首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Exposure of human keratinocytes to ultraviolet B (UVB) light leads to the activation of a variety of cell-surface receptors; however, the biologic consequences of these activated receptors are still unclear. It was previously reported that inhibition of cellular tyrosine kinase activity suppressed UVB-dependent effects in human skin. We confirmed that the same suppression of UVB-induced apoptosis occurs in normal human keratinocytes grown in culture. Furthermore, we sought to determine the role of erbB receptor tyrosine kinases in human keratinocytes following UVB irradiation. Using a specific inhibitor of the erbB family of tyrosine kinase receptors, DAPH, we investigated the effects of UVB-dependent activation of these receptors on keratinocyte biology. The addition of DAPH to keratinocytes resulted in the concentration-dependent protection of UVB-induced apoptosis. The protection from apoptosis was not due to the induction of keratinocyte differentiation, the loss of keratinocyte viability, or inhibition of the proliferative potential of keratinocytes by DAPH. The effect of DAPH on apoptosis was specific for UVB as it had no effect on bleomycin-induced apoptosis. Furthermore, the inhibition of UVB-induced apoptosis could also be observed using neutralizing antibodies to either erbB1 or erbB2. Finally, we demonstrated that DAPH could also inhibit UVB-induced apoptosis in an epidermal organotypic model system. These studies suggest an important role for the erbB receptors in UVB-induced apoptosis of human keratinocytes.  相似文献   

3.
Ultraviolet B radiation (UVB) has been shown to damage human keratinocytes in part by inducing oxidative stress and cytokine production. Indeed, UVB-induced production of the pro-inflammatory and cytotoxic cytokine tumor necrosis factor alpha (TNF-alpha) has been implicated in the epidermal damage seen in response to acute solar radiation. Though the lipid mediator platelet-activating factor (PAF) is synthesized in response to oxidative stress, and keratinocytes express PAF receptors linked to cytokine biosynthesis, it is not known whether PAF is involved in UVB-induced epidermal cell cytokine production. These studies examined the role of the PAF system in UVB-induced epidermal cell TNF-alpha biosynthesis using a novel model system created by retroviral-mediated transduction of the PAF receptor-negative human epidermal cell line KB with the human PAF receptor (PAF-R). Treatment of PAF-R-expressing KB cells with the metabolically stable PAF-R agonist carbamoyl-PAF resulted in increased TNF-alpha mRNA and protein, indicating that activation of the epidermal PAF-R was linked to TNF-alpha production. UVB irradiation of PAF-R-expressing KB cells resulted in significant increases in both TNF-alpha mRNA and protein in comparison to UVB-treated control KB cells. However, UVB treatment up-regulated cyclooxygenase-2 mRNA levels to the same extent in both PAF-R-expressing and control KB cells. Pretreatment with the antioxidant vitamin E or the PAF-R antagonists WEB 2086 and A-85783 inhibited UVB-induced TNF-alpha production in the PAF-R-positive but not control KB cells. These studies suggest that the epidermal PAF-R may be a pharmacological target for UVB in skin.  相似文献   

4.
Cytotoxic effects of nitric oxide (NO) derived from inducible nitric oxide synthase (iNOS) are considered to be one of the major causes of inflammatory diseases. On the other hand, protective effects of NO on toxic insults-induced cellular damage/apoptosis have been demonstrated recently. Ultraviolet B (UVB)-induced apoptosis of epidermal keratinocytes leads to skin inflammation and photoageing. However, it has not been elucidated what kind of effects NO has on UVB-induced keratinocyte apoptosis. Thus, in the present study, we investigated the problem and demonstrated that NO from NO donor suppressed UVB-induced apoptosis of murine keratinocytes. In addition, NO significantly suppressed activities of caspase 3, caspase 8 and caspase 9 that had been upregulated by UVB radiation. NO also suppressed p53 expression that had been upregulated by UVB radiation and upregulated Bcl-2 expression that had been downregulated by UVB radiation. These findings suggested that NO might suppress UVB-induced keratinocyte apoptosis by regulating apoptotic signaling cascades in p53, Bcl-2, caspase3, caspase 8 and caspase 9.  相似文献   

