首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sperm competition studies typically identify copulation duration as an important predictor of paternity as it may determine the quantity of sperm transferred and thus paternity success. This study explores the relationship between copulation duration, male body size, male age and sperm transfer in the golden orb‐weaving spider, Nephila edulis. Paternity in this species is strongly associated with the relative frequency and duration of copulation, which is also influenced by male size. We determined the number of sperm transferred during copulation, by performing sperm counts in both the male copulatory organs (palps) and female sperm receptacle (spermatheca) of recently mated pairs. The total number of sperm recorded (the sum in the male palps and female spermathecae) was greater for younger males than older males, but did not vary with male body size. In general, younger males transferred more sperm and a greater proportion of their sperm supplies than older males and, among these younger males, larger individuals transferred more sperm. However, there were no significant size effects for older males. More sperm was transferred with longer copulations, but in contrast with previous studies, we found that larger males copulated for longer. The rate of sperm transferred was negatively correlated with the duration of copulation, suggesting that the variation in copulation duration in N. edulis may represent strategic investment by males to alter patterns of paternity, in addition to transferring additional sperm.  相似文献   

2.
Good JM  Ross CL  Markow TA 《Molecular ecology》2006,15(8):2253-2260
Female remating frequency and sperm allocation patterns can strongly influence levels of sperm competition and reproductive success in natural populations. In the laboratory, Drosophila mojavensis males transfer very few sperm per copulation and females remate often, suggesting multiple paternity should be common in nature. Here, we examine female sperm loads, incidence of multiple paternity, and sperm utilization by genotyping progeny from 20 wild-caught females at four highly polymorphic microsatellite loci. Based on indirect paternity analyses of 814 flies, we found evidence for high levels of multiple paternity coupled with relatively low reproductive output, consistent with the high levels of female remating predicted in this sperm-limited species. Overall, we found little evidence for last -- male sperm precedence though some temporal variation in sperm utilization was observed, consistent with laboratory findings.  相似文献   

3.
Abstract.— The relationship between mating success and paternity success is a key component of sexual selection but has seldom been estimated for species in which both sexes mate with many partners (polygynandry). We used a modification of Parker's sterile male technique to measure this relationship for the water strider Aquarius remigis in 47 laboratory populations simulating natural conditions of polygynandry. We also tested the hypothesis that prolonged copulation, a characteristic of this species, enhances paternity success. Mating behavior and paternity success were assayed for four days while males and females freely interacted. Paternity success was also assayed for an additional 7 days when females were isolated from males. Mating success significantly predicted paternity success and accounted for ≤ 36% of the variance. Copulation duration was negatively related to both mating success and paternity success and did not explain any of the residual variance in paternity success. Thus, we found no evidence that prolonged copulation functions as a paternity assurance strategy in this species. Comparisons of sterile and fertile males suggested that paternity success is directly influenced by the quantity of sperm transferred. Our results support previous studies that have used mating success to estimate sexual selection, but also highlight the potential importance of sperm competition and other postinsemination processes.  相似文献   

4.
Many sperm competition studies have identified copulation durationas an important predictor of paternity. This result is ofteninterpreted as a sperm transfer effect—it is assumed thatsperm transfer is limited by copulation duration. Here we testthe assumption of duration-dependent sperm transfer in the Australianredback spider, Latrodectus hasselti, in which a correlationbetween copulation duration and paternity has been implicatedin the evolution of a rare male self-sacrifice behavior. Maleredbacks facilitate sexual cannibalism by females during copulation.Sexual cannibalism is apparently adaptive for redback males,in part because it results in longer copulations (25 versus11 min.), and copulation duration is positively correlated withpaternity. We assessed sperm transfer in normal copulationsand in copulations that we terminated at 5, 10, or 20 min. Ourresults show that the paternity advantage of sexual cannibalismis not owing to time-dependent sperm transfer, as redback malestransfer the majority of their sperm within the first 5 minof copulation. This suggests that the link between copulationduration and paternity may instead be owing to cryptic femalechoice or the transfer of nongametic ejaculatory substances.Results further indicate that the act of cannibalism itselfmight play a role in mediating sperm transfer. This study highlightsthe importance of understanding mechanisms of sperm transferwhen attempting to interpret the outcome of sperm competitionstudies.  相似文献   

