首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Novel epididymal protease inhibitors with Kazal or WAP family domain   总被引:1,自引:0,他引:1  
The epididymal maturation of spermatozoa is regulated by changes in the luminal ion concentration and the processing of the sperm surface membrane by several glycosidases and proteases. In the present study, we identified five novel protease inhibitors that are highly expressed in the mouse epididymis. Four of the proteins were found to belong to the Kazal protease inhibitor family and were named SPINK8, SPINK10, SPINK11, and SPINK12, whereas one of the proteins, WFDC10, contained the WAP four-disulfide core domain structure. The novel genes showed very specific segmental expression patterns. The expression of all the five genes was regulated by testis-derived factors and decreased after gonadectomy. With the exception of Spink11, mRNA levels could be restored by testosterone replacement. We hypothesize that the protease inhibitors discovered represent a group of epididymal genes that contribute to the regulation of sperm maturation by regulating the proteolytic processing of the sperm membrane during epididymal transit.  相似文献   

2.
The bat Corynorhinus mexicanus provides an interesting experimental model for the study of epididymal sperm maturation because after spermatogenesis and the regression of the testes, this bat stores sperm in the epididymal cauda for several months. Earlier research conducted by our group suggested that sperm maturation in this species must be completed in the caudal region of the epididymis. One of the major signal transduction events during sperm maturation is the tyrosine phosphorylation of sperm proteins. The aim of the present study was to comparatively evaluate tyrosine phosphorylation in spermatozoa obtained from the caput, corpus and cauda of the epididymis during the sperm storage period. The maturation status of the sperm was determined by the percentage of capacitation and tyrosine phosphorylation in sperm obtained from the epididymis. The highest proportion of tyrosine phosphorylation was registered after the sperm had reached the cauda epididymis during the middle of the storage period. In conclusion, in Corynorhinus mexicanus and most likely in other chiropteran species with an asynchronous male reproductive pattern, epididymal sperm maturation ends in the caudal region of the epididymis and is related to the time that the sperm remains in the epididymis before mating activity.  相似文献   

3.
《Reproductive biology》2020,20(4):536-540
Sperm cells undergo maturation during their transit throughout the epididymis. This process takes place in region-specific manner in which sperm are battered by proteins secreted by epithelium lining the epididymal duct. Most of the genes that encode for the proteins involved in the sperm maturation remain uncharacterized. Previous studies showed that family of β-defensins preferentially eaxpressed in male reproductive tracts and play an important role in both innate immunity and sperm fertility. In this study we characterized Defb20 to gain insight on its role in sperm maturation. Bioinformatic tools were used to analyzed functional domains and signal peptide. qRT-PCR analyses were used to analyzed tissue distribution, dependency on androgen and testicular factors and developmental-regulated expression analysis. Defb20 sequence contains important domains such as N-myristoilation and kinase binding sites which are putatively involved in the protein activation and protein-plasma membrane interaction. Moreover, DEFB20 contains a signal peptide indicating characteristic of secretory proteins. Defb20 was expressed exclusively in the epididymis with the highest expression in the caput region and was down-regulated by gonadectomy. Defb20 was also regulated by testicular factors in which the expression was down-regulated after efferent duct ligation (EDL). The dependency on the androgen was further confirmed by postnatal expression analysis in which Defb20 began to express at day-20 postnatal indicating specific stage of expression after initial development of the testis. In conclusion, Defb20 have a potential to be involved in the epididymal sperm maturation process.  相似文献   

