conflicting judgments. I argue that the dysfunction of the mesolimbic dopamine system that typifies addictions causes the generation of a mismatch between the top-down model of the world that reflects the judgment that the addict ought to refrain from drugs, and bottom-up input caused by cues predictive of drug availability. This constitutes a powerful pressure toward revising the judgment and thereby attenuating the prediction error. But the new model is not stable, and shifts under the pressure of bottom-up inputs in different contexts; hence the oscillation of all-things-considered judgment. Evidence from social psychology is adduced, to suggest that a similar process may be involved in ordinary cases of weakness of will.  相似文献   

11.
The orexigenic peptide ghrelin plays a prominent role in the regulation of energy balance and in the mediation of reward mechanisms and reinforcement for addictive drugs, such as nicotine. Nicotine is the principal psychoactive component in tobacco, which is responsible for addiction and relapse of smokers. Nicotine activates the mesencephalic dopaminergic neurons via nicotinic acetylcholine receptors (nAchR). Ghrelin stimulates the dopaminergic neurons via growth hormone secretagogue receptors (GHS-R1A) in the ventral tegmental area and the substantia nigra pars compacta resulting in the release of dopamine in the ventral and dorsal striatum, respectively. In the present study an in vitro superfusion of rat striatal slices was performed, in order to investigate the direct action of ghrelin on the striatal dopamine release and the interaction of ghrelin with nicotine through this neurotransmitter release. Ghrelin increased significantly the dopamine release from the rat striatum following electrical stimulation. This stimulatory effect was reversed by both the selective nAchR antagonist mecamylamine and the selective GHS-R1A antagonist GHRP-6. Nicotine also increased significantly the dopamine release under the same conditions. This stimulatory effect was antagonized by mecamylamine, but not by GHRP-6. Ghrelin further stimulated the nicotine-induced dopamine release and this effect was abolished by mecamylamine and was partially inhibited by GHRP-6. The present results demonstrate that ghrelin stimulates directly the dopamine release and amplifies the nicotine-induced dopamine release in the rat striatum. We presume that striatal cholinergic interneurons also express GHS-R1A, through which ghrelin can amplify the nicotine-induced dopamine release in the striatum. This study provides further evidence of the impact of ghrelin on the mesolimbic and nigrostriatal dopaminergic pathways. It also suggests that ghrelin signaling may serve as a novel pharmacological target for treatment of addictive and neurodegenerative disorders.  相似文献   

12.
Cocaine strengthens excitatory synapses onto midbrain dopamine neurons through the synaptic delivery of GluR1-containing AMPA receptors. This cocaine-evoked plasticity depends on NMDA receptor activation, but its behavioral significance in the context of addiction remains elusive. Here, we generated mice lacking the GluR1, GluR2, or NR1 receptor subunits selectively in dopamine neurons. We report that in midbrain slices of cocaine-treated mice, synaptic transmission was no longer strengthened when GluR1 or NR1 was abolished, while in the respective mice the drug still induced normal conditioned place preference and locomotor sensitization. In contrast, extinction of drug-seeking behavior was absent in mice lacking GluR1, while in the NR1 mutant mice reinstatement was abolished. In conclusion, cocaine-evoked synaptic plasticity does not mediate concurrent short-term behavioral effects of the drug but may initiate adaptive changes eventually leading to the persistence of drug-seeking behavior.  相似文献   

