首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The tubulin cofactor C domain-containing protein TbRP2 is a basal body (centriolar) protein essential for axoneme formation in the flagellate protist Trypanosoma brucei, the causal agent of African sleeping sickness. Here, we show how TbRP2 is targeted and tethered at mature basal bodies and provide novel insight into TbRP2 function. Regarding targeting, understanding how several hundred proteins combine to build a microtubule axoneme is a fundamental challenge in eukaryotic cell biology. We show that basal body localization of TbRP2 is mediated by twinned, N-terminal TOF (TON1, OFD1, and FOP) and LisH motifs, motifs that otherwise facilitate localization of only a few conserved proteins at microtubule-organizing centers in animals, plants, and flagellate protists. Regarding TbRP2 function, there is a debate as to whether the flagellar assembly function of specialized, centriolar tubulin cofactor C domain-containing proteins is processing tubulin, the major component of axonemes, or general vesicular trafficking in a flagellum assembly context. Here we report that TbRP2 is required for the recruitment of T. brucei orthologs of MKS1 and MKS6, proteins that, in animal cells, are part of a complex that assembles at the base of the flagellum to regulate protein composition and cilium function. We also identify that TbRP2 is detected by YL1/2, an antibody classically used to detect α-tubulin. Together, these data suggest a general processing role for TbRP2 in trypanosome flagellum assembly and challenge the notion that TbRP2 functions solely in assessing tubulin “quality” prior to tubulin incorporation into the elongating axoneme.  相似文献   

2.
Heterogeneity in the expression of various bacterial genes has been shown to result in the presence of individuals with different phenotypes within clonal bacterial populations. The genes specifying motility and flagellar functions are coordinately regulated and form a complex regulon, the flagellar regulon. Complex interplay has recently been demonstrated in the regulation of flagellar and virulence gene expression in many bacterial pathogens. We show here that FliZ, a DNA-binding protein, plays a key role in the insect pathogen, Xenorhabdus nematophila, affecting not only hemolysin production and virulence in insects, but efficient swimming motility. RNA-Seq analysis identified FliZ as a global regulatory protein controlling the expression of 278 Xenorhabdus genes either directly or indirectly. FliZ is required for the efficient expression of all flagellar genes, probably through its positive feedback loop, which controls expression of the flhDC operon, the master regulator of the flagellar circuit. FliZ also up- or downregulates the expression of numerous genes encoding non-flagellar proteins potentially involved in key steps of the Xenorhabdus lifecycle. Single-cell analysis revealed the bimodal expression of six identified markers of the FliZ regulon during exponential growth of the bacterial population. In addition, a combination of fluorescence-activated cell sorting and RT-qPCR quantification showed that this bimodality generated a mixed population of cells either expressing (“ON state”) or not expressing (“OFF state”) FliZ-dependent genes. Moreover, studies of a bacterial population exposed to a graded series of FliZ concentrations showed that FliZ functioned as a rheostat, controlling the rate of transition between the “OFF” and “ON” states in individuals. FliZ thus plays a key role in cell fate decisions, by transiently creating individuals with different potentials for motility and host interactions.  相似文献   

3.
ParABS, the most widespread bacterial DNA segregation system, is composed of a centromeric sequence, parS, and two proteins, the ParA ATPase and the ParB DNA binding proteins. Hundreds of ParB proteins assemble dynamically to form nucleoprotein parS-anchored complexes that serve as substrates for ParA molecules to catalyze positioning and segregation events. The exact nature of this ParBS complex has remained elusive, what we address here by revisiting the Stochastic Binding model (SBM) introduced to explain the non-specific binding profile of ParB in the vicinity of parS. In the SBM, DNA loops stochastically bring loci inside a sharp cluster of ParB. However, previous SBM versions did not include the negative supercoiling of bacterial DNA, leading to use unphysically small DNA persistences to explain the ParB binding profiles. In addition, recent super-resolution microscopy experiments have revealed a ParB cluster that is significantly smaller than previous estimations and suggest that it results from a liquid-liquid like phase separation. Here, by simulating the folding of long (≥ 30 kb) supercoiled DNA molecules calibrated with realistic DNA parameters and by considering different possibilities for the physics of the ParB cluster assembly, we show that the SBM can quantitatively explain the ChIP-seq ParB binding profiles without any fitting parameter, aside from the supercoiling density of DNA, which, remarkably, is in accord with independent measurements. We also predict that ParB assembly results from a non-equilibrium, stationary balance between an influx of produced proteins and an outflux of excess proteins, i.e., ParB clusters behave like liquid-like protein condensates with unconventional “leaky” boundaries.  相似文献   