5.
Chronic exposure to UV radiation can contribute to the development of skin cancer by promoting protein-tyrosine kinase (PTK) signaling. Studies show that exposure to UV radiation increases the ligand-independent activation of PTKs and induces protein-tyrosine phosphatase (PTP) inactivation. In the present work, we report that T-cell PTP (TC-PTP) activity is stimulated during the initial response to UVB irradiation, which leads to suppression of keratinocyte cell survival and proliferation via the down-regulation of STAT3 signaling. Our results show that TC-PTP-deficient keratinocyte cell lines expressed a significantly increased level of phosphorylated STAT3 after exposure to low dose UVB. This increase corresponded with increased cell proliferation in TC-PTP-deficient keratinocytes following UVB irradiation. Loss of TC-PTP also reduced UVB-induced apoptosis. Corroborating with these results, overexpression of TC-PTP in keratinocyte cell lines yielded a decrease in phosphorylated STAT3 levels, which corresponded with a significant decrease in cell proliferation in response to low dose UVB. We demonstrate that TC-PTP activity was increased upon UVB exposure, and overexpression of TC-PTP in keratinocyte cell lines further increased its activity in the presence of UVB. Treatment of TC-PTP-deficient keratinocytes with the STAT3 inhibitor STA21 significantly reduced cell viability following UVB exposure in comparison with untreated TC-PTP-deficient keratinocytes, confirming that the effect of TC-PTP on cell viability is mediated by STAT3 dephosphorylation. Combined, our results indicate that UVB-mediated activation of TC-PTP plays an important role in the STAT3-dependent regulation of keratinocyte cell proliferation and survival. Furthermore, these results suggest that TC-PTP may be a novel potential target for the prevention of UVB-induced skin cancer.  相似文献   

6.
UVB radiation damages keratinocytes, potentially inducing chronic skin damage, cutaneous malignancy, and suppression of the immune system. Naturally occurring agents have been considered for prevention and treatment of various kinds of cancer, including skin cancer. Inositol hexaphosphate (IP6), an antioxidant, is a naturally occurring polyphosphorylated carbohydrate that has shown a strong anticancer activity in several experimental models. We assessed the protective effects of IP6 against UVB irradiationinduced injury and photocarcinogenesis by using HaCaT cells (human immortalized keratinocytes) and SKH1 hairless mice. We found that IP6 counteracts the harmful effects of UVB irradiation and increases the viability and survival of UVB-exposed cells. Treatment with IP6 after UVB irradiation (30 mJ/cm(2)) arrested cells in the G(1) and G(2) M phases while decreasing the S phase of the cell cycle. Treatment with IP6 also decreased UVB-induced apoptosis and caspase 3 activation. Topical application of IP6 followed by exposure to UVB irradiation in SKH1 hairless mice decreased tumor incidence and multiplicity as compared with control mice. Our results suggest that IP6 protects HaCaT cells from UVB-induced apoptosis and mice from UVB-induced tumors.  相似文献   

7.
目的:探讨白藜芦醇对紫外线照射后人皮肤角质形成细胞水通道蛋白3(AQP3)表达的影响及意义。方法:原代培养人皮肤角质形成细胞,采用UVB(20mJ/cm2,40mJ/cm2)照射角质形成细胞后,立即加入0.1mmol/L的白藜芦醇进行干预。RT-PCR检测照射前后角质形成细胞中AQP3 mRNA的表达量,并用羟胺法、比色法、TBA法检测照射前后细胞超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)活性及丙二醛(MDA)含量。结果:1.UVB照射后角质形成细胞AQP3 mRNA的表达量下降(P<0.05),且UVB照射剂量越大,AQP3 mRNA下降越显著(P<0.05)。2.白藜芦醇能显著增加UVB照射后角质形成细胞SOD和GSH-Px活性,并降低细胞MDA含量(P<0.05)。3.白藜芦醇能显著抑制UVB导致的角质形成细胞AQP3 mRNA下降(P<0.05)。结论:白藜芦醇可能通过抑制UVB导致的AQP3 mRNA下降,及提高氧化酶活性、清除自由基的功能,从而延缓皮肤衰老。  相似文献   