4.
Spermatogenesis is a complex process involving an intrinsic genetic program composed of germ cell-specific and -predominant genes. In this study, we investigated the mouse Spink2 (serine protease inhibitor Kazal-type 2) gene, which belongs to the SPINK family of proteins characterized by the presence of a Kazal-type serine protease inhibitor-pancreatic secretory trypsin inhibitor domain. We showed that recombinant mouse SPINK2 has trypsin-inhibitory activity. Distribution analyses revealed that Spink2 is transcribed strongly in the testis and weakly in the epididymis, but is not detected in other mouse tissues. Expression of Spink2 is specific to germ cells in the testis and is first evident at the pachytene spermatocyte stage. Immunoblot analyses demonstrated that SPINK2 protein is present in male germ cells at all developmental stages, including in testicular spermatogenic cells, testicular sperm, and mature sperm. To elucidate the functional role of SPINK2 in vivo, we generated mutant mice with diminished levels of SPINK2 using a gene trap mutagenesis approach. Mutant male mice exhibit significantly impaired fertility; further phenotypic analyses revealed that testicular integrity is disrupted, resulting in a reduction in sperm number. Moreover, we found that testes from mutant mice exhibit abnormal spermatogenesis and germ cell apoptosis accompanied by elevated serine protease activity. Our studies thus provide the first demonstration that SPINK2 is required for maintaining normal spermatogenesis and potentially regulates serine protease-mediated apoptosis in male germ cells.  相似文献   

5.
Mammalian spermatozoa acquire functionality during epididymal maturation and ability to penetrate and fertilize the oocyte during capacitation. The aim of this study was to investigate the impact of epididymal maturation, ejaculation and capacitation on phosphotyrosine content of sperm proteins. Western blot, immunocytochemical and flow cytometry analyses demonstrated that epididymal maturation in vivo is associated with a progressive loss of phosphotyrosine residues of the sperm head followed by a subtle increase after in vitro capacitation. As cells pass from caput to cauda epididymis, tyrosine phosphorylation becomes confined to a triangular band over the posterior part of midacrosome region, whereas in vitro capacitation causes a spread labeling over the whole head. Different bands with phosphotyrosine residues were detected during epididymal maturation and after in vitro capacitation: 1) 93, 66 and 45 kDa bands with specific phosphotyrosine expression in immature spermatozoa; 2) 76, 23 and 12 kDa bands with specific phosphotyrosine expression in mature spermatozoa, being significantly increased in their expression after in vitro capacitation; 3) 49, 40, 37, 30, 26 and 25 kDa constitutive bands that increased their phosphotyrosine expression after maturation and/or in vitro capacitation; and 4) 28 and 20 kDa bands with a specific phosphotyrosine expression in in vitro capacitated spermatozoa. These results provided integral novel data of expression and location of phosphotyrosine residues during epididymal maturation, ejaculation and in vitro capacitation of boar spermatozoa. Two new constitutive proteins bands of 26 and 25 kDa with phosphotyrosine residues were also identified.  相似文献   

6.
Phospholipase Cγ2 (PLCγ2)-deficient mice exhibit misconnections of blood and lymphatic vessels, and male infertility. However, the cell type responsible for vascular partitioning and the mechanism for male infertility remain unknown. Accordingly, we generated a mouse line that conditionally expresses endogenous Plcg2 in a Cre/loxP recombination-dependent manner, and found that Tie2-Cre- or Pf4-Cre-driven reactivation of Plcg2 rescues PLCγ2-deficient mice from the vascular phenotype. By contrast, male mice rescued from the vascular phenotype exhibited epididymal sperm granulomas. As judged from immunostaining, PLCγ2 was expressed in clear cells in the epididymis. PLCγ2 deficiency did not compromise differentiation of epididymal epithelial cells, including clear cells, and tube formation at postnatal week 2. However, luminal expansion of the epididymal duct was impaired during the prepubertal period, regardless of epithelial cell polarity and tube architecture. These results suggest that PLCγ2-deficient clear cells cause impaired luminal expansion, stenosis of the epididymal duct, attenuation of luminal flow, and subsequent sperm granulomas. Clear cell-mediated luminal expansion is also supported by the observation that PLCγ2-deficient males were rescued from infertility by epididymal epithelium-specific reactivation of Plcg2, although the edematous and hemorrhagic phenotype associated with PLCγ2 deficiency also caused spontaneous epididymal sperm granulomas in aging males. Collectively, our findings demonstrate that PLCγ2 in clear cells plays an essential role in luminal expansion of the epididymis during the prepubertal period in mice, and reveal an unexpected link between PLCγ2, clear cells, and epididymal development.  相似文献   