4.
Here, we report the genome of one gammaproteobacterial member of the gut microbiota, for which we propose the name “Candidatus Schmidhempelia bombi,” that was inadvertently sequenced alongside the genome of its host, the bumble bee, Bombus impatiens. This symbiont is a member of the recently described bacterial order Orbales, which has been collected from the guts of diverse insect species; however, “Ca. Schmidhempelia” has been identified exclusively with bumble bees. Metabolic reconstruction reveals that “Ca. Schmidhempelia” lacks many genes for a functioning NADH dehydrogenase I, all genes for the high-oxygen cytochrome o, and most genes in the tricarboxylic acid (TCA) cycle. “Ca. Schmidhempelia” has retained NADH dehydrogenase II, the low-oxygen specific cytochrome bd, anaerobic nitrate respiration, mixed-acid fermentation pathways, and citrate fermentation, which may be important for survival in low-oxygen or anaerobic environments found in the bee hindgut. Additionally, a type 6 secretion system, a Flp pilus, and many antibiotic/multidrug transporters suggest complex interactions with its host and other gut commensals or pathogens. This genome has signatures of reduction (2.0 megabase pairs) and rearrangement, as previously observed for genomes of host-associated bacteria. A survey of wild and laboratory B. impatiens revealed that “Ca. Schmidhempelia” is present in 90% of individuals and, therefore, may provide benefits to its host.  相似文献   

5.
Shigella flexneri is a gram-negative bacterium that causes diarrhea and dysentery by invasion and spread through the colonic epithelium. Bacteria spread by assembling actin and other cytoskeletal proteins of the host into “actin tails” at the bacterial pole; actin tail assembly provides the force required to move bacteria through the cell cytoplasm and into adjacent cells. The 120-kDa S. flexneri outer membrane protein IcsA is essential for actin assembly. IcsA is anchored in the outer membrane by a carboxy-terminal domain (the β domain), such that the amino-terminal 706 amino acid residues (the α domain) are exposed on the exterior of the bacillus. The α domain is therefore likely to contain the domains that are important to interactions with host factors. We identify and characterize a domain of IcsA within the α domain that bears significant sequence similarity to two repeated domains of rickettsial OmpA, which has been implicated in rickettsial actin tail formation. Strains of S. flexneri and Escherichia coli that carry derivatives of IcsA containing deletions within this domain display loss of actin recruitment and increased accessibility to IcsA-specific antibody on the surface of intracytoplasmic bacteria. However, site-directed mutagenesis of charged residues within this domain results in actin assembly that is indistinguishable from that of the wild type, and in vitro competition of a polypeptide of this domain fused to glutathione S-transferase did not alter the motility of the wild-type construct. Taken together, our data suggest that the rickettsial homology domain of IcsA is required for the proper conformation of IcsA and that its disruption leads to loss of interactions of other IcsA domains within the amino terminus with host cytoskeletal proteins.  相似文献   