8.
Irradiation with UV light, especially UVB, causes epidermal damage via the induction of apoptosis, inflammatory responses, and DNA damage. Various stressors, including UV light, induce heat shock proteins (HSPs) and the induction, particularly that of HSP70, provides cellular resistance to such stressors. The anti-inflammatory activity of HSP70, such as its inhibition of nuclear factor kappa B (NF-κB), was recently revealed. These in vitro results suggest that HSP70 protects against UVB-induced epidermal damage. Here we tested this idea by using transgenic mice expressing HSP70 and cultured keratinocytes. Irradiation of wild-type mice with UVB caused epidermal damage such as induction of apoptosis, which was suppressed in transgenic mice expressing HSP70. UVB-induced apoptosis in cultured keratinocytes was suppressed by overexpression of HSP70. Irradiation of wild-type mice with UVB decreased the cutaneous level of IκB-α (an inhibitor of NF-κB) and increased the infiltration of leukocytes and levels of pro-inflammatory cytokines and chemokines in the epidermis. These inflammatory responses were suppressed in transgenic mice expressing HSP70. In vitro, the overexpression of HSP70 suppressed the expression of pro-inflammatory cytokines and chemokines and increased the level of IκB-α in keratinocytes irradiated with UVB. UVB induced an increase in cutaneous levels of cyclobutane pyrimidine dimers and 8-hydroxy-2′-deoxyguanosine, both of which were suppressed in transgenic mice expressing HSP70. This study provides genetic evidence that HSP70 protects the epidermis from UVB-induced radiation damage. The findings here also suggest that the protective action of HSP70 is mediated by anti-apoptotic, anti-inflammatory, and anti-DNA damage effects.  相似文献   

9.
Ultraviolet B radiation (UVB) is a pro-oxidative stressor with profound effects on skin in part through its ability to stimulate cytokine production. Peroxisome proliferator-activated receptor gamma (PPAR gamma) has been shown to regulate inflammatory processes and cytokine release in various cell types. Since the oxidized glycerophospholipid 1-hexadecyl-2-azelaoyl glycerophosphocholine (azPC) has been shown to be a potent PPAR gamma agonist, this study was designed to assess whether the PPAR gamma system is a target for UVB irradiation and involved in UVB-induced inflammation in epidermal cells. The present studies demonstrated the presence of PPAR gamma mRNA and functional protein in human keratinocytes and epithelial cell lines HaCaT, KB, and A431. The treatment of epidermal cells with the PPAR gamma-specific agonist ciglitazone or azPC augmented cyclooxygenase-2 expression and enzyme activity induced by phorbol 12-myristate-13-acetate or interleukin-1 beta. Lipid extracts from the cell homogenate of UVB-irradiated, but not control, cells contained a PPAR gamma-agonistic activity identified by reporter assay, and this activity up-regulated cyclooxygenase-2 expression induced by phorbol 12-myristate-13-acetate. Subjecting purified 1-hexadecyl-2-arachidonoyl-glycerophosphocholine to UVB irradiation generated a PPAR gamma-agonistic activity, among which the specific PPAR gamma agonist azPC was identified by mass spectrometry. These findings suggested that UVB-generated PPAR gamma-agonistic activity was due to the free radical mediated non-enzymatic cleavage of endogenous glycerophosphocholines. Treatment with the specific PPAR gamma antagonist GW9662 or expression of a dominant-negative PPAR gamma mutant in KB cells inhibited UVB-induced epidermal cell prostaglandin E(2) production. These findings suggested that UVB-generated PPAR gamma activity is necessary for the optimal production of epidermal prostaglandins. These studies demonstrated that epithelial cells contain a functional PPAR gamma system, and this system is a target for UVB through the production of novel oxidatively modified endogenous phospholipids.  相似文献   

10.
Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in human keratinocytes resulting in skin inflammation, photoaging, and photocarcinogenesis. The flavonoid luteolin is one of the most potent antioxidative plant polyphenols. We investigated the UV protective and antioxidant properties of luteolin in human keratinocytes in vitro, ex vivo, and in vivo. Spectrophotometric measurements revealed extinction maxima of luteolin in the UVB and UVA range. UV transmission below 370 nm was < 10%. In human skin, luteolin effectively reduced the formation of UVB-induced cyclobutane pyrimidine dimers. The free radical scavenging activity of luteolin was assessed in various cell-free and cell-based assays. In the cell-free DPPH assay the half-maximal effective concentration (EC50) of luteolin (12 μg/ml) was comparable to those of Trolox (25 μg/ml) and N-acetylcysteine (32 μg/ml). In contrast, in the H2DCFDA assay performed with UVB-irradiated keratinocytes, luteolin (EC50 3 μg/ml) was much more effective compared to Trolox (EC50 12 μg/ml) and N-acetylcysteine (EC50 847 μg/ml). Luteolin also inhibited both UVB-induced skin erythema and the upregulation of cyclooxygenase-2 and prostaglandin E2 production in human skin via interference with the MAPK pathway. These data suggest that luteolin may protect human skin from UVB-induced damage by a combination of UV-absorbing, DNA-protective, antioxidant, and anti-inflammatory properties.  相似文献   

