首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In response to hypoxia and other stress, the sympathetic (adrenergic) nervous system regulates arterial contractility and blood flow, partly through differential activities of the alpha1 (α1) - adrenergic receptor (AR) subtypes (α1A-, α1B-, and α1D-AR). Thus, we tested the hypothesis that with acclimatization to long-term hypoxia (LTH), contractility of middle cerebral arteries (MCA) is regulated by changes in expression and activation of the specific α1-AR subtypes. We conducted experiments in MCA from adult normoxic sheep maintained near sea level (300 m) and those exposed to LTH (110 days at 3801 m). Following acclimatization to LTH, ovine MCA showed a 20% reduction (n = 5; P<0.05) in the maximum tension achieved by 10−5 M phenylephrine (PHE). LTH-acclimatized cerebral arteries also demonstrated a statistically significant (P<0.05) inhibition of PHE-induced contractility in the presence of specific α1-AR subtype antagonists. Importantly, compared to normoxic vessels, there was significantly greater (P<0.05) α1B-AR subtype mRNA and protein levels in LTH acclimatized MCA. Also, our results demonstrate that extracellular regulated kinase 1 and 2 (ERK1/2)-mediated negative feedback regulation of PHE-induced contractility is modulated by α1B-AR subtype. Overall, in ovine MCA, LTH produces profound effects on α1-AR subtype expression and function.  相似文献   

2.
The α1A-AR is thought to couple predominantly to the Gαq/PLC pathway and lead to phosphoinositide hydrolysis and calcium mobilization, although certain agonists acting at this receptor have been reported to trigger activation of arachidonic acid formation and MAPK pathways. For several G protein-coupled receptors (GPCRs) agonists can manifest a bias for activation of particular effector signaling output, i.e. not all agonists of a given GPCR generate responses through utilization of the same signaling cascade(s). Previous work with Gαq coupling-defective variants of α1A-AR, as well as a combination of Ca2+ channel blockers, uncovered cross-talk between α1A-AR and β2-AR that leads to potentiation of a Gαq-independent signaling cascade in response to α1A-AR activation. We hypothesized that molecules exist that act as biased agonists to selectively activate this pathway. In this report, isoproterenol (Iso), typically viewed as β-AR-selective agonist, was examined with respect to activation of α1A-AR. α1A-AR selective antagonists were used to specifically block Iso evoked signaling in different cellular backgrounds and confirm its action at α1A-AR. Iso induced signaling at α1A-AR was further interrogated by probing steps along the Gαq /PLC, Gαs and MAPK/ERK pathways. In HEK-293/EBNA cells transiently transduced with α1A-AR, and CHO_α1A-AR stable cells, Iso evoked low potency ERK activity as well as Ca2+ mobilization that could be blocked by α1A-AR selective antagonists. The kinetics of Iso induced Ca2+ transients differed from typical Gαq- mediated Ca2+ mobilization, lacking both the fast IP3R mediated response and the sustained phase of Ca2+ re-entry. Moreover, no inositol phosphate (IP) accumulation could be detected in either cell line after stimulation with Iso, but activation was accompanied by receptor internalization. Data are presented that indicate that Iso represents a novel type of α1A-AR partial agonist with signaling bias toward MAPK/ERK signaling cascade that is likely independent of coupling to Gαq.  相似文献   

3.
4.
We have previously described a novel modulator of the actin cytoskeleton that also regulates Ras and mitogen-activated protein kinase activities in TGFβ-sensitive epithelial cells. Here we examined the functional role of this signaling regulatory protein (km23-1) in mediating the migration, invasion, and tumor growth of human colorectal carcinoma (CRC) cells. We show that small interfering RNA (siRNA) depletion of km23-1 in human CRC cells inhibited constitutive extracellular signal-regulated kinase (ERK) activation, as well as pro-invasive ERK effector functions that include phosphorylation of Elk-1, constitutive regulation of c-Fos-DNA binding, TGFβ1 promoter transactivation, and TGFβ1 secretion. In addition, knockdown of km23-1 reduced the paracrine effects of CRC cell-secreted factors in conditioned medium and in fibroblast co-cultures. Moreover, km23-1 depletion in human CRC cells reduced cell migration and invasion, as well as expression of the ERK-regulated, metastasis-associated scaffold protein Ezrin. Finally, km23-1 inhibition significantly suppressed tumor formation in vivo. Thus, our results implicate km23-1 as a novel anti-metastasis target for human colon carcinoma cells, capable of decreasing tumor growth and invasion via a mechanism involving suppression of various pro-migratory features of CRC. These include a reduction in ERK signaling, diminished TGFβ1 production, decreased expression of the plasma membrane-cytoskeletal linker Ezrin, as well as attenuation of the paracrine effects of colon carcinoma-secreted factors on fibroblast migration and mitogenesis. As such, km23-1 inhibitors may represent a viable therapeutic strategy for interfering with colon cancer progression and invasion.  相似文献   

