首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The advent of next-generation sequencing technologies affords the ability to sequence thousands of subjects cost-effectively, and is revolutionizing the landscape of genetic research. With the evolving genotyping/sequencing technologies, it is not unrealistic to expect that we will soon obtain a pair of diploidic fully phased genome sequences from each subject in the near future. Here, in light of this potential, we propose an analytic framework called, recursive organizer (ROR), which recursively groups sequence variants based upon sequence similarities and their empirical disease associations, into fewer and potentially more interpretable super sequence variants (SSV). As an illustration, we applied ROR to assess an association between HLA-DRB1 and type 1 diabetes (T1D), discovering SSVs of HLA-DRB1 with sequence data from the Wellcome Trust Case Control Consortium. Specifically, ROR reduces 36 observed unique HLA-DRB1 sequences into 8 SSVs that empirically associate with T1D, a fourfold reduction of sequence complexity. Using HLA-DRB1 data from Type 1 Diabetes Genetics Consortium as cases and data from Fred Hutchinson Cancer Research Center as controls, we are able to validate associations of these SSVs with T1D. Further, SSVs consist of nine nucleotides, and each associates with its corresponding amino acids. Detailed examination of these selected amino acids reveals their potential functional roles in protein structures and possible implication to the mechanism of T1D.  相似文献   

2.

Background

Type 1 diabetes (T1D) is a multifactorial autoimmune disorder where interaction and integration of immune response genes along with environmental factors play a role in autoimmune destruction of the insulin producing Pancreatic Beta cells.

Methodology/Principal Findings

We have studied four single nucleotide polymorphisms (FokI site in Exon 2, BsmI and ApaI sites in Intron 8 and TaqI site in exon 9) in the vitamin D receptor (VDR) gene using PCR-RFLP and HLA-DRB1 alleles using PCR and hybridization with sequence specific oligonucleotide probes and studied their interaction using LD based statistics for non-linked loci followed by sequence analysis of the vitamin D response element (VDRE) present in the promoter region of HLA-DRB1*0301. Haplotypes, constructed using SHEsis program for four single nucleotide polymorphisms in the VDR gene, were studied for their interaction with HLA-DRB1 alleles in 233 T1D patients and 191 healthy controls from North India. A significant increase of haplotypes FBAt and fBAT (p<0.02, OR = 1.44 and p<0.002, OR = 3.23 respectively) was observed in the patients. Both the haplotypes FBAt and fBAT were significantly increased in male patients with age at onset less than 18 years; however, fBAT was significantly increased in female patients irrespective of their age at onset. LD based statistics showed significant interaction between the high producer F and T alleles with HLA-DRB1*0301. F and T alleles of VDR have been shown to contribute to VDR mRNA independently. The promoter sequence analysis of HLA-DRB1*0301 showed presence of VDRE involved in higher expression of HLA-DRB1*030, which was confirmed by flow cytometry and real time PCR analysis.

Conclusions/Significance

These data suggest that the interaction between VDR and HLA alleles is mediated by VDRE present in the promoter region of HLA-DRB1*0301 allele, which may be detrimental for the manifestation of T1D in the absence of 1,25-(OH)2D3 in early childhood due to poor expression of DRB1*0301 in the thymus resulting in autoimmunity.  相似文献   

3.
Human leukocyte antigen-G (HLA-G) is known to be implicated in a tumor-driven immune escape mechanism in malignancies. The purpose of this study was to investigate HLA-G polymorphism and expression in breast cancer. HLA-G alleles were determined by direct DNA sequencing procedures from blood samples of 80 breast cancer patients and 80 healthy controls. Soluble HLA-G (sHLA-G) was measured by enzyme-linked immunosorbent assay (ELISA) from serum specimens. HLA-G expression in breast cancer lesions was also analyzed by immunohistochemistry staining. The presence of HLA-G 3′ untranslated region (UTR) 14-bp sequence was analyzed and found to be associated with reduced risk of breast cancer susceptibility based on HLA-G expression in tissues (P = 0.0407). Levels of sHLA-G were higher in the breast cancer group (median 117.2 U/mL) compared to the control group (median 10.1 U/mL, P<0.001). The area under the receiver operating characteristic curve (AU-ROC) values of sHLA-G for differentiating breast cancer from normal controls and for detecting metastasis from other stages of breast cancer were 0.89 and 0.79, respectively. HLA-G polymorphism and expression may be involved in breast carcinogenesis and sHLA-G concentrations could be used as a diagnostic marker for detecting breast cancer.  相似文献   

