首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

This study evaluated the effect of inorganic mercury (Hg) on bacterial community and diversity in different soils. Three soils—neutral, alkaline and acidic—were spiked with six different concentrations of Hg ranging from 0 to 200 mg kg−1 and aged for 90 days. At the end of the ageing period, 18 samples from three different soils were investigated for bacterial community structure and soil physicochemical properties. Illumina MiSeq-based 16s ribosomal RNA (rRNA) amplicon sequencing revealed the alteration in the bacterial community between un-spiked control soils and Hg-spiked soils. Among the bacterial groups, Actinobacteria (22.65%) were the most abundant phyla in all samples followed by Proteobacteria (21.95%), Bacteroidetes (4.15%), Firmicutes (2.9%) and Acidobacteria (2.04%). However, the largest group showing increased abundance with higher Hg doses was the unclassified group (45.86%), followed by Proteobacteria. Mercury had a considerable negative impact on key soil functional bacteria such as ammonium oxidizers and nitrifiers. Canonical correspondence analysis (CCA) indicated that among the measured soil properties, Hg had a major influence on bacterial community structure. Furthermore, nonlinear regression analysis confirmed that Hg significantly decreased soil bacterial alpha diversity in lower organic carbon containing neutral and alkaline soils, whereas in acidic soil with higher organic carbon there was no significant correlation. EC20 values obtained by a nonlinear regression analysis indicated that Hg significantly decreased soil bacterial diversity in concentrations lower than several guideline values.

  相似文献   

2.
As mercury (Hg) biosensors are sensitive to only intracellular Hg, they are useful in the investigation of Hg uptake mechanisms and the effects of speciation on Hg bioavailability to microbes. In this study, bacterial biosensors were used to evaluate the roles that several transporters such as the glutathione, cystine/cysteine, and Mer transporters play in the uptake of Hg from Hg-thiol complexes by comparing uptake rates in strains with functioning transport systems to strains where these transporters had been knocked out by deletion of key genes. The Hg uptake into the biosensors was quantified based on the intracellular conversion of inorganic mercury (Hg(II)) to elemental mercury (Hg(0)) by the enzyme MerA. It was found that uptake of Hg from Hg-cysteine (Hg(CYS)2) and Hg-glutathione (Hg(GSH)2) complexes occurred at the same rate as that of inorganic complexes of Hg(II) into Escherichia coli strains with and without intact Mer transport systems. However, higher rates of Hg uptake were observed in the strain with a functioning Mer transport system. These results demonstrate that thiol-bound Hg is bioavailable to E. coli and that this bioavailability is higher in Hg-resistant bacteria with a complete Mer system than in non-resistant strains. No difference in the uptake rate of Hg from Hg(GSH)2 was observed in E. coli strains with or without functioning glutathione transport systems. There was also no difference in uptake rates between a wildtype Bacillus subtilis strain with a functioning cystine/cysteine transport system, and a mutant strain where this transport system had been knocked out. These results cast doubt on the viability of the hypothesis that the entire Hg-thiol complex is taken up into the cell by a thiol transporter. It is more likely that the Hg in the Hg-thiol complex is transferred to a transport protein on the cell membrane and is subsequently internalized.  相似文献   