6.
“Phosphoinositide” refers to phosphorylated forms of phosphatidylinositol, including phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5-bisphosphate. Both of these molecules could be in vivo substrates of plant phospholipase C. These phosphoinositides can also be biologically active “per se,” by directly binding to proteins and thus altering their location and/or activity. The use of pharmacological agents in Arabidopsis suspension cells allowed us to identify genes whose expression was positively or negatively controlled, in the basal state, by products of phosphoinositide-dependent phospholipase C. In this basal state, it seems that no genes exhibit a phosphoinositide-dependent expression “per se.” However, many genes whose expression is altered in the presence of phospholipase C inhibitors appeared to be responsive to salicylic acid. This allowed us to show that salicylic acid acts both by increasing the phosphoinositide pool and by inhibiting the phospholipase C. In response to salicylic acid it is possible to identify genes whose expression is controlled by products of PI-PLC, but also genes whose expression is controlled by phosphoinositides “per se.” Our data highlight the importance of phosphoinositide-dependent pathways in gene expression in resting cells and in response to phytohormones.  相似文献   

7.
Centrioles and basal bodies are discrete structures composed of a cylinder of nine microtubule triplets and associated proteins. Metazoan centrioles can be found at mitotic spindle poles and are called basal bodies when used to organize microtubules to form the core structure of flagella. Naegleria gruberi, a unicellular eukaryote, grows as an amoeba that lacks a cytoplasmic microtubule cytoskeleton. When stressed, Naegleria rapidly (and synchronously) differentiates into a flagellate, forming a complete cytoplasmic cytoskeleton de novo, including two basal bodies and flagella. Here, we show that Naegleria has genes encoding conserved centriole proteins. Using novel antibodies, we describe the localization of three centrosomal protein homologs (SAS-6, γ-tubulin, and centrin-1) during the assembly of the flagellate microtubule cytoskeleton. We also used these antibodies to show that Naegleria expresses the proteins in the same order as their incorporation into basal bodies, with SAS-6 localizing first, followed by centrin and finally γ-tubulin. The similarities between basal body assembly in Naegleria and centriole assembly in animals indicate that mechanisms of assembly, as well as structure, have been conserved throughout eukaryotic evolution.The beautiful and enigmatic pinwheel structures of centrioles and basal bodies have captured the imaginations of cell biologists for over a century. These small (∼1-μm) organelles are composed largely of a cylinder of nine microtubule triplets (11). The surrounding amorphous material harbors the microtubule-organizing activities of the centrosome, placing centrioles at the hub of the microtubule cytoskeleton. Metazoan centrosomes define mitotic spindle poles, and their centrioles are called basal bodies when used to form cilia (29). Moreover, in 1900 Meeves showed in a series of classical experiments that centrioles and basal bodies are interconvertible structures (34). Centrioles must replicate exactly once per cell cycle, as duplication errors can lead to problems with chromosome segregation and cell morphology (17).Virtually all animal cells have a pair of centrosomal centrioles that duplicate via “templated” assembly, with the new centriole developing perpendicular and attached to a preexisting centriole (4). Centrioles can also be formed “de novo” in cytosol devoid of preexisting centrioles and basal bodies (20). In addition to many in vivo examples (20), terminally differentiated fibroblasts held in S phase can assemble centrioles de novo after removal of preexisting centrioles by laser microsurgery (15).The amoeboflagellate Naegleria gruberi grows as an amoeba that completely lacks a cytoplasmic microtubule cytoskeleton. However, when exposed to stressors such as temperature, osmotic, or pH changes, Naegleria rapidly differentiates into a flagellate, forming a complete cytoplasmic cytoskeleton from scratch, including two basal bodies and flagella (8). This differentiation occurs synchronously, with approximately 90% of cells growing visible flagella in a 15-min window (T50 = 65 min after initiation of differentiation). As part of this differentiation, Naegleria has been shown to assemble the pinwheel structure of the basal bodies de novo, about 10 min before flagella are seen (11).Two centrosomal proteins that have been studied during Naegleria differentiation are centrin and γ-tubulin. Centrin is a calcium-binding phosphoprotein that is an integral component of the wall and lumen of basal bodies and of the pericentriolar lattice in many organisms (4, 19). During differentiation, Naegleria induces synthesis of centrin protein, which then localizes specifically to basal body structures throughout differentiation (18). γ-Tubulin is a general microtubule nucleation factor that localizes to microtubule-organizing centers (MTOCs) of many types. Surprisingly, Naegleria''s γ-tubulin homolog has been reported to localize to basal body precursor complexes and then move to the other end of the cell before disappearing completely (32).A third protein that has come under recent scrutiny for its role in centriole duplication is SAS-6, a functionally conserved coiled-coil protein required for the formation of diverse basal body precursor structures (7, 21,23, 31). In Caenorhabditis elegans and Drosophila melanogaster, SAS-6 is recruited at S phase to form the “central tube,” a cylindrical basal body precursor that lacks microtubules (22, 23). SAS-6 is also required for the formation of the flat ring or cartwheel with nine radiating spokes, which is the first structure to be formed in the Chlamydomonas basal body (21).To determine if Naegleria is likely to have typical basal body components, we identified conserved basal body genes in the Naegleria genome. We also made antibodies to and localized Naegleria''s homologs of SAS-6 and γ-tubulin. Finally, we have determined the order of expression and incorporation of these proteins, as well as centrin, during Naegleria de novo basal body assembly.  相似文献   