4.
JC polyomavirus (JCV) carriers with a compromised immune system, such as in HIV, or subjects on immune-modulating therapies, such as anti VLA-4 therapy may develop progressive multifocal leukoencephalopathy (PML) which is a lytic infection of oligodendrocytes in the brain. Serum antibodies to JCV mark infection occur only in 50–60% of infected individuals, and high JCV-antibody titers seem to increase the risk of developing PML. We here investigated the role of human leukocyte antigen (HLA), instrumental in immune defense in JCV antibody response. Anti-JCV antibody status, as a surrogate for JCV infection, were compared to HLA class I and II alleles in 1621 Scandinavian persons with MS and 1064 population-based Swedish controls and associations were replicated in 718 German persons with MS. HLA-alleles were determined by SNP imputation, sequence specific (SSP) kits and a reverse PCR sequence-specific oligonucleotide (PCR-SSO) method. An initial GWAS screen displayed a strong HLA class II region signal. The HLA-DRB1*15 haplotype was strongly negatively associated to JCV sero-status in Scandinavian MS cases (OR = 0.42, p = 7×10−15) and controls (OR = 0.53, p = 2×10−5). In contrast, the DQB1*06:03 haplotype was positively associated with JCV sero-status, in Scandinavian MS cases (OR = 1.63, p = 0.006), and controls (OR = 2.69, p = 1×10−5). The German dataset confirmed these findings (OR = 0.54, p = 1×10−4 and OR = 1.58, p = 0.03 respectively for these haplotypes). HLA class II restricted immune responses, and hence CD4+ T cell immunity is pivotal for JCV infection control. Alleles within the HLA-DR1*15 haplotype are associated with a protective effect on JCV infection. Alleles within the DQB1*06:03 haplotype show an opposite association. These associations between JC virus antibody response and human leucocyte antigens supports the notion that CD4+ T cells are crucial in the immune defence to JCV and lays the ground for risk stratification for PML and development of therapy and prevention.  相似文献   

5.
Polymorphism of genes in the major histocompatibility complex (MHC) is believed to be maintained by balancing selection. However, direct evidence of selection has proven difficult to demonstrate. In 1994, Satta and colleagues estimated the selection intensity of the human MHC (human leukocyte antigen (HLA)) loci; however, at that time the number of HLA sequences was limited. By comparing five different methods, this study demonstrated the best way to calculate the selection coefficient, through a computer simulation study. Since the study, many HLA nucleotide sequences have been made available. Our new analysis takes advantage of these newly available sequences and compares new estimates with those of the previous study. Generally, our new results are consistent with those of the 1994 study. Our results show that, even after 20 years of exhaustive sequencing of human HLA, the number of dominant HLA alleles, on which our original estimate of selection intensity depended, appears to be conserved. Indeed, according to the frequency distribution for each HLA allele, most sequences in the database were minor or private alleles; therefore, we conclude that the selection intensities of HLA loci are at most 4.4 % even though the HLA is the prominent example on which the natural selection has been operating.  相似文献   

6.
Campylobacter is genetically highly diverse and undergoes frequent intraspecific recombination. Turkeys have been identified as an important reservoir for Campylobacter jejuni which is of public health significance. The assessment of the genetic diversity among Campylobacter population is critical for our understanding of the epidemiology of this bacterium. The genetic profiles were different according to the molecular typing methods used. The performance of established flaA genotyping, multilocus sequencing typing (MLST) and DNA microarray assay based on the ArrayTube™ technology was evaluated using 14 Campylobacter jejuni isolated from a commercial turkey flock. The flaA typing was performed using PCR-RFLP with restriction enzymes Sau3AI, AluI, a ‘composite’ flaA analysis of AluI and Sau3AI and DdeI. The 14 isolates were differentiated into 3, 5, 7 and 9 genotypes, respectively. Entire flaA gene and short variable region (SVR) sequences were analysed. Sequencing of the entire flaA provided 11 different genotypes. flaA-SVR sequence analysis detected 8 flaA alleles and 4 flaA peptides. One new flaA allele type (528) was identified. MLST analysis represented 10 different sequence types (STs) and 5 clonal complexes (CCs). The microarray assay recognised 14 different genotypes. The discriminatory indices were 0.560, 0.802, 0.857, and 0.912 for flaA-RFLP depending on the used enzymes, 0.890 for flaA-SVR, 0.967 for entire flaA sequencing, 0.945 for MLST and 1.00 for the DNA microarray assay. The flaA gene was genetically stable over 20 passages on blood agar. In conclusion, the different typing tools demonstrated a high level of genetic heterogeneity of Campylobacter jejuni in a turkey flock, indicating that a single flock can be infected by multiple genotypes within one rearing cycle. DNA microarray-based assays had the highest discriminatory power when compared with other genotyping tools.  相似文献   