5.
Fibroblasts in the tumor microenvironment are a key determinant in cancer progression and may be a promising target for cancer therapy. Insulin-like growth factor binding protein 7 (IGFBP7) is known as a tumor suppressor in colorectal cancer (CRC). The present study investigated the inductive mechanism of IGFBP7 expression in fibroblasts by supernatant from the CRC cell line, SW620. The results showed that the expression of IGFBP7 was up-regulated in the fibroblasts when treated with SW620 supernatant and exogenous TGF-β1. The IGFBP7 induced by SW620 supernatant or TGF-β1 was partially inhibited by the TGF-β1 specific antibody AF and TGF-β1 receptor antagonist SB431542. The Wnt signaling-targeted genes, c-Myc, CCND1 and the proteins Dvl2/3, were all up-regulated in fibroblasts expressing high levels of IGFBP7, and the up-regulation could be inhibited both by the Wnt signaling antagonist Dickkopf-1 (DKK1) and by the TGF-β1 receptor antagonist SB431542. In conclusion, CRC cells promote the high expression of IGFBP7 in fibroblasts, most likely through the co-regulation of TGF-β and Wnt signaling in a Smad2/3-Dvl2/3 dependent manner. Taken together, these data suggest that the fibroblasts could be a novel therapeutic target in tumor therapy.  相似文献   

6.
The androgen receptor (AR) surface-directed antagonist MJC13 inhibits AR function and proliferation of prostate cancer (PC) cells. These effects are related to arrest of an AR/chaperone complex in the cytoplasm. Here, we compared MJC13 and classic AR antagonists such as flutamide and bicalutamide. Microarray analysis and confirmatory qRT-PCR reveals that MJC13 and flutamide inhibit dihydrotestosterone (DHT)-dependent genes in LNCaP PC cells. Both compounds are equally effective on a genome wide basis and as effective as second generation AR antagonists (MDV3100, ARN-509) at selected genes. MJC13 inhibits AR binding to the prostate specific antigen (PSA) promoter more strongly than flutamide, consistent with different mechanisms of action. Examination of efficacy of MJC13 in conditions that reflect aspects castrate resistant prostate cancer (CRPC) reveals that it inhibits flutamide activation of an AR mutant (ART877A) that emerges during flutamide withdrawal syndrome, but displays greatly restricted gene-specific activity in 22Rv1 cells that express a constitutively active truncated AR and is inactive against glucocorticoid receptor (GR), which can co-opt androgen-dependent signaling networks in CRPC. Importantly, MJC13 inhibits AR interactions with SRC2 and β-catenin in the nucleus and, unlike flutamide, strongly inhibits amplification of AR activity obtained with transfected SRC2 and β-catenin. MJC13 also inhibits DHT and β-catenin-enhanced cell division in LNCaP cells. Thus, a surface-directed antagonist can block AR activity in some conditions in which a classic antagonist fails and may display utility in particular forms of CRPC.  相似文献   