5.
Post-copulatory episodes of sexual selection can be a powerful selective force influencing the reproductive success of males. In order to understand variation in male fertilisation success, we first need to consider the pattern of sperm utilisation by females following matings with more than one male. Second, we need to study those traits responsible for male success in sperm competition. Here we study both male sperm transfer characteristics as well as offspring paternity of females mated to two males in the scorpionfly Panorpa cognata. By repeatedly mating males to virgin females and interrupting copulation at defined time points, we found for all males that sperm transfer set off after approximately 40 min. During the remaining copulation, sperm transfer of individual males was continuous and with constant rate. Yet the rate of sperm transfer differed between individual males from about one sperm per minute to more than eight sperm per minute for the most successful males. In addition, we measured the fertilisation success in sperm competition of males with known sperm transfer capability. The relative number of sperm transferred by males during copulation, estimated from copulation duration and the males’ individual sperm transfer rate, explained a large proportion of variation in offspring paternity. The mode of sperm competition in this species, thus, conforms largely to a fair raffle following complete mixing of sperm prior to fertilisation. Hence, male differences in both the ability to copulate for long and of rapid sperm transfer will translate directly into differences in reproductive success.  相似文献   

6.
Males of many animals perform ‘copulatory courtship’ during copulation, but the possible reproductive significance of this behaviour has seldom been investigated. In some animals, including the spider Physocyclus globosus (Pholcidae), the female discards sperm during or immediately following some copulations. In this study, we determined which of several variables associated with copulation correlated with paternity success in P. globosus when two males mate with a single female. Then, by determining which of these variables also correlated with sperm dumping, we inferred which variables may affect paternity via the mechanism of sperm dumping. Male abdomen vibration (a copulatory courtship behaviour) and male genitalic squeezing both correlated with both paternity and sperm dumping; so, these traits may be favoured by biased sperm dumping. Biased sperm dumping may also be the mechanism by which possible cryptic female choice favours another male trait that was the subject of a previous study, responsiveness to female stridulation.  相似文献   

7.
Fertilization success in sperm competition is often determined by laboratory estimates of the proportion of offspring sired by the first (P1) or second (P2) male that mates. However, inferences from such data about how sexual selection acts on male traits in nature may be misleading if fertilization success depends on the biological context in which it is measured. We used the sterile male technique to examine the paternity of the same male in two mating contexts in the burying beetle, Nicrophorus vespilloides, a species where males have alternative mating strategies based on the presence or absence of resources. We found no congruence in the paternity achieved by a given male when mating under different social conditions. P2 estimates were extremely variable under both conditions. Body size was unrelated to success in sperm competition away from a carcass but, most probably through pre-copulatory male-male competition, influenced fertilization success on a carcass. The contribution of sperm competition is therefore dependent on the conditions under which it is measured. We discuss our findings in relation to sperm competition theory and highlight the need to consider biological context in order to link copulation and fertilization success for competing males.  相似文献   

8.
Sexual selection is a major force driving the evolution of diverse reproductive traits. This evolutionary process is based on individual reproductive advantages that arise either through intrasexual competition or through intersexual choice and conflict. While classical studies of sexual selection focused mainly on differences in male mating success, more recent work has focused on the differences in paternity share that may arise through sperm competition or cryptic female choice whenever females mate with multiple males. Thus, an integrative view of sexual selection needs to encompass processes that occur not only before copulation (pre-mating), but also during copulation (peri-mating), as well as after copulation (post-mating), all of which can generate differences in reproductive success. By encompassing mechanisms of sexual selection across all of these sequential reproductive stages this review takes an integrative approach to sexual selection in Tribolium flour beetles (Coleoptera: Tenebrionidae), a particularly well-studied and economically important model organism. Tribolium flour beetles colonize patchily distributed grain stores, and juvenile and adult stages share the same food resources. Adults are highly promiscuous and female reproduction is distributed across an adult lifespan lasting approximately 1 year. While Tribolium males produce an aggregation pheromone that attracts both sexes, there appears to be little pre-mating discrimination among potential mates by either sex. However, recent work has revealed several peri-mating and post-mating mechanisms that determine how offspring paternity is apportioned among a female's mates. During mating, Tribolium females reject spermatophore transfer and limit sperm numbers transferred by males with low phenotypic quality. Although there is some conflicting evidence, male copulatory leg-rubbing appears to be associated with overcoming female resistance to insemination and does not influence a male's subsequent paternity share. Evidence suggests that Tribolium beetles have several possible post-mating mechanisms that they may use to bias paternity. Male sperm precedence has been extensively studied in Tribolium spp. and the related Tenebrio molitor, and several factors influencing male paternity share among a female's progeny have been identified. These include oviposition time, inter-mating interval, male strain/genotype, the mating regimen of a male's mother, male starvation, and tapeworm infection. Females exert muscular control over sperm storage, although there is no evidence to date that females use this to differentiate among mates. Females could also influence offspring paternity by re-mating with additional males, and T. castaneum females more readily accept spermatophores when they are re-mating with more attractive males. Additional work is needed to examine the possible roles played by both male and female accessory gland products in determining male paternity share. Sexual selection during pre-mating episodes may be reinforced or counteracted by peri- and post-copulatory selection, and antagonistic coevolution between the sexes may be played out across reproductive stages. In Tribolium, males' olfactory attractiveness is positively correlated with both insemination success and paternity share, suggesting consistent selection across different reproductive stages. Similar studies across sequential reproductive stages are needed in other taxa to provide a more integrative view of sexual selection.  相似文献   