3.
Differences in methylmercury (CH3Hg) production normalized to the sulfate reduction rate (SRR) in various species of sulfate-reducing bacteria (SRB) were quantified in pure cultures and in marine sediment slurries in order to determine if SRB strains which differ phylogenetically methylate mercury (Hg) at similar rates. Cultures representing five genera of the SRB (Desulfovibrio desulfuricans, Desulfobulbus propionicus, Desulfococcus multivorans, Desulfobacter sp. strain BG-8, and Desulfobacterium sp. strain BG-33) were grown in a strictly anoxic, minimal medium that received a dose of inorganic Hg 120 h after inoculation. The mercury methylation rates (MMR) normalized per cell were up to 3 orders of magnitude higher in pure cultures of members of SRB groups capable of acetate utilization (e.g., the family Desulfobacteriaceae) than in pure cultures of members of groups that are not able to use acetate (e.g., the family Desulfovibrionaceae). Little or no Hg methylation was observed in cultures of Desulfobacterium or Desulfovibrio strains in the absence of sulfate, indicating that Hg methylation was coupled to respiration in these strains. Mercury methylation, sulfate reduction, and the identities of sulfate-reducing bacteria in marine sediment slurries were also studied. Sulfate-reducing consortia were identified by using group-specific oligonucleotide probes that targeted the 16S rRNA molecule. Acetate-amended slurries, which were dominated by members of the Desulfobacterium and Desulfobacter groups, exhibited a pronounced ability to methylate Hg when the MMR were normalized to the SRR, while lactate-amended and control slurries had normalized MMR that were not statistically different. Collectively, the results of pure-culture and amended-sediment experiments suggest that members of the family Desulfobacteriaceae have a greater potential to methylate Hg than members of the family Desulfovibrionaceae have when the MMR are normalized to the SRR. Hg methylation potential may be related to genetic composition and/or carbon metabolism in the SRB. Furthermore, we found that in marine sediments that are rich in organic matter and dissolved sulfide rapid CH3Hg accumulation is coupled to rapid sulfate reduction. The observations described above have broad implications for understanding the control of CH3Hg formation and for developing remediation strategies for Hg-contaminated sediments.  相似文献   

4.
Twelve softwater lakes in NE Minnesota were sampled in spring, summer, and fall of 1992 and 1993 for labile (unextracted) methyl-Hg, total (extracted) methyl-Hg, and total Hg in lake water and net plankton (300 µm). The lakes are small (5.6–56 ha), low productivity, headwater drainage or seepage lakes. They are acid-sensitive (ANC 200 µeq/L) but not low pH lakes (average pH 6.6). The lakes ranged in color from 8.5 to 70 PCU. Statistical analysis of the water chemistry variables and mercury species support the conclusion that these were a homogeneous set of lakes; therefore, seasonality of mercury forms was analyzed on combined (mean) data from the 12 lakes. Methyl-Hg in water declined throughout the growing season. HgT also declined sharply from spring to summer but increased again in the fall. In contrast to the methyl-Hg and Hg in water, concentrations in plankton were at the lowest levels in spring and rose to higher levels in summer. The mass of mercury in plankton increased from spring to fall, as did the methyl-Hg fraction, which increased from 20% of HgT in spring to 52% in autumn. Bioaccumulation factors (BAF) for methyl-Hg in net plankton increased over the growing season. Overall, log BAF for HgT in net plankton (wet wt.) was 4.45. Log BAF for methyl-Hg in plankton was 4.90 to 5.43 depending on the analytical form of methyl-Hg in water (labile or total). Seasonal patterns of methyl-Hg and HgT did not covary in water, but did covary in plankton. These results support the conclusion that measurement of Hg in water is not adequate in itself to determine the amount of bioavailable Hg (i.e., methyl-Hg) in a lake. Labile (unextracted) methyl-Hg could be a useful measurement of bioavailable Hg. Labile methyl-Hg exhibits the same seasonal patterns as total methyl-Hg, but does not require the extraction steps necessary for measuring total methyl-Hg.  相似文献   

5.
Ionic and organic forms of mercury (Hg) are powerful cytotoxic and neurotoxic agents in both humans and wild life. The aim of this study was to analyze the resistance profile and potential detoxification of inorganic and organic forms of Hg of bacteria isolated from marine sponges on the coast of Rio de Janeiro, Brazil. Out of the 1,236 colony forming units associated with eleven species of marine sponges, 100 morphologically different bacterial strains were analyzed in this study. Of these, 21 strains were resistant to Hg, 14 of which were classified as highly resistant because they grew despite exposure to 100 µM HgCl2. Fifteen resistant strains reduced Hg and presented merA in their genomes. The remaining six strains produced biosurfactants, suggesting that they may tolerate Hg by sequestration. Eleven strains grew in the presence of methylmercury. Our results suggest a potential for mercury detoxification by marine sponge-associated resistant bacteria, either through reduction or sequestration, as well as the possibility of bioremediation of toxic waste containing mercury.  相似文献   