7.
Nebivolol, a third generation β-adrenoceptor (β-AR) antagonist (β-blocker), causes vasodilation by inducing nitric oxide (NO) production. The mechanism via which nebivolol induces NO production remains unknown, resulting in the genesis of much of the controversy regarding the pharmacological action of nebivolol. Carvedilol is another β-blocker that induces NO production. A prominent pharmacological mechanism of carvedilol is biased agonism that is independent of Gαs and involves G protein-coupled receptor kinase (GRK)/β-arrestin signaling with downstream activation of the epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase (ERK). Due to the pharmacological similarities between nebivolol and carvedilol, we hypothesized that nebivolol is also a GRK/β-arrestin biased agonist. We tested this hypothesis utilizing mouse embryonic fibroblasts (MEFs) that solely express β2-ARs, and HL-1 cardiac myocytes that express β1- and β2-ARs and no detectable β3-ARs. We confirmed previous reports that nebivolol does not significantly alter cAMP levels and thus is not a classical agonist. Moreover, in both cell types, nebivolol induced rapid internalization of β-ARs indicating that nebivolol is also not a classical β-blocker. Furthermore, nebivolol treatment resulted in a time-dependent phosphorylation of ERK that was indistinguishable from carvedilol and similar in duration, but not amplitude, to isoproterenol. Nebivolol-mediated phosphorylation of ERK was sensitive to propranolol (non-selective β-AR-blocker), AG1478 (EGFR inhibitor), indicating that the signaling emanates from β-ARs and involves the EGFR. Furthermore, in MEFs, nebivolol-mediated phosphorylation of ERK was sensitive to pharmacological inhibition of GRK2 as well as siRNA knockdown of β-arrestin 1/2. Additionally, nebivolol induced redistribution of β-arrestin 2 from a diffuse staining pattern into more intense punctate spots. We conclude that nebivolol is a β2-AR, and likely β1-AR, GRK/β-arrestin biased agonist, which suggests that some of the unique clinically beneficial effects of nebivolol may be due to biased agonism at β1- and/or β2-ARs.  相似文献   

8.
The molecular mechanism underlying the post-Golgi transport of G protein-coupled receptors (GPCRs) remains poorly understood. Here we determine the role of Rab8 GTPase, which modulates vesicular protein transport between the trans-Golgi network (TGN) and the plasma membrane, in the cell surface targeting of α2B- and β2-adrenergic receptors (AR). Transient expression of GDP- and GTP-bound Rab8 mutants and short hairpin RNA-mediated knockdown of Rab8 more potently inhibited the cell surface expression of α2B-AR than β2-AR. The GDP-bound Rab8(T22N) mutant attenuated ERK1/2 activation by α2B-AR, but not β2-AR, and arrested α2B-AR in the TGN compartment. Co-immunoprecipitation revealed that both α2B-AR and β2-AR physically interacted with Rab8 and glutathione S-transferase fusion protein pulldown assays demonstrated that Rab8 interacted with the C termini of both receptors. Interestingly, mutation of the highly conserved membrane-proximal C terminus dileucine motif selectively blocked β2-AR interaction with Rab8, whereas mutation of residues Val431-Phe432-Asn433-Gln434, Pro447-Trp448, Gln450-Thr451, and Trp453 in the C terminus impaired α2B-AR interaction with Rab8. Furthermore, transport inhibition by Rab8(T22N) of a chimeric β2-AR carrying the α2B-AR C terminus was similar to α2B-AR. These data provide strong evidence indicating that Rab8 GTPase interacts with distinct motifs in the C termini of α2B-AR and β2-AR and differentially modulates their traffic from the TGN to the cell surface.  相似文献   

9.
Renal cell carcinoma (RCC) originates in the lining of the proximal convoluted tubule and accounts for approximately 3% of adult malignancies. The RCC incidence rate increases annually and is twofold higher in males than in females. Female hormones such as estrogen may play important roles during RCC carcinogenesis and result in significantly different incidence rates between males and females. In this study, we found that estrogen receptor β (ERβ) was more highly expressed in RCC cell lines (A498, RCC-1, 786-O, ACHN, and Caki-1) than in breast cancer cell lines (MCF-7 and HBL-100); however, no androgen receptor (AR) or estrogen receptor α (ERα) could be detected by western blot. In addition, proliferation of RCC cell lines was significantly decreased after estrogen (17-β-estradiol, E2) treatment. Since ERβ had been documented to be a potential tumor suppressor gene, we hypothesized that estrogen activates ERβ tumor suppressive function, which leads to different RCC incidence rates between males and females. We found that estrogen treatment inhibited cell proliferation, migration, invasion, and increased apoptosis of 786-O (high endogenous ERβ), and ERβ siRNA-induced silencing attenuated the estrogen-induced effects. Otherwise, ectopic ERβ expression in A498 (low endogenous ERβ) increased estrogen sensitivity and thus inhibited cell proliferation, migration, invasion, and increased apoptosis. Analysis of the molecular mechanisms revealed that estrogen-activated ERβ not only remarkably reduced growth hormone downstream signaling activation of the AKT, ERK, and JAK signaling pathways but also increased apoptotic cascade activation. In conclusion, this study found that estrogen-activated ERβ acts as a tumor suppressor. It may explain the different RCC incidence rates between males and females. Furthermore, it implies that ERβ may be a useful prognostic marker for RCC progression and a novel developmental direction for RCC treatment improvement.  相似文献   