11.
12.
TGF-beta produced by keratinocytes in response to UVB (290-320 nm) is a potential mediator for effects of acute and chronic solar radiation on skin. This study was designed to determine whether reactive oxygen species (ROS) mediate UVB-induced TGF-beta biosynthesis in keratinocytes and the subsequent activation of the latent TGF-beta complex. UVB irradiation elevated both total (latent plus active) and active TGF-beta in the keratinocyte supernatants, with a greater increase in the active form. UVB irradiation induced up to a 30% increase in ROS, and the ROS were detected up to 90 min after irradiation. NAC and Trolox, cytoplasmic ROS scavengers, abolished the UVB-induced TGF-beta and intracellular ROS, suggesting that UVB-induced ROS are involved in TGF-beta regulation. Inhibitors of NADPH oxidase activity, DPI and apocynin, decreased UVB-induced ROS. The increase in NADPH oxidase activity was mediated by EGFR activation. UVB-induced ROS also activated latent TGF-beta complex by stimulating MMP-2 and -9 activities. In summary, physiological doses of UVB increase intracellular ROS, which upregulate TGF-beta biosynthesis and activation of TGF-beta through increased activity of MMPs.  相似文献   

13.
Continuous exposure to ultraviolet (UV) irradiation leads to a variety of skin damage, such as sunburn, pigmentation, premature ageing, and photocarcinogenesis. Various phytochemical extracts have been identified to efficiently protect sun exposed skin from UV induced photodamage. A Ficus deltoidea (Mas cotek) water extract has been widely used for women’s health in Malaysia. In a previous study from this lab, the F. deltoidea extract exhibited strong anti-melanogenic effects towards cultured B16F1 melanoma cells. Additional studies were intended to evaluate the effects of the F. deltoidea extract on antiphotoageing activity using cultured human dermal fibroblasts and immortalised human keratinocytes (HaCaT). Both TNF-α and cyclooxygenase (COX-2) play primary roles in the inflammation process upon UV irradiation and are known to be stimulated by UVB irradiation. Treatment with the F. deltoidea extract dramatically inhibited the UVinduced TNF-α, IL-1α, IL-6, and COX-2 expression. The decreased collagen synthesis of fibroblasts as a result of UVB exposure was restored to a normal level after treatment with the F. deltoidea extract. In addition, the enhanced MMP-1 expression upon UVB irradiation was downregulated by the F. deltoidea extract in a dose-dependent manner. The overall findings indicate that the F. deltoidea extract may exert a protective effect against UVB-induced damage in the skin that is useful for anti-photoageing cosmetic products.  相似文献   

14.
Solar ultraviolet radiation (UV) is a major cause of non-melanoma skin cancer in humans. Photochemoprevention with natural products represents a simple but very effective strategy in the management of cutaneous neoplasia. The study investigated the protective activity of Calluna vulgaris (Cv) and red grape seeds (Vitis vinifera L, Burgund Mare variety) (BM) extracts in vivo on UVB-induced deleterious effects in SKH-1 mice skin. Forty SKH-1 mice were randomly divided into 4 groups (n=10): control, UVB irradiated, Cv + UVB irradiated, BM+UVB irradiated. Both extracts were applied topically on the skin in a dose of 4 mg/40 μl/cm(2) before UVB exposure - single dose. The effects were evaluated in skin 24 hours after irradiation through the presence of cyclobutane pyrimidine dimers (CPDs) and sunburn cells, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6 levels. The antioxidant activity of BM extract was higher than those of Cv extract as determined using stable free radical DPPH assay and ABTS test. One single dose of UVB generated formation of CPDs (p<0.0001) and sunburn cells (p<0.0002) and increased the cytokine levels in skin (p<0.0001). Twenty hours following irradiation BM extract inhibited UVB-induced sunburn cells (p<0.02) and CPDs formation (p<0.0001). Pretreatment with Cv and BM extracts resulted in significantly reduced levels of IL-6 and TNF-α compared with UVB alone (p<0.0001). Our results suggest that BM extracts might be a potential candidate in preventing the damages induced by UV in skin.  相似文献   