13.
Adolescence is associated with high impulsivity and risk taking, making adolescent individuals more inclined to use drugs. Early drug use is correlated to increased risk for substance use disorders later in life but the neurobiological basis is unclear. The brain undergoes extensive development during adolescence and disturbances at this time are hypothesized to contribute to increased vulnerability. The transition from controlled to compulsive drug use and addiction involve long-lasting changes in neural networks including a shift from the nucleus accumbens, mediating acute reinforcing effects, to recruitment of the dorsal striatum and habit formation. This study aimed to test the hypothesis of increased dopamine release after a pharmacological challenge in adolescent rats. Potassium-evoked dopamine release and uptake was investigated using chronoamperometric dopamine recordings in combination with a challenge by amphetamine in early and late adolescent rats and in adult rats. In addition, the consequences of voluntary alcohol intake during adolescence on these effects were investigated. The data show a gradual increase of evoked dopamine release with age, supporting previous studies suggesting that the pool of releasable dopamine increases with age. In contrast, a gradual decrease in evoked release with age was seen in response to amphetamine, supporting a proportionally larger storage pool of dopamine in younger animals. Dopamine measures after voluntary alcohol intake resulted in lower release amplitudes in response to potassium-chloride, indicating that alcohol affects the releasable pool of dopamine and this may have implications for vulnerability to addiction and other psychiatric diagnoses involving dopamine in the dorsal striatum.  相似文献   

14.
Dopamine input to the striatum is required for voluntary motor movement, behavioral reinforcement, and responses to drugs of abuse. It is speculated that these functions are dependent on either excitatory or inhibitory modulation of corticostriatal synapses onto medium spiny neurons (MSNs). While dopamine modulates MSN excitability, a direct presynaptic effect on the corticostriatal input has not been clearly demonstrated. We combined optical monitoring of synaptic vesicle exocytosis from motor area corticostriatal afferents and electrochemical recordings of striatal dopamine release to directly measure effects of dopamine at the level of individual presynaptic terminals. Dopamine released by either electrical stimulation or amphetamine acted via D2 receptors to inhibit the activity of subsets of corticostriatal terminals. Optical and electrophysiological data suggest that heterosynaptic inhibition was enhanced by higher frequency stimulation and was selective for the least active terminals. Thus, dopamine, by filtering less active inputs, appears to reinforce specific sets of corticostriatal synaptic connections.  相似文献   

15.
Reinforcement processes in opiate addiction: A homeostatic model   总被引:4,自引:0,他引:4  
The development of tolerance and dependence has traditionally been considered an integral aspect of the drug addiction process, and opiate dependence has been studied extensively as a model system in this regard. However, recent emphasis on the positive reinforcing properties of drugs has led to the suggestion that tolerance, dependence, and withdrawal may be of secondary or even negligible importance in motivating compulsive drug use. The current article argues for an integrated view of addiction in the form of a homeostatic neuroadaptation model which emphasizes the motivational significance of both the positive affective state produced by opiates and the negative affective state characteristic of drug withdrawal. The model is supported by evidence at both the behavioral and neural systems levels of analysis. Understanding the important distinction between somatic and affective components of opiate withdrawal is key to recognizing the factors which contribute to the motivational significance of opiate dependence and withdrawal. In addition, the critical role of conditioning processes in the maintenance of compulsive drug use and relapse after periods of abstention is discussed. Finally, it is argued that both the positive reinforcement produced by acute administration of a drug and the negative affective state produced by withdrawal are common to multiple classes of abused drugs, suggesting that an understanding of homeostatic neuroadaptation within motivational systems provides a key to the etiology, treatment and prevention of drug addiction. Special issue dedicated to Dr. Eric J. Simon.  相似文献   

16.
Drug addiction is widely recognized to afflict some but not all individuals by virtue of underlying risk markers and traits involving multifaceted interactions between polygenic and external factors. Remarkably, only a small proportion of individuals exposed to licit and illicit drugs develop compulsive drug‐seeking behavior, maintained in the face of adverse consequences and associated detrimental patterns of drug intake involving extended and repeated bouts of binge intoxication, withdrawal and relapse. As a consequence, research has increasingly endeavored to identify distinctive neurobehavioral mechanisms and endophenotypes that predispose individuals to compulsive drug use. However, research in active drug users is hampered by the difficulty in categorizing putatively causal behavioral traits prior to the initiation of drug use. By contrast, research in experimental animals is often hindered by the validity of approaches used to investigate the neural and psychological mechanisms of compulsive drug‐seeking habits in humans. Herein, we survey and discuss the principal findings emanating from preclinical animal research on addiction and highlight how specific behavioral endophenotypes of presumed genetic origin (e.g. trait anxiety, novelty preference and impulsivity) differentially contribute to compulsive forms of drug seeking and taking and, in particular, how these differentiate between different classes of stimulant and non‐stimulant drugs of abuse.  相似文献   