9.
We examined copulation patterns and associated sexual behaviour in the colonial Eurasian Griffon vulture Gyps fulvus during the pre-laying period. Eurasian Griffon vulture pairs conducted an average of 71.7 copulation attempts per clutch, with an average copulation frequency of 1.2 copulation attempts per day. Low copulation frequencies compared to other raptors and absence of mate-guarding suggest that this species does not possess adaptive behaviour aimed at increasing paternity assurance. However, the gradual increase in copulations during the fertile period is consistent with the sperm competition hypothesis.  相似文献   

10.
Effects of two different mating regimes on sperm precedencein the two-spot ladybird, Adalia bipunctata, were studied usingthe polymorphic gene for melanism as a marker for paternity.Virgin nonmelanic females (homozygous recessive) were matedto nonmelanic male(s) and then, after laying fertilized eggs,were mated to a melanic male of known genotype. The resultsafter the two successive single matings showed a highly variabledegree of paternity of the second male. Initial multiple matingwith nonmelanic males did not alter the pattern of paternityafter the subsequent single mating with a melanic male, butit had two other effects: (1) the female showed an increasein rejection behavior, and (2) a longer copulation was requiredfor high success of the melanic male. Additional observationsin which families were reared from beetles collected in copulain the field demonstrated that sperm competition also occursunder natural conditions. The outcome of the competition wasvariable with frequent sperm mixing.  相似文献   

11.
Polyandry generates selection on males through sperm competition, which has broad implications for the evolution of ejaculates and male reproductive anatomy. Comparative analyses across species and competitive mating trials within species have suggested that sperm competition can influence the evolution of testes size, sperm production and sperm form and function. Surprisingly, the intraspecific approach of comparing among population variation for investigating the selective potential of sperm competition has rarely been explored. We sampled seven island populations of house mice and determined the frequency of multiple paternity within each population. Applying the frequency of multiple paternity as an index of the risk of sperm competition, we looked for selective responses in male reproductive traits. We found that the risk of sperm competition predicted testes size across the seven island populations of house mice. However, variation in sperm traits was not explained by sperm competition risk. We discuss these findings in relation to sperm competition theory, and other intrinsic and extrinsic factors that might influence ejaculate quality.  相似文献   

12.
Although theory generally predicts that males should reduce paternal care in response to cues that predict increased sperm competition and decreased paternity, empirical patterns are equivocal. Some studies have found the predicted decrease in male care with increased sperm competition, while even more studies report no effect of paternity or sperm competition on male care. Here, we report the first example, to our knowledge, of paternal care increasing with the risk and intensity of sperm competition, in the ocellated wrasse (Symphodus ocellatus). Theory also predicts that if paternal care varies and is important to female fitness, female choice among males and male indicators traits of expected paternal care should evolve. Despite a non-random distribution of mating success among nests, we found no evidence for female choice among parental males. Finally, we document the highest published levels of extra-pair paternity for a species with exclusive and obligate male care: genetic paternity analyses revealed cuckoldry at 100 per cent of nests and 28 per cent of all offspring were not sired by the male caring for them. While not predicted by any existing theory, these unexpected reproductive patterns become understandable if we consider how male and female mating and parental care interact simultaneously in this and probably many other species.  相似文献   