7.
Motility patterns of caput epididymal chimpanzee sperm, caput epididymal chimpanzee sperm incubated in vitro with chimpanzee cauda epididymal fluid, and cauda epididymal chimpanzee sperm were assessed quantitatively. Sperm recovered from the caput epididymis showed no motility, whereas sperm recovered from cauda epididymis showed progressive forward motility. After incubation in cauda fluid, approximately 25% of caput epididymal sperm showed some motile activity. Electrophoretic analysis of 125I-labeled sperm plasma membrane preparations revealed that the surface of caput epididymal sperm, incubated in cauda fluid, was modified by the appearance of a major protein-glycoprotein surface component with an apparent molecular weight of 27 kilodaltons (kD). THis 27-kD component was not detected on caput epididymal sperm incubated in buffer or in caput fluid. However, it was present in cauda fluid and on cauda epididymal sperm. Binding to caput epididymal sperm was cell specific in that chimpanzee erythrocytes incubated in cauda fluid did not bind this 27-kD cauda fluid component. Motility patterns of ejaculated chimpanzee sperm and of ejaculated chimpanzee sperm incubated in the uterus of adult female chimpanzees also were assessed quantitatively. Ejaculated sperm showed progressive forward motility, whereas in utero incubated ejaculated sperm showed hyperactivated motility typical of capacitated sperm. Electrophoretic analysis of 125I-labeled sperm plasma membrane preparations revealed the loss of a 27-kD component from the surface of ejaculated sperm after in utero incubation. No significant change in the 125I-distribution pattern was detectable when ejaculated sperm were incubated in buffer. These results suggest that the lumenal fluid component, which becomes adsorbed to the surface of chimpanzee sperm during maturation in the epididymis and which is removed from the surface of mature chimpanzee sperm in the female reproductive tract, affects sperm motility.  相似文献   

8.

Background  

As one of the chlorinated antifertility compounds, alpha-chlorohydrin (ACH) can inhibit glyceraldehyde-3-phosphate dehydrogenase (G3PDH) activity in epididymal sperm and affect sperm energy metabolism, maturation and fertilization, eventually leading to male infertility. Further studies demonstrated that the inhibitory effect of ACH on G3PDH is not only confined to epididymal sperm but also to the epididymis. Moreover, little investigation on gene expression changes in the epididymis after ACH treatment has been conducted. Therefore, gene expression studies may indicate new epididymal targets related to sperm maturation and fertility through the analysis of ACH-treated infertile animals.  相似文献   

9.
Inpp5b is an ubiquitously expressed type II inositol polyphosphate 5-phosphatase. We have disrupted the Inpp5b gene in mice and found that homozygous mutant males are infertile. Here we examine the causes for the infertility in detail. We demonstrate that sperm from Inpp5b−/− males have reduced motility and reduced ability to fertilize eggs, although capacitation and acrosome exocytosis appear to be normal. In addition, fertilin β, a sperm surface protein involved in sperm-egg membrane interactions that is normally proteolytically processed during sperm transit through the epididymis, showed reduced levels of processing in the Inpp5b−/− animals. Inpp5b was expressed in the Sertoli cells and epididymis and at low levels in the developing germ cells; however, mice lacking Inpp5b in spermatids and not in other cell types generated by conditional gene targeting, were fully fertile. The abnormalities in mutant sperm function and maturation appear to arise from defects in the functioning of Sertoli and epididymal epithelial cells. Our results directly demonstrate a previously unknown role for phosphoinositides in normal sperm maturation beyond their previously characterized involvement in the acrosome reaction. Inpp5b−/− mice provide an excellent model to study the role of Sertoli and epididymal epithelial cells in the differentiation and maturation of sperm.  相似文献   