7.
DNA sequence variation within human leukocyte antigen (HLA) genes mediate susceptibility to a wide range of human diseases. The complex genetic structure of the major histocompatibility complex (MHC) makes it difficult, however, to collect genotyping data in large cohorts. Long-range linkage disequilibrium between HLA loci and SNP markers across the major histocompatibility complex (MHC) region offers an alternative approach through imputation to interrogate HLA variation in existing GWAS data sets. Here we describe a computational strategy, SNP2HLA, to impute classical alleles and amino acid polymorphisms at class I (HLA-A, -B, -C) and class II (-DPA1, -DPB1, -DQA1, -DQB1, and -DRB1) loci. To characterize performance of SNP2HLA, we constructed two European ancestry reference panels, one based on data collected in HapMap-CEPH pedigrees (90 individuals) and another based on data collected by the Type 1 Diabetes Genetics Consortium (T1DGC, 5,225 individuals). We imputed HLA alleles in an independent data set from the British 1958 Birth Cohort (N = 918) with gold standard four-digit HLA types and SNPs genotyped using the Affymetrix GeneChip 500 K and Illumina Immunochip microarrays. We demonstrate that the sample size of the reference panel, rather than SNP density of the genotyping platform, is critical to achieve high imputation accuracy. Using the larger T1DGC reference panel, the average accuracy at four-digit resolution is 94.7% using the low-density Affymetrix GeneChip 500 K, and 96.7% using the high-density Illumina Immunochip. For amino acid polymorphisms within HLA genes, we achieve 98.6% and 99.3% accuracy using the Affymetrix GeneChip 500 K and Illumina Immunochip, respectively. Finally, we demonstrate how imputation and association testing at amino acid resolution can facilitate fine-mapping of primary MHC association signals, giving a specific example from type 1 diabetes.  相似文献   

8.
Our aim was to test and develop the use of loop-mediated isothermal amplification (LAMP) for HLA-DRB1 genotyping. Initially, we found that the conventional LAMP protocols produced non-specific and variable amplification results depending on the sample DNA conditions. Experiments with different concentrations of DNase in the reaction mixture with and without T4 DNA ligase-treated samples suggested that the strand displacement activity of DNA polymerase in LAMP, at least in part, started from randomly existing nicks because T4 DNA ligase treatment of sample DNA resulted in no amplification. Such non-specific amplification due to the randomly existing nicks was improved specifically by the addition of RecA of Escherichia coli and a restriction enzyme, for example, PvuII, to the reaction mixture. We applied the modified LAMP (mLAMP) (1) to detect specific HLA-DRB1 alleles by using only specific primers for amplification or (2) for genotyping in multiple samples with a multi-probe typing system. In the latter case, HLA-DRB1 genotyping was developed by combining the mLAMP with amplicon capture using polymorphic region-specific probes fixed onto the bottom of the wells of a 96-well plate and the captured amplicons visualized as a black spot at the bottom of the well. The multi-probe human leukocyte antigen (HLA) typing method and the specific HLA allele detection method could be applied for point-of-care testing due to no requirement for specific and expensive instruments.  相似文献   

9.

Background and Aim

The genotype-phenotype interaction in drug-induced liver injury (DILI) is a subject of growing interest. Previous studies have linked amoxicillin-clavulanate (AC) hepatotoxicity susceptibility to specific HLA alleles. In this study we aimed to examine potential associations between HLA class I and II alleles and AC DILI with regards to phenotypic characteristics, severity and time to onset in Spanish AC hepatotoxicity cases.

Methods

High resolution genotyping of HLA loci A, B, C, DRB1 and DQB1 was performed in 75 AC DILI cases and 885 controls.