13.
Sperm number is an important predictor of paternity when there is sperm competition. Sperm number is often measured as maximum sperm reserves, but in species where mating is frequent, males will often be replenishing their reserves. Thus, variation in how quickly males can produce sperm is likely to be important in determining male success in sperm competition. Despite this, little is known about how male size, body condition or diet affects sperm production rates. We counted sperm number in large and small Gambusia holbrooki (eastern mosquitofish) after 3 weeks on either a high or low food diet. Sperm number was significantly higher in both larger males and in well‐fed males. We then stripped ejaculates again either 1, 2, 3, 4 or 5 days later to investigate subsequent sperm production. The rate of sperm replenishment was influenced by an interaction between size and diet. Large, well‐fed males had consistently high levels of sperm available over the 5 days (i.e. rapid replenishment), whereas small poorly fed males showed consistently low levels of sperm availability over the 5 days (i.e. slow replenishment). In contrast, large, poorly fed and small, well‐fed males increased their sperm numbers over the first 3 days (i.e. intermediate replenishment). Our study highlights that when mating is frequent and sperm competition is high, size and condition dependence of maximal sperm number and of sperm production rate might both contribute to variation in male reproductive success.  相似文献   

14.
Spermatozoa are among the most diversified cells in the animal kingdom, but the underlying evolutionary forces affecting intraspecific variation in sperm morphology are poorly understood. It has been hypothesized that sperm competition is a potent selection pressure on sperm variation within species. Here, we examine intraspecific variation in total sperm length of 22 wild passerine bird species (21 genera, 11 families) in relation to the risk of sperm competition, as expressed by the frequency of extrapair paternity and relative testis size. We demonstrate, by using phylogenetic comparative methods, that between-male variation in sperm length within species is closely and negatively linked to the risk of sperm competition. This relationship was even stronger when only considering species in which data on sperm length and extrapair paternity originated from the same populations. Intramale variation in sperm length within species was also negatively, although nonsignificantly, related to sperm competition risk. Our findings suggest that postcopulatory sexual selection is a powerful evolutionary force reducing the intraspecific phenotypic variation in sperm-size traits, potentially driving the diversification of sperm morphology across populations and species.  相似文献   

15.
Abstract. The number of spermatozoa that a male transfers to the female during copulation is a main component of its individual fitness, especially under the pressure of sperm competition. This paper presents experimental results on the direct relationship between the male's sperm investment and its paternity in the offspring of dual-mated females. An eye colour mutant (red-eyed) is used to study the differences in the mating and fertilization abilities of males through observation of single and dual matings of females in Anisopteromalus calandrae (Hymenoptera, Chalcidoidea, Pteromalidae). Experimentally, females accept dual matings only in the simultaneous presence of two males. Counts of spermatozoa in the seminal vesicles of virgin males show that red-eyed males have more sperm than wild-eyed ones (approximately 1.46-fold greater). Red- and wild-eyed males do not differ in their mating behaviour and females mate indifferently with both phenotypes. Compared with once-mated females, double-mated females increase neither sperm storage nor lifetime fecundity, and the offspring sex ratio is female-biased. Females mated with two males of different phenotypes produce offspring of both phenotypes throughout their reproductive life, whatever the order of males in the copulation sequence. Any mating pattern appears to produce more red- than wild-eyed offspring (between 1.45- and 1.88-fold greater). Thus, proportions of offspring of each male match the proportions of their sperm potential. With no preference of female for red-eye or wild-eye males being demonstrated at either behavioural or physiological levels, a male's investment in sperm quantity appears to determine its individual reproductive success, at least in these experimental conditions.  相似文献   

16.
Sperm‐competition success (SCS) is seen as centrally important for evolutionary change: superior fathers sire superior sons and thereby inherit the traits that make them superior. Additional hypotheses, that phenotypic plasticity in SCS and sperm ageing explain variation in paternity, are less considered. Even though various alleles have individually been shown to be correlated with variation in SCS, few studies have addressed the heritability, or evolvability, of overall SCS. Those studies that have addressed found low or no heritability and have not examined evolvability. They have further not excluded phenotypic plasticity, and temporal effects on SCS, despite their known dramatic effects on sperm function. In Drosophila melanogaster, we found that both standard components of sperm competition, sperm defence and sperm offence, showed nonsignificant heritability across several offspring cohorts. Instead, our analysis revealed, for the first time, the existence of phenotypic plasticity in SCS across an extreme environment (5% CO2), and an influence of sperm ageing. Evolvability of SCS was substantial for sperm defence but weak for sperm offence. Our results suggest that the paradigm of explaining evolution by sperm competition is more complex and will benefit from further experimental work on the heritability or evolvability of SCS, measuring phenotypic plasticity, and separating the effects of sperm competition and sperm ageing.  相似文献   