10.
Mammalian spermatozoa complete their morphogenesis and acquire their fertilizing potential in the epididymis. Prominent among the hallmarks of epididymal sperm maturation is the proximal-distal migration of the cytoplasmic droplet (CD), the last remnant of the spermatogenic cell cytoplasm, down the sperm flagellum. Failure to shed the CD has been associated with male infertility. Because of the presence of the organelle degradation enzyme 15-lipoxygenase (15LOX) in sperm CD, we hypothesize that subfertile male Alox15 mice lacking the 15Lox gene display sperm CD anomalies. Caput and cauda epididymal sperm samples from seven adult Alox15 and seven wild-type (wt) males of equal age were examined by differential interference contrast microscopy (DIC) and transmission electron microscopy (TEM). Compared with wt males, Alox15 males had significantly more spermatozoa with a retained CD in both caput (P = 0.004) and cauda (P = 0.005) epididymidis. TEM and DIC analyses revealed intact mitochondria present in the CDs of epididymal Alox15 spermatozoa. The CDs of wt spermatozoa, however, had a smooth appearance and contained only hollow membrane vesicles, with no intact mitochondria embedded in their CD matrix. Epithelial lesions, phagocytosis-like figures, and missing or aberrant apical blebs were observed in the caput epididymidis of Alox15 males. Thus, the process of epididymal sperm maturation and CD migration is altered in Alox15 males. Aberrant sperm maturation might contribute to the reduced fertility and smaller litter size of Alox15 mice, a rare example of subfertile mutants displaying normal spermatogenesis but altered epididymal sperm maturation.  相似文献   

11.
A fine adjustment of sperm head size and shape occurs during maturation and storage within the male excurrent duct of the rabbit. This remodelling, as judged by morphometric values of area, perimeter, length, width, and shape factors, takes place mostly in passage from the seminiferous tubules of the testis to the distal caput of the epididymis. The dimensions of sperm heads from the distal corpus of the epididymis break the general tendency toward a reduction in size and more elliptical shapes. A period of transport and storage within the epididymal cauda and vas deferens follows in which there are no further changes in sperm head morphometry. It can be concluded that the period immediately following sperm release from the testis is crucial to the final morphological maturation of spermatozoa. Moreover, the fact that changes are detected in the appearance of sperm heads at successive stages of sperm maturation suggests that the dimensions of a particular epididymal spermatozoon may be taken as an approximate indication of its relative maturity. Mol. Reprod. Dev. 51:203–209, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
During epididymal transit, redox remodeling protects mammalian spermatozoa, preparing them for survival in the subsequent journey to fertilization. However, molecular mechanisms of redox regulation in sperm development and maturation remain largely elusive. In this study, we report that thioredoxin-glutathione reductase (TXNRD3), a thioredoxin reductase family member particularly abundant in elongating spermatids at the site of mitochondrial sheath formation, regulates redox homeostasis to support male fertility. Using Txnrd3−/− mice, our biochemical, ultrastructural, and live cell imaging analyses revealed impairments in sperm morphology and motility under conditions of TXNRD3 deficiency. We find that mitochondria develop more defined cristae during capacitation in wildtype sperm. Furthermore, we show that absence of TXNRD3 alters thiol redox status in both the head and tail during sperm maturation and capacitation, resulting in defective mitochondrial ultrastructure and activity under capacitating conditions. These findings provide insights into molecular mechanisms of redox homeostasis and bioenergetics during sperm maturation, capacitation, and fertilization.  相似文献   

13.
14.
Serine protease inhibitor Kazal type 1 (SPINK1; mouse homologue Spink3) was initially discovered as a trypsin-specific inhibitor in the pancreas. However, previous studies have suggested that SPINK1/Spink3 is expressed in a wide range of normal tissues and tumors, although precise characterization of its gene expression has not been described in adulthood. To further analyze Spink3 expression, we generated two mouse lines in which either lacZ or Cre recombinase genes were inserted into the Spink3 locus by Cre-loxP technology. In Spink3lacZ mice, β-galactosidase activity was found in acinar cells of the pancreas and kidney, as well as epithelial cells of the bronchus in the lung, but not in the gastrointestinal tract or liver. Spink3cre knock-in mice were crossed with Rosa26 reporter (R26R) mice to monitor Spink3 promoter activity. In Spink3cre;R26R mice, β-galactosidase activity was found in acinar cells of the pancreas, kidney, lung, and a small proportion of cells in the gastrointestinal tract and liver. These data suggest that Spink3 is widely expressed in endoderm-derived tissues, and that Spink3cre knock-in mice are a useful tool for establishment of a conditional knockout mice to analyze Spink3 function not only in normal tissues, but also in tumors that express SPINK1/Spink3.  相似文献   