Results

The distributions of class I alleles A*3002 (P/Pc = 2.6E-6/5E-5, OR 6.7) and B*1801 (P/Pc = 0.008/0.22, OR 2.9) were more frequently found in hepatocellular injury cases compared to controls. In addition, the presence of the class II allele combination DRB1*1501-DQB1*0602 (P/Pc = 5.1E-4/0.014, OR 3.0) was significantly increased in cholestatic/mixed cases. The A*3002 and/or B*1801 carriers were found to be younger (54 vs 65 years, P = 0.019) and were more frequently hospitalized than the DRB1*1501-DQB1*0602 carriers. No additional alleles outside those associated with liver injury patterns were found to affect potential severity as measured by Hy’s Law criteria. The phenotype frequencies of B*1801 (P/Pc = 0.015/0.42, OR 5.2) and DRB1*0301-DQB1*0201 (P/Pc = 0.0026/0.07, OR 15) were increased in AC DILI cases with delayed onset compared to those corresponding to patients without delayed onset, while the opposite applied to DRB1*1302-DQB1*0604 (P/Pc = 0.005/0.13, OR 0.07).

Conclusions

HLA class I and II alleles influence the AC DILI signature with regards to phenotypic expression, latency presentation and severity in Spanish patients.  相似文献   

10.
The HLA class II sequences included in this compilation are taken from publications listed in the papers: Nomenclature for factors of the HLA system, 1989, Nomenclature for factors of the HLA system, 1990, and Nomenclature for factors of the HLA system, 1991 (WHO Nomenclature Committee 1990, 1991, 1992). Where discrepancies have arisen between reported sequences, the original authors have been contacted where possible, and necessary amendments to published sequences have been incorporated into this alignment. Future sequencing may identify errors in this list, and we would welcome any evidence that helps to maintain the accuracy of this compilation. In the sequence alignments, identity between residues is indicated by a hyphen (-), an unavailable sequence is indicated by an asterisk (*), and gaps in the sequence are inserted to maintain the alignment between different alleles showing variation in amino acid number. Correspondence to: S. G. E. Marsh.  相似文献   

11.
The HLA class I sequences included in this compilation are taken from publications listed in the accompanying paper, Nomenclature for factors of the HLA system, 1990 (Bodmer et al. 1991) and Nomeclature for factors of the HLA system, 1989 (Bodmer et al. 1990). Where discrepancies have arisen between reported sequences the original authors have been contavted where possible, and necessary amendments to published sequences have been incorporated into this alignment. Future sequencing may identify errors in this list and we would welcome any evidence that helps to maintain the accuracy of this compilation. In the sequence alignments identify between residues is indicated by a hyphen (-). Unavailable sequence is indicated by a period (.). Gaps in the sequence are inserted to maintain the alignment between different alleles showing variation in amino acid number.  相似文献   

12.
The HLA class II sequences included in this compilation are taken from publications listed in the accompanying paper, Nomenclature for factors of the HLA system, 1990 (Bodmer et al. 1991) and Nomenclature for factors of the HLA system, 1989 (Bodmer et al. 1990). Where discrepancies have arisen between reported sequences the original authors have been contacted where possible, and necessary amendments to published sequences have been incorporated into this alignment. Future sequencing may identify errors in this list and we would welcome any evidence that helps to maintain the accuracy of this compilation. In the sequence alignments identity between residues is indicated by a hyphen (-). Unavailable sequence is indicated by an asterisk (*). Gaps in the sequence are inserted to maintain the alignment between different alleles showing variation in amino acid number.  相似文献   

13.
Extrachromosomal genomes of the adeleorinid parasite Hepatozoon canis infecting an Israeli dog were investigated using next-generation and standard sequencing technologies. A complete apicoplast genome and several mitochondrion-associated sequences were generated. The apicoplast genome (31,869?bp) possessed two copies of both large subunit (23S) and small subunit (16S) ribosomal RNA genes (rDNA) within an inverted repeat region, as well as 22 protein-coding sequences, 25 transfer RNA genes (tDNA) and seven open reading frames of unknown function. Although circular-mapping, the apicoplast genome was physically linear according to next-generation data. Unlike other apicoplast genomes, genes encoding ribosomal protein S19 and tDNAs for alanine, aspartic acid, histidine, threonine and valine were not identified. No complete mitochondrial genome was recovered using next-generation data or directed PCR amplifications. Eight mitochondrion-associated (215–3523?bp) contigs assembled from next-generation data encoded a complete cytochrome c oxidase subunit I coding sequence, a complete cytochrome c oxidase subunit III coding sequence, two complete cytochrome B coding sequences, a non-coding, pseudogene for cytochrome B and multiple fragmented mitochondrial rDNA genes (SSUA, SSUB, SSUD, LSUC, LSUG, RNA6, RNA10, RNA14, RNA18). The paucity of NGS reads generating each of the mitochondrion-like sequences suggested that a complete mitochondrial genome at typically high copy number was absent in H. canis. In contrast, the complete nuclear rDNA unit sequence of H. canis (18S rDNA to 28S rDNA, 6977?bp) had >1000-fold next-generation coverage. Multiple divergent (from 93.6% to 99.9% pairwise identities) nuclear 18S rDNA contigs were generated (three types with 10 subtypes total). To our knowledge this is the first apicoplast genome sequenced from any adeleorinid coccidium and the first mitochondrion-associated sequences from this serious pathogen of wild and domestic canids. These newly generated sequences may provide useful genetic loci for high-resolution species-level genotyping that is currently impossible using existing nuclear rDNA targets.  相似文献   