10.
Angiogenesis depends on growth factors and vascular cell adhesion events. Integrins and growth factors are capable of activating the ras/MAP kinase pathway in vitro, yet how these signals influence endothelial cells during angiogenesis is unknown. Upon initiation of angiogenesis with basic fibroblast growth factor (bFGF) on the chick chorioallantoic membrane (CAM), endothelial cell mitogen-activated protein (MAP) kinase (ERK) activity was detected as early as 5 min yet was sustained for at least 20 h. The initial wave of ERK activity (5–120 min) was refractory to integrin antagonists, whereas the sustained activity (4–20 h) depended on integrin αvβ3, but not β1 integrins. Inhibition of MAP kinase kinase (MEK) during this sustained αvβ3-dependent ERK signal blocked the formation of new blood vessels while not influencing preexisting blood vessels on the CAM. Inhibition of MEK also blocked growth factor induced migration but not adhesion of endothelial cells in vitro. Therefore, angiogenesis depends on sustained ERK activity regulated by the ligation state of both a growth factor receptor and integrin αvβ3.  相似文献   

11.
Dysregulated amphiregulin (AR) expression and EGR receptor (EGFR) activation have been described in animal models of pulmonary fibrosis and in patients with idiopathic pulmonary fibrosis. However, the exact role of AR in the pathogenesis of pulmonary fibrosis has not been clearly defined. Here, we show that a potent profibrogenic cytokine TGF-β1 significantly induced the expression of AR in lung fibroblasts in vitro and in murine lungs in vivo. AR stimulated NIH3T3 fibroblast cell proliferation in a dose-dependent manner. Silencing of AR expression by siRNA or chemical inhibition of EGFR signaling, utilizing AG1478 and gefitinib, significantly reduced the ability of TGF-β1 to stimulate fibroblast proliferation and expression of α-smooth muscle actin, collagen, and other extracellular matrix-associated genes. TGF-β1-stimulated activation of Akt, ERK, and Smad signaling was also significantly inhibited by these interventions. Consistent with these in vitro findings, AR expression was impressively increased in the lungs of TGF-β1 transgenic mice, and either siRNA silencing of AR or chemical inhibition of EGFR signaling significantly reduced TGF-β1-stimulated collagen accumulation in the lung. These studies showed a novel regulatory role for AR in the pathogenesis of TGF-β1-induced pulmonary fibrosis. In addition, these studies suggest that AR, or AR-activated EGFR signaling, is a potential therapeutic target for idiopathic pulmonary fibrosis associated with TGF-β1 activation.  相似文献   

12.

Background

Norepinephrine (NE) modulates the responsiveness of macrophages to proinflammatory stimuli through the activation of adrenergic receptors (ARs). Being part of the stress response, early increases of NE in sepsis sustain adverse systemic inflammatory responses. The intestine is an important source of NE release in the early stage of cecal ligation and puncture (CLP)-induced sepsis in rats, which then stimulates TNF-α production in Kupffer cells (KCs) through the activation of the α2-AR. It is important to know which of the three α2-AR subtypes (i.e., α2A, α2B or α2C) is responsible for the upregulation of TNF-α production. The aim of this study was to determine the contribution of α2A-AR in this process.