15.
UV radiation induces various cellular responses by regulating the activity of many UV-responsive enzymes, including MAPKs. The betagamma subunit of the heterotrimeric GTP-binding protein (Gbetagamma) was found to mediate UV-induced p38 activation via epidermal growth factor receptor (EGFR). However, it is not known how Gbetagamma mediates the UVB-induced activation of EGFR, and thus we undertook this study to elucidate the mechanism. Treatment of HaCaT-immortalized human keratinocytes with conditioned medium obtained from UVB-irradiated cells induced the phosphorylations of EGFR, p38, and ERK but not that of JNK. Blockade of heparin-binding EGF-like growth factor (HB-EGF) by neutralizing antibody or CRM197 toxin inhibited the UVB-induced activations of EGFR, p38, and ERK in normal human epidermal keratinocytes and in HaCaT cells. Treatment with HB-EGF also activated EGFR, p38, and ERK. UVB radiation stimulated the processing of pro-HB-EGF and increased the secretion of soluble HB-EGF in medium, which was quantified by immunoblotting and protein staining. In addition, treatment with CRM179 toxin blocked UV-induced apoptosis, but HB-EGF augmented this apoptosis. Moreover, UVB-induced apoptosis was reduced by inhibiting EGFR or p38. The overexpression of Gbeta(1)gamma(2) increased EGFR-activating activity and soluble HB-EGF content in conditioned medium, but the sequestration of Gbetagamma by the carboxyl terminus of G protein-coupled receptor kinase 2 (GRK2ct) produced the opposite effect. The activation of Src increased UVB-induced, Gbetagamma-mediated HB-EGF secretion, but the inhibition of Src blocked that. Overexpression of Gbetagamma increased UVB-induced apoptosis, and the overexpression of GRK2ct decreased this apoptosis. We conclude that Gbetagamma mediates UVB-induced human keratinocyte apoptosis by augmenting the ectodomain shedding of HB-EGF, which sequentially activates EGFR and p38.  相似文献   

16.
Based on our recent observation that enhanced IL-18 expression positively correlates with malignant skin tumors, such as SCC and melanoma, we examined the possible role of UVB, known to be associated with skin cancer development, in the enhancement of IL-18 production using primary human epidermal keratinocytes and human keratinocyte cell line HaCaT. After cells were exposed to UVB irradiation in vitro, IL-18 production was examined by Northern blot analysis and ELISA, and it was found that IL-18 production is enhanced by UVB irradiation in a dose- and time-dependent manner. In addition, we confirmed that it is functionally active form of IL-18 using the inhibitor of caspase-1. The effect of UVB irradiation was blocked by antioxidant, N-acetyl-L-cysteine (NAC), which suggested the involvement of reactive oxygen intermediates (ROI) in the signal transduction of UVB irradiation-enhanced IL-18 synthesis. We also found that UVB irradiation increased AP-1 binding activity by using EMSA with AP-1-specific oligonucleotide. Furthermore, inhibitors of UVB-induced AP-1 activity, such as PD98059, blocked enhanced IL-18 production, indicating that AP-1 activation is required for UVB-induced IL-18 production. Taken together, our results suggest that UVB irradiation-enhanced IL-18 production is selectively mediated through the generation of ROI and the activation of AP-1.  相似文献   

17.
Solar ultraviolet (UV) radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum marianum), inhibits photocarcinogenesis in mice; however it is less understood whether chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK) with silymarin blocks UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs) and as measured by comet assay, and that ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin appears to be related with induction of nucleotide excision repair (NER) genes, because UV radiation-induced apoptosis was not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells.  相似文献   