14.
The human leukocyte antigen (HLA) genes exhibit the highest degree of polymorphism in the human genome. This high degree of variation at classical HLA class I and class II loci has been maintained by balancing selection for a long evolutionary time. However, little is known about recent positive selection acting on specific HLA alleles in a local population. To detect the signature of recent positive selection, we genotyped six HLA loci, HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQB1, and HLA-DPB1 in 418 Japanese subjects, and then assessed the haplotype homozygosity (HH) of each HLA allele. There were 120 HLA alleles across the six loci. Among the 80 HLA alleles with frequencies of more than 1%, DPB1*04∶01, which had a frequency of 6.1%, showed exceptionally high HH (0.53). This finding raises the possibility that recent positive selection has acted on DPB1*04∶01. The DPB1*04∶01 allele, which was present in the most common 6-locus HLA haplotype (4.4%), A*33∶03-C*14∶03-B*44∶03-DRB1*13∶02-DQB1*06∶04-DPB1*04∶01, seems to have flowed from the Korean peninsula to the Japanese archipelago in the Yayoi period. A stochastic simulation approach indicated that the strong linkage disequilibrium between DQB1*06∶04 and DPB1*04∶01 observed in Japanese cannot be explained without positive selection favoring DPB1*04∶01. The selection coefficient of DPB1*04∶01 was estimated as 0.041 (95% credible interval 0.021–0.077). Our results suggest that DPB1*04∶01 has recently undergone strong positive selection in Japanese population.  相似文献   

15.
The diversity in the Plasmodium falciparum genome can be used to explore parasite population dynamics, with practical applications to malaria control. The ability to identify the geographic origin and trace the migratory patterns of parasites with clinically important phenotypes such as drug resistance is particularly relevant. With increasing single-nucleotide polymorphism (SNP) discovery from ongoing Plasmodium genome sequencing projects, a demand for high SNP and sample throughput genotyping platforms for large-scale population genetic studies is required. Low parasitaemias and multiple clone infections present a number of challenges to genotyping P. falciparum. We addressed some of these issues using a custom 384-SNP Illumina GoldenGate assay on P. falciparum DNA from laboratory clones (long-term cultured adapted parasite clones), short-term cultured parasite isolates and clinical (non-cultured isolates) samples from East and West Africa, Southeast Asia and Oceania. Eighty percent of the SNPs (n = 306) produced reliable genotype calls on samples containing as little as 2 ng of total genomic DNA and on whole genome amplified DNA. Analysis of artificial mixtures of laboratory clones demonstrated high genotype calling specificity and moderate sensitivity to call minor frequency alleles. Clear resolution of geographically distinct populations was demonstrated using Principal Components Analysis (PCA), and global patterns of population genetic diversity were consistent with previous reports. These results validate the utility of the platform in performing population genetic studies of P. falciparum.  相似文献   