Methodology/Principal Findings

Adult male rats underwent CLP and KCs were isolated 2 h later. Gene expression of α2A-AR was determined. In additional experiments, cultured KCs were incubated with NE with or without BRL-44408 maleate, a specific α2A-AR antagonist, and intraportal infusion of NE for 2 h with or without BRL-44408 maleate was carried out in normal animals. Finally, the impact of α2A-AR activation by NE was investigated under inflammatory conditions (i.e., endotoxemia and CLP). Gene expression of the α2A-AR subtype was significantly upregulated after CLP. NE increased the release of TNF-α in cultured KCs, which was specifically inhibited by the α2A-AR antagonist BRL-44408. Equally, intraportal NE infusion increased TNF-α gene expression in KCs and plasma TNF-α which was also abrogated by co-administration of BRL-44408. NE also potentiated LPS-induced TNF-α release via the α2A-AR in vitro and in vivo. This potentiation of TNF-α release by NE was mediated through the α2A-AR coupled Gαi protein and the activation of the p38 MAP kinase. Treatment of septic animals with BRL-44408 suppressed TNF-α, prevented multiple organ injury and significantly improved survival from 45% to 75%.

Conclusions/Significance

Our novel finding is that hyperresponsiveness to α2-AR stimulation observed in sepsis is primarily due to an increase in α2A-AR expression in KCs. This appears to be in part responsible for the increased proinflammatory response and ensuing organ injury in sepsis. These findings provide important feasibility information for further developing the α2A-AR antagonist as a new therapy for sepsis.  相似文献   

13.

Objective

Evidence from mouse models suggests that zinc-α2-glycoprotein (ZAG) is a novel anti-obesity adipokine. In humans, however, data are controversial and its physiological role in adipose tissue (AT) remains unknown. Here we explored the molecular mechanisms by which ZAG regulates carbohydrate metabolism in human adipocytes.

Methods

ZAG action on glucose uptake and insulin action was analyzed. β1 and β2-adrenoreceptor (AR) antagonists and siRNA targeting PP2A phosphatase were used to examine the mechanisms by which ZAG modulates insulin sensitivity. Plasma levels of ZAG were measured in a lean patient cohort stratified for HOMA-IR.

Results

ZAG treatment increased basal glucose uptake, correlating with an increase in GLUT expression, but induced insulin resistance in adipocytes. Pretreatment of adipocytes with propranolol and a specific β1-AR antagonist demonstrated that ZAG effects on basal glucose uptake and GLUT4 expression are mediated via β1-AR, whereas inhibition of insulin action is dependent on β2-AR activation. ZAG treatment correlated with an increase in PP2A activity. Silencing of the PP2A catalytic subunit abrogated the negative effect of ZAG on insulin-stimulated AKT phosphorylation and glucose uptake but not on GLUT4 expression and basal glucose uptake. ZAG circulating levels were unchanged in a lean patient cohort stratified for HOMA-IR. Neither glucose nor insulin was associated with plasma ZAG.

Conclusions

ZAG inhibits insulin-induced glucose uptake in human adipocytes by impairing insulin signaling at the level of AKT in a β2-AR- and PP2A-dependent manner.  相似文献   

14.
The β2-adrenergic receptor (β2AR) is a G protein-coupled receptor (GPCR) that mediates the majority of cellular responses to external stimuli. Aberrant expression of β2AR results in various pathophysiological disorders, including tumorigenesis, but little is known about its role in liver regeneration. This study aims to investigate the impact and the underlying mechanism of β2AR in liver regeneration. Here, we found that β2AR was upregulated during liver regeneration induced by 70% PH. Deletion of β2AR in mice resulted in 62% mortality 2 days post-PH, decreased proliferative marker expression and impaired liver function throughout regeneration. Moreover, AAV8-mediated overexpression of β2AR in hepatocytes accelerated the regeneration process and increased target gene expression. Mechanistically, β2AR recruited G-protein-coupled receptor kinase 2 (GRK2) to the membrane and then formed a complex with c-met to transactivate c-met signaling, which triggered downstream extracellular regulated protein kinase (ERK) signaling activation and nuclear translocation. Inhibition of c-met with SU11274 or ERK with U0126 decreased β2AR overexpression-induced hepatocyte proliferation. Our findings revealed that β2AR might act as a critical mediator regulating liver regeneration by crosstalk with c-met and activation of ERK signaling.Subject terms: Cell proliferation, Endocytosis  相似文献   