15.
The epididymis has an important role in the maturation of sperm for fertilization, but little is known about the epididymal molecules involved in sperm modifications during this process. We have previously described the expression pattern for an antigen in epididymal epithelial cells that reacts with the monoclonal antibody (mAb) TRA 54. Immunohistochemical and immunoblotting analyses suggest that the epitope of the epididymal antigen probably involves a sugar moiety that is released into the epididymal lumen in an androgen-dependent manner and subsequently binds to luminal sperm. Using column chromatography, SDS-PAGE with in situ digestion and mass spectrometry, we have identified the protein recognized by mAb TRA 54 in mouse epididymal epithelial cells. The ∼65 kDa protein is part of a high molecular mass complex (∼260 kDa) that is also present in the sperm acrosomal vesicle and is completely released after the acrosomal reaction. The amino acid sequence of the protein corresponded to that of albumin. Immunoprecipitates with anti-albumin antibody contained the antigen recognized by mAb TRA 54, indicating that the epididymal molecule recognized by mAb TRA 54 is albumin. RT-PCR detected albumin mRNA in the epididymis and fertilization assays in vitro showed that the glycoprotein complex containing albumin was involved in the ability of sperm to recognize and penetrate the egg zona pellucida. Together, these results indicate that epididymal-derived albumin participates in the formation of a high molecular mass glycoprotein complex that has an important role in egg fertilization.  相似文献   

16.
Fertilin, a heterodimeric protein complex composed of ADAM1 and ADAM2 located on the sperm surface, is involved in sperm–egg interaction. In our study, we examined the physiological processing and subcellular localization of M. fascicularis ADAM2 during spermatogenesis in the testis and epididymal tract. M. fascicularis ADAM2 was initially synthesized as a 100 kDa precursor in testicular germ cells. After passing into 50 kDa intermediate form in the epididymal tracts, the precursor form was finally processed into a 47 kDa protein in sperm. We found that M. fascicularis ADAM2 is localized on the sperm surface and contributes to the formation of a candidate fertilin complex. In particular, Far-Western blot analysis revealed that M. fascicularis ADAM2 cystein-rich domain may be related to protein–protein interaction. Therefore, the cystein-rich domain of ADAM2 could provide a mechanism to form a fertilin complex.  相似文献   

17.
Centromere protein B (CENP-B) is a constitutive protein that binds to a highly conserved 17 bp motif located at most mammalian centromeres. To determine whether disruption of this gene affects chromosome segregation in male germ cells, we evaluated the frequencies of disomic and diploid sperm in CENP-B heterozygous and homozygous null mice using the mouse epididymal sperm aneuploidy (m-ESA) assay, a multicolor FISH method with probes for chromosomes X, Y and 8. The specificity and sensitivity of the m-ESA assay was demonstrated using Robertsonian (2.8) translocation heterozygotes as positive controls for sperm aneuploidy. Our results show that the frequencies of disomic and diploid sperm did not differ significantly between CENP-B heterozygous and homozygous null mice (P≥0.5) or from 129/Swiss isogenic mice (P≥0.5) and B6C3F1 mice (P≥0.2). These findings indicate that CENP-B does not have an essential role during chromosome segregation in male meiosis.  相似文献   