18.
Although aldose reductase (AR) has been implicated in the cellular response to oxidative stress, the role of AR in ultraviolet-B (UVB)-induced cellular injury has not been investigated. Here, we show that an increased expression of AR in human keratinocytes modulates UVB-induced apoptotic cell death and senescence. Overexpression of AR in HaCaT cells significantly attenuated UVB-induced cellular damage and apoptosis, with a decreased generation of reactive oxygen species (ROS) and aldehydes. Ablation of AR with small interfering RNA or inhibition of AR activity abolished these effects. We also show that increased AR activity suppressed UVB-induced activation of the p38 and c-Jun N-terminal kinases, but did not affect the extracellular signal-regulated kinase and phosphatidylinositol 3-kinase pathways. Similarly, UVB-induced translocation of Bax and Bcl-2 to mitochondria and cytosol, respectively, was markedly attenuated in cells overexpressing AR. Knockdown or inhibition of AR activity in primary cultured keratinocytes enhanced UVB-induced cellular senescence and increased the level of a cell-cycle regulatory protein, p53. Finally, cellular apoptosis induced by UVB radiation was significantly reduced in the epidermis of transgenic mice overexpressing human AR. These findings suggest that AR plays an important role in the cellular response to oxidative stress by sequestering ROS and reactive aldehydes generated in keratinocytes.  相似文献   

19.
We have recently shown that exposure of human keratinocytes to physiologic doses of ultraviolet B (UVB) activates epidermal growth factor receptor (EGFR)/extracellular-regulated kinases 1 and 2 (ERK1/2) and p38 signaling pathways via reactive oxygen species, an effect that can be modulated by antioxidants. Trolox, a water-soluble vitamin E analog, is among the antioxidants that are currently being investigated for their preventive and protective potential against harmful effects of UV radiation to the skin. We found that Trolox inhibits both basal and UVB-induced intracellular H(2)O(2) generation in primary keratinocytes in a concentration-dependent manner. Trolox did not significantly affect UVB-induced phosphorylation of EGFR. Stronger inhibition was observed for ERK1/2 activation at lower, and for p38 activation at higher, concentrations of Trolox added to cells before exposure to UVB. Similarly different effects were found with regard to length of pretreatment with Trolox before UVB exposure-increasing inhibition for ERK1/2 activation at shorter, and for p38 activation at longer, pretreatment intervals. UVB-induced c-jun-N-terminal kinase activation was potently suppressed by Trolox. Also, increasing the pretreatment time of Trolox decreased the rate of cell death following UVB. In conclusion, UVB-induced signaling pathway activation is differentially modulated by Trolox. Further investigation into the time-dependent biologic activation of Trolox and its metabolic products, and modulation of signal transduction with cell outcome should facilitate development of rational strategies for pharmacologic applications.  相似文献   

20.
Exposure of the skin to UVB light results in the formation of DNA photolesions that can give rise to cell death, mutations, and the onset of carcinogenic events. Specific proteins are activated by UVB and then trigger signal transduction pathways that lead to cellular responses. An alteration of these signaling molecules is thought to be a fundamental event in tumor promotion by UVB irradiation. RhoB, encoding a small GTPase has been identified as a DNA damage-inducible gene. RhoB is involved in epidermal growth factor (EGF) receptor trafficking, cytoskeletal organization, cell transformation, and survival. We have analyzed the regulation of RhoB and elucidated its role in the cellular response of HaCaT keratinocytes to relevant environmental UVB irradiation. We report here that the activated GTP-bound form of RhoB is increased rapidly within 5 min of exposure to UVB, and then RhoB protein levels increased concomitantly with EGF receptor (EGFR) activation. Inhibition of UVB-induced EGFR activation prevents RhoB protein expression and AKT phosphorylation but not the early activation of RhoB. Blocking UVB-induced RhoB expression with specific small interfering RNAs inhibits AKT and glycogen synthase kinase-3beta phosphorylation through inhibition of EGFR expression. Moreover, down-regulation of RhoB potentiates UVB-induced cell apoptosis. In contrast, RhoB overexpression protects keratinocytes against UVB-induced apoptosis. These results indicated that RhoB is regulated upon UVB exposure by a two-step process consisting of an early EGFR-independent RhoB activation followed by an EGFR-dependent induction of RhoB expression. Moreover, we have demonstrated that RhoB is essential in regulating keratinocyte cell survival after UVB exposure, suggesting its potential role in photocarcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号