8.
Candidatus Cardinium hertigii” (Bacteroidetes) is a maternally inherited endosymbiont known from several arthropods. Its mechanisms for persistence in host populations are mostly reproductive manipulation, though it has been occasionally reported to improve fitness parameters in several hosts. In Culicoides (Diptera: Ceratopogonidae) biting midges, the prevalence of “Candidatus Cardinium” infection was documented as moderate, with no detectable sex bias. We therefore investigated whether “Candidatus Cardinium” affects important fitness parameters, such as survival and body size, in Culicoides imicola, a dominant vector species. Field-collected midges were trapped and analyzed for survival under different environmental conditions and antibiotic treatment, taking into account “Candidatus Cardinium” infection status and parity status (i.e., parous or nulliparous). Additionally, wing lengths were measured as a proxy parameter for body size and analyzed together with “Candidatus Cardinium” infection data. The findings revealed no difference in survival of Culicoides infected with “Candidatus Cardinium” and that of uninfected midges in both parity states and under all tested conditions: optimal, starvation, heat, and antibiotic treatment. Beyond survival, no wing length difference was found for “Candidatus Cardinium”-infected versus uninfected midges. In aggregate, these findings support our conclusion that “Candidatus Cardinium” does not have an overt effect on the survival and size of adult C. imicola midges. “Candidatus Cardinium” may affect immature stages or may alter adult reproductive performance.  相似文献   

9.
Most bacterial viruses need a specialized machinery, called “tail,” to inject their genomes inside the bacterial cytoplasm without disrupting the cellular integrity. Bacteriophage T7 is a well characterized member of the Podoviridae family infecting Escherichia coli, and it has a short noncontractile tail that assembles sequentially on the viral head after DNA packaging. The T7 tail is a complex of around 2.7 MDa composed of at least four proteins as follows: the connector (gene product 8, gp8), the tail tubular proteins gp11 and gp12, and the fibers (gp17). Using cryo-electron microscopy and single particle image reconstruction techniques, we have determined the precise topology of the tail proteins by comparing the structure of the T7 tail extracted from viruses and a complex formed by recombinant gp8, gp11, and gp12 proteins. Furthermore, the order of assembly of the structural components within the complex was deduced from interaction assays with cloned and purified tail proteins. The existence of common folds among similar tail proteins allowed us to obtain pseudo-atomic threaded models of gp8 (connector) and gp11 (gatekeeper) proteins, which were docked into the corresponding cryo-EM volumes of the tail complex. This pseudo-atomic model of the connector-gatekeeper interaction revealed the existence of a common molecular architecture among viruses belonging to the three tailed bacteriophage families, strongly suggesting that a common molecular mechanism has been favored during evolution to coordinate the transition between DNA packaging and tail assembly.  相似文献   