18.
Sperm acquire motility and fertility capacity during epididymal transit, under the control of androgens and sympathetic innervations. It is already known that the acceleration of epididymal sperm transit time can lead to lower sperm quality. In a previous work we showed that rats exposed to the anorexigen sibutramine, a non-selective serotonin-norepinephrine reuptake inhibitor, presented faster sperm transit time, lower epididymal sperm reserves and potentiation of the tension of epididymal duct to norepinephrine exposed acutely in vitro to sibutramine. In the present work we aimed to further investigate pharmacological mechanisms involved in these alterations and the impact on rat sperm quality. For this, adult male Wistar rats were treated with sibutramine (10 mg/kg/day) or vehicle for 30 days. Sibutramine decreased final body, seminal vesicle, ventral prostate and epididymal weights, as well as sperm transit time in the epididymal cauda. On the contrary of the in vitro pharmacological assays, in which sibutramine was added directly to the bath containing strips of distal epididymal cauda, the ductal tension was not altered after in vivo sub-chronic exposure to sibutramine. However, there is pharmacological evidence that the endogenous epididymal norepinephrine reserves were reduced in these animals. It was also shown that the decrease in prostate weight can be related to increased tension developed of the gland, due to sibutramine sympathomimetic effects. In addition, our results showed reduced sperm quality after in utero artificial insemination, a more sensitive procedure to assess fertility in rodents. The epididymal norepinephrine depletion exerted by sibutramine, associated with decreases in sperm transit time, quantity and quality, leading to reduced fertility in this experimental model, reinforces the concerns about the possible impact on fertility of man taking sibutramine as well as other non-selective serotonin-norepinephrine reuptake inhibitors, especially considering the lower reproductive efficiency of humans compared to males of other species.  相似文献   

19.
Netherton Syndrome (NS) is a rare and severe autosomal recessive skin disease which can be life-threatening in infants. The disease is characterized by extensive skin desquamation, inflammation, allergic manifestations and hair shaft defects. NS is caused by loss-of-function mutations in SPINK5 encoding the LEKTI serine protease inhibitor. LEKTI deficiency results in unopposed activities of kallikrein-related peptidases (KLKs) and aberrantly increased proteolysis in the epidermis. Spink5 -/- mice recapitulate the NS phenotype, display enhanced epidermal Klk5 and Klk7 protease activities and die within a few hours after birth because of a severe skin barrier defect. However the contribution of these various proteases in the physiopathology remains to be determined. In this study, we developed a new murine model in which Klk5 and Spink5 were both knocked out to assess whether Klk5 deletion is sufficient to reverse the NS phenotype in Spink5 -/- mice. By repeated intercrossing between Klk5 -/- mice with Spink5 -/- mice, we generated Spink5 -/- Klk5 -/- animals. We showed that Klk5 knock-out in Lekti-deficient newborn mice rescues neonatal lethality, reverses the severe skin barrier defect, restores epidermal structure and prevents skin inflammation. Specifically, using in situ zymography and specific protease substrates, we showed that Klk5 knockout reduced epidermal proteolytic activity, particularly its downstream targets proteases KLK7, KLK14 and ELA2. By immunostaining, western blot, histology and electron microscopy analyses, we provide evidence that desmosomes and corneodesmosomes remain intact and that epidermal differentiation is restored in Spink5 -/- Klk5 -/-. Quantitative RT-PCR analyses and immunostainings revealed absence of inflammation and allergy in Spink5 -/- Klk5 -/- skin. Notably, Il-1β, Il17A and Tslp levels were normalized. Our results provide in vivo evidence that KLK5 knockout is sufficient to reverse NS-like symptoms manifested in Spink5 -/- skin. These findings illustrate the crucial role of protease regulation in skin homeostasis and inflammation, and establish KLK5 inhibition as a major therapeutic target for NS.  相似文献   

20.

Background  

Sperm-oocyte fusion is a critical step in fertilization, which requires a series of proteins from both spermatozoa and oocyte to mediate membrane adhesion and subsequent fusion. A rat spermatozoa membrane protein is endoplasmic reticulum protein 29 (ERp29), which significantly increases on the sperm surface as well as in the cytoplasm of epididymal epithelia from caput to cauda as the sperm undergo epididymal maturation. Moreover, ERp29 facilitates viral infection via mediating membrane penetration. We determined if in addition to promoting sperm maturation ERp29 may also play a role in facilitating gamete fusion during the fertilization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号