6.
Earthworms (Aporrectodea caliginosa, Lumbricus rubellus, and Octolasion lacteum) obtained from nitrous oxide (N2O)-emitting garden soils emitted 0.14 to 0.87 nmol of N2O h−1 g (fresh weight)−1 under in vivo conditions. L. rubellus obtained from N2O-emitting forest soil also emitted N2O, which confirmed previous observations (G. R. Karsten and H. L. Drake, Appl. Environ. Microbiol. 63:1878–1882, 1997). In contrast, commercially obtained Lumbricus terrestris did not emit N2O; however, such worms emitted N2O when they were fed (i.e., preincubated in) garden soils. A. caliginosa, L. rubellus, and O. lacteum substantially increased the rates of N2O emission of garden soil columns and microcosms. Extrapolation of the data to in situ conditions indicated that N2O emission by earthworms accounted for approximately 33% of the N2O emitted by garden soils. In vivo emission of N2O by earthworms obtained from both garden and forest soils was greatly stimulated when worms were moistened with sterile solutions of nitrate or nitrite; in contrast, ammonium did not stimulate in vivo emission of N2O. In the presence of nitrate, acetylene increased the N2O emission rates of earthworms; in contrast, in the presence of nitrite, acetylene had little or no effect on emission of N2O. In vivo emission of N2O decreased by 80% when earthworms were preincubated in soil supplemented with streptomycin and tetracycline. On a fresh weight basis, the rates of N2O emission of dissected earthworm gut sections were substantially higher than the rates of N2O emission of dissected worms lacking gut sections, indicating that N2O production occurred in the gut rather than on the worm surface. In contrast to living earthworms and gut sections that produced N2O under oxic conditions (i.e., in the presence of air), fresh casts (feces) from N2O-emitting earthworms produced N2O only under anoxic conditions. Collectively, these results indicate that gut-associated denitrifying bacteria are responsible for the in vivo emission of N2O by earthworms and contribute to the N2O that is emitted from certain terrestrial ecosystems.  相似文献   

7.
An estimated 215,000 tonnes of mercury (Hg) have been emitted to the atmosphere from anthropogenic sources since the nineteenth century, igniting widespread environmental monitoring owing to its toxicity. The environmental fate of Hg is strongly determined by catchment characteristics, especially soil organic matter. In this study, concentrations and pools of Hg were determined for lakes and soils in upland peat-dominated catchments in Ireland to assess controls of aquatic Hg and soil response to changes in emissions. Headwater lakes in upland coastal regions were surveyed for water chemistry and total Hg (THg) during spring 2008. In addition, a sub-set of lakes (n = 5) were repeatedly sampled during 2009–2011, and their surface soils collected for Hg analysis, including a short (30 cm) peat core to assess temporal Hg fluxes using radiometric 210Pb dating. Peat cores indicated a significant decrease in Hg deposition since the 1980s, in broad agreement with other ‘background’ regions. Total Hg was correlated with total organic carbon (TOC) in the survey and intensive study lakes (r = 0.70 and 0.45), indicative of the strong affinity of Hg to organic matter. At the intensive lakes, monomethylmercury (MMHg) made up 3.3 % of mean THg and exhibited a positive correlation with total SO4 2? (r = 0.55). Further, both THg and MMHg were significantly correlated with conductivity (r = 0.48 and 0.54, respectively) potentially owing to marine inputs, and negatively correlated with pH (r = ?0.59 and ?0.56 respectively). Significant differences in THg (and MMHg) were observed between the five lakes, the highest concentrations (4.45 and 0.16 ng L?1, respectively) tended to be associated with TOC in lakes and occurred at sites in the northwest, characterized by higher levels of soil organic matter (peat) and soil moisture relative to the other sites. In contrast, surface soil pools of THg ranged between 13.6 and 20.8 μg m?2 across study sites and did not vary significantly, but were typical of global background regions. Nonetheless, the organic rich soils that dominate Ireland are a natural sink for THg, and peat harvesting for energy production may release long-term stores of Hg from deeper soil layers.  相似文献   