17.
Male quality may influence both the outcome of sperm competition and female faithfulness. In male house sparrows Passer domesticus , the size of the black throat patch (badge) signals dominance and perhaps attractiveness. So far, however, no study has reported any significant relationships between badge size, paternity and paternity assurance behaviours in this species. We found that the time mates spent together at the nest was positively correlated with badge size. Furthermore, although paternity losses were influenced by both the time spent at the nest and within-pair copulation frequency, we found no relationship between copulation rate and badge size. It seems therefore that copulation frequency served as a paternity assurance behaviour, whereas the time mates stayed together at the nest may have reflected male attractiveness. Alternatively, females may have decided to stay with large-badged males because they were better able to protect them from harassment by strange males. We also found that paternity losses were related to male badge size; average-badged males cuckolded were more often than males with smaller or larger badges. We suggest that average-badged males suffered higher paternity losses because they had different time allocation strategies than other males.  相似文献   

18.
When females mate with more than one male during their reproductive cycle, males may increase their share of paternity by copulating repeatedly with the same female. Accordingly, males should mate repeatedly with the same female more frequently when the risk of sperm competition is greater. We examined this idea experimentally in the orb-web spiderNephila edulis , which is characterized by both extreme sexual size dimorphism and extreme male size variation. Comparison of the mating behaviour of solitary and pairs of males on the webs of virgin and mated females revealed that males adjust the frequency and duration of copulation according to the mating history of the female and the presence of rival males. Males copulated more frequently and for longer with virgin than mated females. The copulation behaviour of males in the presence of rivals depended upon their relative size. Typically, larger males prevented smaller rivals from gaining access to the female and therefore were able to copulate more frequently. Smaller males copulated less frequently, but for longer periods, which may have increased their share of paternity. The size of male N. edulis can vary by an order of magnitude, and our results suggest that this variation may be maintained by the alternative size-dependent strategies of preventing or winning sperm competition. Copyright 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

19.
Hermaphroditic animals face the fundamental evolutionary optimization problem of allocating their resources to their male vs. female reproductive function (e.g. testes and sperm vs. ovaries and eggs), and this optimal sex allocation can be affected by both pre‐ and post‐copulatory sexual selection. For example, local sperm competition (LSC) – the competition between related sperm for the fertilization of a partner's ova – occurs in small mating groups and can favour a female‐biased sex allocation, because, under LSC, investment into sperm production is predicted to show diminishing fitness returns. Here, we test whether higher testis investment increases an individual's paternity success under sperm competition, and whether the strength of this effect diminishes when LSC is stronger, as predicted by sex allocation theory. We created two subsets of individuals of the simultaneously hermaphroditic flatworm Macrostomum lignano – by sampling worms from either the highest or lowest quartile of the testis investment distribution – and estimated their paternity success in group sizes of either three (strong LSC) or eight individuals (weak LSC). Specifically, using transgenic focal individuals expressing a dominant green‐fluorescent protein marker, we showed that worms with high testis investment sired 22% more offspring relative to those with low investment, corroborating previous findings in M. lignano and other species. However, the strength of this effect was not significantly modulated by the experienced group size, contrasting theoretical expectations of more strongly diminishing fitness returns under strong LSC. We discuss the possible implications for the evolutionary maintenance of hermaphroditism in M. lignano.  相似文献   

20.
In polyandrous species, paternity may be influenced by the timingand frequency of mating. Female spiders possess 2 genital openingsthat lead to separate sperm-storage structures. Thus, even whenmating with a previously mated female, a male may reduce directsperm competition by inseminating the opposite opening to herfirst mate. Such morphology may provide females with greatercontrol over paternity. We examined simultaneously whether malesavoided already inseminated female genital openings and whetherthis behavior varied with the time between successive matings.To explore these questions, we mated female golden orb weaverspiders, Nephila edulis, each to 2 males and manipulated thetiming of their second mating. We documented male inseminationpatterns and explored the influence of male mating decisionson paternity success using the irradiated male technique. Wefound that 60% of males avoided sperm competition by discriminatingagainst inseminated genital openings. Moreover, male matingbehavior had a dramatic impact on the paternity success of irradiatedmales. When males inseminated the same genital opening, thecompetitive ability of the irradiated male's sperm was dramaticallyreduced resulting in lower paternity success. In contrast, whenthe 2 males inseminated opposite genital openings both malessired equal proportions of offspring regardless of their radiationstatus. There was no evidence that the timing of the secondmating affected patterns of paternity. Our data suggest thatdifferences in sperm quality may influence paternity successof N. edulis males under a sperm-competitive scenario. In contrast,females appear to have limited postmating control over paternity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号