15.
β-adrenergic receptors (β-ARs) are model G-protein coupled receptors that mediate signal transduction in the sympathetic nervous system. Despite the widespread clinical use of agents that target β-ARs, the signaling pathways that operate downstream of β-AR stimulation have not yet been completely elucidated. Here, we utilized a lysate microarray approach to obtain a broad-scale perspective of phosphoprotein signaling downstream of β-AR. We monitored the time course of phosphorylation states of 54 proteins after β-AR activation mouse embryonic fibroblast (MEF) cells. In response to stimulation with the non-selective β-AR agonist isoproterenol, we observed previously described phosphorylation events such as ERK1/2(T202/Y204) and CREB(S133), but also novel phosphorylation events such as Cdc2(Y15) and Pyk2(Y402). All of these events were mediated through cAMP and PKA as they were reproduced by stimulation with the adenylyl cyclase activator forskolin and were blocked by treatment with H89, a PKA inhibitor. In addition, we also observed a number of novel isoproterenol-induced protein dephosphorylation events in target substrates of the PI3K/AKT pathway: GSK3β(S9), 4E-BP1(S65), and p70s6k(T389). These dephosphorylations were dependent on cAMP, but were independent of PKA and correlated with reduced PI3K/AKT activity. Isoproterenol stimulation also led to a cAMP-dependent dephosphorylation of PP1α(T320), a modification known to correlate with enhanced activity of this phosphatase. Dephosphorylation of PP1α coincided with the secondary decline in phosphorylation of some PKA-phosphorylated substrates, suggesting that PP1α may act in a feedback loop to return these phosphorylations to baseline. In summary, lysate microarrays are a powerful tool to profile phosphoprotein signaling and have provided a broad-scale perspective of how β-AR signaling can regulate key pathways involved in cell growth and metabolism.  相似文献   

16.
17.
Cytokine and activation of lymphocytes are critical for tumor growth. We investigated whether interleukin (IL)-32β overexpression changes other cytokine levels and activates cytotoxic lymphocyte, and thus modify tumor growth. Herein, IL-32β inhibited B16 melanoma growth in IL-32β-overexpressing transgenic mice (IL-32β mice), and downregulated the expressions of anti-apoptotic proteins (bcl-2, IAP, and XIAP) and cell growth regulatory proteins (Ki-67 antigen (Ki-67) and proliferating cell nuclear antigen (PCNA)), but upregulated the expressions of pro-apoptotic proteins (bax, cleaved caspase-3, and cleaved caspase-9). IL-32β also inhibited colon and prostate tumor growth in athymic nude mice inoculated with IL-32β-transfected SW620 colon or PC3 prostate cancer cells. The forced expression of IL-32β also inhibited cell growth in cultured colon and prostate cancer cells, and these inhibitory effects were abolished by IL-32 small interfering RNA (siRNA). IL-10 levels were elevated, but IL-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) levels were reduced in the tumor tissues and spleens of IL-32β mice, and athymic nude mice. The number of cytotoxic T (CD8+) and natural killer (NK) cells in tumor tissues, spleen, and blood was significantly elevated in IL-32β mice and athymic nude mice inoculated with IL-32β-transfected cancer cells. Constituted activated NF-κB and STAT3 levels were reduced in the tumor tissues of IL-32β mice and athymic nude mice, as well as in IL-32β-transfected cultured cancer cells. These findings suggest that IL-32β inhibits tumor growth by increasing cytotoxic lymphocyte numbers, and by inactivating the NF-κB and STAT3 pathways through changing of cytokine levels in tumor tissues.  相似文献   

18.
19.
The molecular mechanisms underlying the transport from the Golgi to the cell surface of G protein-coupled receptors remain poorly elucidated. Here we determined the role of Rab26, a Ras-like small GTPase involved in vesicle-mediated secretion, in the cell surface export of α2-adrenergic receptors. We found that transient expression of Rab26 mutants and siRNA-mediated depletion of Rab26 significantly attenuated the cell surface numbers of α2A-AR and α2B-AR, as well as ERK1/2 activation by α2B-AR. Furthermore, the receptors were extensively arrested in the Golgi by Rab26 mutants and siRNA. Moreover, Rab26 directly and activation-dependently interacted with α2B-AR, specifically the third intracellular loop. These data demonstrate that the small GTPase Rab26 regulates the Golgi to cell surface traffic of α2-adrenergic receptors, likely through a physical interaction. These data also provide the first evidence implicating an important function of Rab26 in coordinating plasma membrane protein transport.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号