8.
Localization of Hg in root tissues of vetiver grass (Chrysopogon zizanioides) was investigated by micro-Proton Induced X-ray Emission (PIXE) spectrometry to gain a better understanding of Hg uptake and its translocation to the aerial plant parts. Tillers of C. zizanioides were grown in a hydroponic culture for 3 weeks under controlled conditions and then exposed to Hg for 10 days with or without the addition of the chelators (NH4)2S2O3 or KI. These treatments were used to study the effects of these chelators on localization of Hg in the root tissues to allow better understanding of Hg uptake during its assisted-phytoextraction. Qualitative elemental micro-PIXE analysis revealed that Hg was mainly localized in the root epidermis and exodermis, tissues containing suberin in all Hg treatments. Hg at trace levels was localized in the vascular bundle when plants were treated with a mercury solution only. However, higher Hg concentrations were found when the solution also contained (NH4)2S2O3 or KI. This finding is consistent with the observed increase in Hg translocation to the aerial parts of the plants in the case of chemically induced Hg phytoextraction.  相似文献   

9.
10.
11.
Previous studies have documented the capacity of European earthworms belonging to the family Lumbricidae to emit the greenhouse gas nitrous oxide (N2O), an activity attributed primarily to the activation of ingested soil denitrifiers. To extend the information base to earthworms in the Southern Hemisphere, four species of earthworms in New Zealand were examined for gut-associated denitrification. Lumbricus rubellus and Aporrectodea rosea (introduced species of Lumbricidae) emitted N2O, whereas emission of N2O by Octolasion cyaneum (an introduced species of Lumbricidae) and emission of N2O by Octochaetus multiporus (a native species of Megascolecidae) were variable and negligible, respectively. Exposing earthworms to nitrite or nitrate and acetylene significantly increased the amount of N2O emitted, implicating denitrification as the primary source of N2O and indicating that earthworms emitted dinitrogen (N2) in addition to N2O. The alimentary canal displayed a high capacity to produce N2O when it was supplemented with nitrite, and alimentary canal contents contained large amounts of carbohydrates and organic acids indicative of fermentation (e.g., succinate, acetate, and formate) that could serve as sources of reductant for denitrification. nosZ encodes a portion of the terminal oxidoreductase used in denitrification. The nosZ sequences detected in the alimentary canals of L. rubellus and O. multiporus were similar to those retrieved from soil and were distantly related to sequences of uncultured soil bacteria and genera common in soils (i.e., Bradyrhizobium, Azospirillum, Rhodopseudomonas, Rhodospirillum, Pseudomonas, Oligotropha, and Sinorhizobium). These findings (i) suggest that the capacity to emit N2O and N2 is a general trait of earthworms and not geographically restricted, (ii) indicate that species belonging to different earthworm families (i.e., Megascolecidae and Lumbricidae) may not have equal capacities to emit N2O, and (iii) also corroborate previous findings that link this capacity to denitrification in the alimentary canal.Earthworms are dominant members of the soil fauna and affect the structure and fertility of soils (5, 20, 22, 23). Various species of European earthworms belonging to the family Lumbricidae (e.g., Aporrectodea caliginosa, Lumbricus rubellus, and Octolasion lacteum) emit dinitrogen (N2) and the greenhouse gas nitrous oxide (N2O), and their burrowing activities and feeding habits in combination with in situ conditions can influence the emission of nitrogenous gases from soils that they inhabit (1, 2, 13, 17, 25, 27, 39).The microbiology of the earthworm alimentary canal has been addressed in numerous studies (3, 4, 6, 9, 14, 16, 32). The alimentary canal of the earthworm is anoxic, in marked contrast to the aerated material that earthworms ingest (14, 39). Anoxia and other in situ conditions of the alimentary canal appear to stimulate soil microbes capable of surviving under anaerobic conditions during passage through the gut (3, 4). Soils are rich in denitrifying bacteria (37), and the capacity of European earthworms to emit nitrogenous gases has been attributed primarily to the in situ activity of ingested denitrifying bacteria that appear to be highly active under the anoxic conditions of the earthworm alimentary canal (12, 15, 17, 25, 39). However, it is not known if the capacity to emit nitrogenous gases is a general trait of earthworms independent of their taxonomic family or geographic location. The main objectives of this study were to examine the capacity of Southern Hemisphere earthworms in New Zealand to emit N2O and to determine if this capacity was linked to denitrifying bacteria in the alimentary canal.  相似文献   