16.
Genes of the vertebrate major histocompatibility complex (MHC) are of great interest to biologists because of their important role in immunity and disease, and their extremely high levels of genetic diversity. Next generation sequencing (NGS) technologies are quickly becoming the method of choice for high-throughput genotyping of multi-locus templates like MHC in non-model organisms.Previous approaches to genotyping MHC genes using NGS technologies suffer from two problems:1) a “gray zone” where low frequency alleles and high frequency artifacts can be difficult to disentangle and 2) a similar sequence problem, where very similar alleles can be difficult to distinguish as two distinct alleles. Here were present a new method for genotyping MHC loci – Stepwise Threshold Clustering (STC) – that addresses these problems by taking full advantage of the increase in sequence data provided by NGS technologies. Unlike previous approaches for genotyping MHC with NGS data that attempt to classify individual sequences as alleles or artifacts, STC uses a quasi-Dirichlet clustering algorithm to cluster similar sequences at increasing levels of sequence similarity. By applying frequency and similarity based criteria to clusters rather than individual sequences, STC is able to successfully identify clusters of sequences that correspond to individual or similar alleles present in the genomes of individual samples. Furthermore, STC does not require duplicate runs of all samples, increasing the number of samples that can be genotyped in a given project. We show how the STC method works using a single sample library. We then apply STC to 295 threespine stickleback (Gasterosteus aculeatus) samples from four populations and show that neighboring populations differ significantly in MHC allele pools. We show that STC is a reliable, accurate, efficient, and flexible method for genotyping MHC that will be of use to biologists interested in a variety of downstream applications.  相似文献   

17.
The HLA class I sequences included in this compilation are taken from publications listed in the papers: Nomenclature for factors of the HLA system, 1991 (Bodmer et al. 1992); Nomenclature for factors of the HLA system, 1990 (Bodmer et al. 1991); and Nomenclature for factors of the HLA system, 1989 (Bodmer et al. 1990). Due to the increased number of sequences we have only included sequences for exons 2, 3, and 4 in this compilation. Where discrepancies have arisen between reported sequences, the original authors have been contacted where possible, and necessary amendments to published sequences have been incorporated into this alignment. Future sequencing may identify errors in this list and we would welcome any evidence that helps to maintain the accuracy of this compilation. In the sequence alignments, identify between nucleotides is indicated by a hyphen (-). An unavailable sequence is indicated by a period (.). Gaps in the sequence are inserted to maintain the alignment between different alleles showing variation in amino acid number. *** DIRECT SUPPORT *** A4903038 00002  相似文献   

18.
Abstract

Determining haplotype‐specific DNA sequence information is very important in a wide range of research fields. However, no simple and robust approaches are currently available for determining haplotype‐specific sequence information. We have addressed this problem by developing a very simple and robust haplotype‐specific sequencing approach. We utilise the fact that DNA sequencing polymerases are sensitive to 3′end mismatches in the sequencing primer. By using two sequencing primers with 3′end corresponding to the two alleles in a given SNP locus, we are able to obtain allele‐specific DNA sequences from both alleles.

We evaluated this direct haplotype‐specific approach by determining haplotypes within the intron 2 sequence of the fructan‐6‐fructosyltransferase (6ft) gene in Lolium perenne L. We obtained reliable haplotype‐specific sequences for all primers and genotypes evaluated. We conclude that the haplotype‐specific sequencing is robust, and that the approach has a potentially very wide application range for any diploid organism.  相似文献   

19.
20.
Available clinical human papilloma virus (HPV) diagnostics for head and neck cancer have limited sensitivity and/or fail to define the HPV genotype. Common HPV genotyping assays are costly and labor intensive. We sought to develop a next-generation sequencing (NGS)-based HPV genotyping assay that was sensitive enough to work on formalin-fixed paraffin-embedded (FFPE) samples. We developed an ion torrent NGS HPV genotyping assay using barcoded HPV PCR broad-spectrum general primers 5+/6+ (BSGP)5+/6+. To validate genotype specificity and use in archived clinical FFPE tumor samples, we compared NGS HPV genotyping at 2 sequencing centers with typing by Roche Linear Array assay in 42 oropharyngeal and cervical cancer specimens representing 10 HPV genotypes, as well as HPV-negative cases. To demonstrate the detection of a broad range of HPV genotypes, we genotyped a cohort of 266 cervical cancers. A comparison of NGS genotyping of FFPE cancer specimens with genotyping by Linear Array showed concordant results in 34/37 samples (92%) at sequencing site 1 and 39/42 samples (93%) at sequencing site 2. Concordance between sites was 92%. Designed for use with 10 ng genomic DNA, the assay detected HPV using as little as 1.25 ng FFPE-derived genomic DNA. In 266 cervical cancer specimens, the NGS assay identified 20 different HPV genotypes, including all 13 carcinogenic genotypes. This novel NGS assay provides a sensitive and specific high-throughput method to detect and genotype HPV in a range of clinical specimens derived from FFPE with low per-sample cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号