17.
Based on brain imaging findings, we present a model according to which addiction emerges as an imbalance in the information processing and integration among various brain circuits and functions. The dysfunctions reflect (a) decreased sensitivity of reward circuits, (b) enhanced sensitivity of memory circuits to conditioned expectations to drugs and drug cues, stress reactivity, and (c) negative mood, and a weakened control circuit. Although initial experimentation with a drug of abuse is largely a voluntary behavior, continued drug use can eventually impair neuronal circuits in the brain that are involved in free will, turning drug use into an automatic compulsive behavior. The ability of addictive drugs to co‐opt neurotransmitter signals between neurons (including dopamine, glutamate, and GABA) modifies the function of different neuronal circuits, which begin to falter at different stages of an addiction trajectory. Upon exposure to the drug, drug cues or stress this results in unrestrained hyperactivation of the motivation/drive circuit that results in the compulsive drug intake that characterizes addiction.  相似文献   

18.
Snyder SH 《Neuron》2006,49(4):484-485
The dopamine hypothesis of schizophrenia is based on evidence that the major antipsychotic drugs act by blocking dopamine D2 receptors and that dopamine-releasing drugs worsen symptoms. In this issue of Neuron, Kellendonk et al. report an elegant conditional transgenic mouse overexpressing dopamine D2 receptors selectively in the striatum. Strikingly, these animals display selective cognitive impairment typically associated with frontal cortical defects and abnormal dopamine markers in the prefrontal cortex, suggesting that striatal dopamine receptors can influence cortical dopamine function.  相似文献   

19.
New perspectives on cocaine addiction: recent findings from animal research   总被引:1,自引:0,他引:1  
Research with laboratory animals has provided several insights into the nature of cocaine abuse and addiction. First, the nature of drug addiction has been reevaluated and the emphasis has shifted from physical dependence to compulsive drug-taking behavior. Second, animal studies suggest that cocaine is at least as addictive as heroin and possibly even more addictive. Third, cocaine is potentially more dangerous than heroin as evidenced by the higher fatality rate seen in laboratory animals given unlimited access to these drugs. Fourth, the neural basis of cocaine reinforcement has been identified and involves an enhancement of dopaminergic neurotransmission in the ventral tegmental dopamine system. Other addictive drugs (e.g., opiates) may also derive at least part of their reinforcing impact by pharmacologically activating this reward system. Fifth, although the biological consequences of repeated cocaine self-administration on central nervous system functioning are poorly understood, preliminary findings suggest that intravenous cocaine self-administration may decrease neural functioning in this brain reward system. This has important clinical implications because diminished functioning of an important brain reward system may significantly contribute to relapse into cocaine addiction. These and other findings from experimentation with laboratory animals suggest new considerations for the etiology and treatment of drug addiction.  相似文献   

20.
Foddy B  Savulescu J 《Bioethics》2006,20(1):1-15
It is often claimed that the autonomy of heroin addicts is compromised when they are choosing between taking their drug of addiction and abstaining. This is the basis of claims that they are incompetent to give consent to be prescribed heroin. We reject these claims on a number of empirical and theoretical grounds. First we argue that addicts are likely to be sober, and thus capable of rational thought, when approaching researchers to participate in research. We reject behavioural evidence purported to establish that addicts lack autonomy. We present an argument that extrinsic forces must be irresistible in order to make a choice non-autonomous. We argue that heroin does not present such an irresistible force. We make a case that drug-oriented desires are strong regular appetitive desires, which do not compromise consent. Finally we argue that an addict's apparent desire to engage in a harmful act cannot be construed as evidence of irrational or compulsive thought. On these arguments, a sober heroin addict must be considered competent, autonomous and capable of giving consent. More generally, any argument against legalisation of drugs or supporting infringement of the liberty of those desiring to take drugs of addiction must be based on considerations of harm and paternalism, and not on false claims that addicts lack freedom of the will.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号