12.
蚯蚓在植物修复芘污染土壤中的作用   总被引:1,自引:1,他引:0  
潘声旺  魏世强  袁馨  曹生宪 《生态学报》2011,31(5):1349-1355
采用盆栽试验法,研究了蚯蚓(Pheretima hupeiensis)在植物修复芘污染土壤中的作用。结果显示,试验浓度(20.24-321.42 mg/kg) 范围内,蚯蚓活动促进了芘污染土壤中修复植物黑麦草(Lolium multiforum)黑麦草的生长,其根冠比明显增大。添加蚯蚓72 d后,种植黑麦草的土壤中芘的去除率高达60.01%-86.26%,其平均去除率(74.66%)比无蚯蚓活动的土壤-植物系统(64.55%)提高10.11%,比无植物对照组(18.24%)提高56.42%。各种生物、非生物修复因子中,植物-微生物交互作用对芘去除的平均贡献率(51.75%)最为突出,比无蚯蚓活动时(44.94%)提高6.81%。说明蚯蚓活动可强化土壤-植物系统对土壤芘污染的修复作用。  相似文献   

13.
Mercury (Hg) contaminated soils from Oak Ridge, Tennessee were investigated for phytoavailability of mercury as measured by degree of Hg translocation in aboveground biomass of Impatiens walleriana plants grown in the soils. After 90 days of incubation, results revealed a higher concentration of total Hg in the leaves than in the flowers or the stems. Plants that were grown in the soils with higher Hg concentrations showed significantly higher Hg uptake and translocation in the aboveground plant-biomass, and the correlation with the initial soil-Hg was significant for the leaves and the stems in the plants that were tested. On an average, only 4.06 microg of Hg could be found in the above ground plant biomass of all the plants, compared to an average 3673.50 microg of initial total Hg concentrations in these soils. Statistical analysis revealed a greater affinity of Hg for the soil carbon, which supported the finding of this study on low soil Hg bioavailability.  相似文献   

14.
We have previously hypothesized that sulfide inhibits Hg methylation by decreasing its bioavailability to sulfate-reducing bacteria (SRB), the important methylators of Hg in natural sediments. With a view to designing a bioassay to test this hypothesis, we investigated a number of aspects of Hg methylation by the SRB Desulfobulbus propionicus, including (i) the relationship between cell density and methylmercury (MeHg) production, (ii) the time course of Hg methylation relative to growth stage, (iii) changes in the bioavailability of an added inorganic Hg (HgI) spike over time, and (iv) the dependence of methylation on the concentration of dissolved HgI present in the culture. We then tested the effect of sulfide on MeHg production by this microorganism. These experiments demonstrated that under conditions of equal bioavailability, per-cell MeHg production was constant through log-phase culture growth. However, the methylation rate of a new Hg spike dramatically decreased after the first 5 h. This result was seen whether methylation rate was expressed as a fraction of the total added Hg or the filtered HgI concentration, which suggests that Hg bioavailability decreased through both changes in Hg complexation and formation of solid phases. At low sulfide concentration, MeHg production was linearly related to the concentration of filtered HgI. The methylation of filtered HgI decreased about fourfold as sulfide concentration was increased from 10−6 to 10−3 M. This decline is consistent with a decrease in the bioavailability of HgI, possibly due to a decline in the dissolved neutral complex, HgS0.  相似文献   

15.
The mechanisms and rates of mercury methylation in the Florida Everglades are of great concern because of potential adverse impacts on human and wildlife health through mercury accumulation in aquatic food webs. We developed a new PCR primer set targeting hgcA, a gene encoding a corrinoid protein essential for Hg methylation across broad phylogenetic boundaries, and used this primer set to study the distribution of hgcA sequences in soils collected from three sites along a gradient in sulfate and nutrient concentrations in the northern Everglades. The sequences obtained were distributed in diverse phyla, including Proteobacteria, Chloroflexi, Firmicutes, and Methanomicrobia; however, hgcA clone libraries from all sites were dominated by sequences clustering within the order Syntrophobacterales of the Deltaproteobacteria (49 to 65% of total sequences). dsrB mRNA sequences, representing active sulfate-reducing prokaryotes at the time of sampling, obtained from these sites were also dominated by Syntrophobacterales (75 to 89%). Laboratory incubations with soils taken from the site low in sulfate concentrations also suggested that Hg methylation activities were primarily mediated by members of the order Syntrophobacterales, with some contribution by methanogens, Chloroflexi, iron-reducing Geobacter, and non-sulfate-reducing Firmicutes inhabiting the sites. This suggests that prokaryotes distributed within clades defined by syntrophs are the predominant group controlling methylation of Hg in low-sulfate areas of the Everglades. Any strategy for managing mercury methylation in the Everglades should consider that net mercury methylation is not limited to the action of sulfate reduction.  相似文献   

16.
Uptake and Distribution of Mercury within Higher Plants   总被引:1,自引:0,他引:1  
The uptake and distribution of inorganic mercury (HgCl2) within higher plants (Pisum sativum and Mentha spicata) was examined using solution culture and radiotracer techniques. Plants were found to tolerate an external level of 1 mgHg/kg of solution but both physiological and biochemical processes were affected at 5 mgHg/kg and 10 mgHg/kg. The uptake of Hg into plants grown in hydroponic solution was a function of external concentration. Over the concentration range considered the accumulation of Hg in the roots was linear on a log-log basis although the uptake of the element into the shoots appeared to be two-phased. The distribution of Hg in plants was asymmetrical with much greater amounts of the element in the roots than the shoots. Although the level of Hg increased generally in plant tissues with increasing external levels, the proportion retained in the roots, relative to the shoots, was constant (approximately 95%). Two binding characteristics of the Hg within plant tissue were detected. A major proportion of Hg was tightly bound, being unaffected by treatment with ethanol and hydrochloric acid. The remaining Hg in the tissue was removed by either water or hydrochloric acid treatment. Cell fractionation indicated that the major binding component of Hg in plant tissues was the cell wall.  相似文献   

17.
Knowledge of the diversity of mercury (Hg)-methylating microbes in the environment is limited due to a lack of available molecular biomarkers. Here, we developed novel degenerate PCR primers for a key Hg-methylating gene (hgcA) and amplified successfully the targeted genes from 48 paddy soil samples along an Hg concentration gradient in the Wanshan Hg mining area of China. A significant positive correlation was observed between hgcA gene abundance and methylmercury (MeHg) concentrations, suggesting that microbes containing the genes contribute to Hg methylation in the sampled soils. Canonical correspondence analysis (CCA) showed that the hgcA gene diversity in microbial community structures from paddy soils was high and was influenced by the contents of total Hg, SO42−, NH4+, and organic matter. Phylogenetic analysis showed that hgcA microbes in the sampled soils likely were related to Deltaproteobacteria, Firmicutes, Chloroflexi, Euryarchaeota, and two unclassified groups. This is a novel report of hgcA diversity in paddy habitats, and results here suggest a link between Hg-methylating microbes and MeHg contamination in situ, which would be useful for monitoring and mediating MeHg synthesis in soils.  相似文献   

18.
Concentrations of methyl mercury, CH3Hg (II), total mercury, Hgtot = CH3Hg (II) + Hg (II), and organic sulphur species were determined in soils, soil solutions and streams of a small (50 ha) boreal forest catchment in northern Sweden. The CH3Hg (II)/Hgtot ratio decreased from 1.2–17.2% in the peaty stream bank soils to 0.4–0.8% in mineral and peat soils 20 m away from the streams, indicating that conditions for net methylation of Hg (II) are most favourable in the riparian zone close to streams. Concentrations of CH3Hg (II) bound in soil and in soil solution were significantly, positively correlated to the concentration of Hgtot in soil solution. This, and the fact that the CH3Hg (II)/Hgtot ratio was higher in soil solution than in soil may indicate that Hg (II) in soil solution is more available for methylation processes than soil bound Hg (II). Reduced organic S functional groups (Org-SRED) in soil, soil extract and in samples of organic substances from streams were quantified using S K-edge X-ray absorption near-edge structure (XANES) spectroscopy. Org-SRED, likely representing RSH, RSSH, RSR and RSSR functionalities, made up 50 to 78% of total S in all samples examined. Inorganic sulphide [e.g. FeS2 (s)] was only detected in one soil sample out of 10, and in none of the stream samples. Model calculations showed that under oxic conditions nearly 100% of Hg (II) and CH3Hg (II) were complexed by thiol groups (RSH) in the soil, soil solution and in the stream water. Concentrations of free CH3Hg+ and Hg2+ ions in soil solution and stream were on the order of 10–18 and 10–32M, respectively, at pH 5. For CH3Hg (II), inorganic bi-sulphide complexes may contribute to an overall solubility at concentrations of inorganic sulphides higher than 10–9M, whereas considerably higher concentrations of inorganic sulphides (lower redox-potential) are required to increase the solubility of Hg (II).  相似文献   

19.
Sulfate-reducing bacteria (SRB) in anoxic waters and sediments are the major producers of methylmercury in aquatic systems. Although a considerable amount of work has addressed the environmental factors that control methylmercury formation and the conditions that control bioavailability of inorganic mercury to SRB, little work has been undertaken analyzing the biochemical mechanism of methylmercury production. The acetyl-coenzyme A (CoA) pathway has been implicated as being key to mercury methylation in one SRB strain, Desulfovibrio desulfuricans LS, but this result has not been extended to other SRB species. To probe whether the acetyl-CoA pathway is the controlling biochemical process for methylmercury production in SRB, five incomplete-oxidizing SRB strains and two Desulfobacter strains that do not use the acetyl-CoA pathway for major carbon metabolism were assayed for methylmercury formation and acetyl-CoA pathway enzyme activities. Three of the SRB strains were also incubated with chloroform to inhibit the acetyl-CoA pathway. So far, all species that have been found to have acetyl-CoA activity are complete oxidizers that require the acetyl-CoA pathway for basic metabolism, as well as methylate mercury. Chloroform inhibits Hg methylation in these species either by blocking the methylating enzyme or by indirect effects on metabolism and growth. However, we have identified four incomplete-oxidizing strains that clearly do not utilize the acetyl-CoA pathway either for metabolism or mercury methylation (as confirmed by the absence of chloroform inhibition). Hg methylation is thus independent of the acetyl-CoA pathway and may not require vitamin B12 in some and perhaps many incomplete-oxidizing SRB strains.  相似文献   

20.
Twenty-nine bacterial isolates representing eight genera from the gastrointestinal tracts of feral brook trout Salvelinus fontinalis (Mitchell) demonstrated multiple maximal antibiotic resistances and concomitant broad-spectrum mercury (Hg) resistance. Equivalent viable plate counts on tryptic soy agar supplemented with either 0 or 25?μM HgCl2 verified the ubiquity of mercury resistance in this microbial environment. Mercury levels in lake water samples measured 1.5?ng?L?1; mercury concentrations in fish filets ranged from 81.8 to 1,080?ng?g?1 and correlated with fish length. The presence of similar antibiotic and Hg resistance patterns in multiple genera of gastrointestinal microflora supports a growing body of research that multiple selective genes can be transferred horizontally in the presence of an unrelated individual selective pressure. We present data that bioaccumulation of non-point source Hg pollution could be a selective pressure to accumulate both antibiotic and Hg resistant bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号