10.
Association of messenger RNAs with large complexes such as processing bodies (PBs) plays a pivotal role in regulating their translation and decay. Little is known about other possible functions of these assemblies. Exposure of haploid yeast cells, carrying mating type “a,” to “α pheromone” stimulates polarized growth resulting in a “shmoo” projection; it also induces synthesis of “a pheromone,” encoded by MFA2. In this paper, we show that, in response to α pheromone, MFA2 mRNA is assembled with two types of granules; both contain some canonical PB proteins, yet they differ in size, localization, motility, and sensitivity to cycloheximide. Remarkably, one type is involved in mRNA transport to the tip of the shmoo, whereas the other—in local translation in the shmoo. Normal assembly of these granules is critical for their movement, localization, and for mating. Thus, MFA2 mRNAs are transported to the shmoo tip, in complex with PB-like particles, where they are locally translated.  相似文献   

11.
Flavescence dorée (FD) is a grapevine disease that afflicts several wine production areas in Europe, from Portugal to Serbia. FD is caused by a bacterium, “Candidatus Phytoplasma vitis,” which is spread throughout the vineyards by a leafhopper, Scaphoideus titanus (Cicadellidae). After collection of S. titanus specimens from FD-contaminated vineyards in three different areas in the Piedmont region of Italy, we performed a survey to characterize the bacterial microflora associated with this insect. Using length heterogeneity PCR with universal primers for bacteria we identified a major peak associated with almost all of the individuals examined (both males and females). Characterization by denaturing gradient gel electrophoresis confirmed the presence of a major band that, after sequencing, showed a 97 to 99% identity with Bacteroidetes symbionts of the “Candidatus Cardinium hertigii” group. In addition, electron microscopy of tissues of S. titanus fed for 3 months on phytoplasma-infected grapevine plants showed bacterial cells with the typical morphology of “Ca. Cardinium hertigii.” This endosymbiont, tentatively designated ST1-C, was found in the cytoplasm of previtellogenic and vitellogenic ovarian cells, in the follicle cells, and in the fat body and salivary glands. In addition, cell morphologies resembling those of “Ca. Phytoplasma vitis” were detected in the midgut, and specific PCR assays indicated the presence of the phytoplasma in the gut, fat body and salivary glands. These results indicate that ST1-C and “Ca. Phytoplasma vitis” have a complex life cycle in the body of S. titanus and are colocalized in different organs and tissues.  相似文献   

12.
Targeting of permissive entry sites is crucial for bacterial infection. The targeting mechanisms are incompletely understood. We have analyzed target-site selection by S. Typhimurium. This enteropathogenic bacterium employs adhesins (e.g. fim) and the type III secretion system 1 (TTSS-1) for host cell binding, the triggering of ruffles and invasion. Typically, S. Typhimurium invasion is focused on a subset of cells and multiple bacteria invade via the same ruffle. It has remained unclear how this is achieved. We have studied target-site selection in tissue culture by time lapse microscopy, movement pattern analysis and modeling. Flagellar motility (but not chemotaxis) was required for reaching the host cell surface in vitro. Subsequently, physical forces trapped the pathogen for ∼1.5–3 s in “near surface swimming”. This increased the local pathogen density and facilitated “scanning” of the host surface topology. We observed transient TTSS-1 and fim-independent “stopping” and irreversible TTSS-1-mediated docking, in particular at sites of prominent topology, i.e. the base of rounded-up cells and membrane ruffles. Our data indicate that target site selection and the cooperative infection of membrane ruffles are attributable to near surface swimming. This mechanism might be of general importance for understanding infection by flagellated bacteria.  相似文献   

13.
Interferon-inducible GTPases of the Immunity Related GTPase (IRG) and Guanylate Binding Protein (GBP) families provide resistance to intracellular pathogenic microbes. IRGs and GBPs stably associate with pathogen-containing vacuoles (PVs) and elicit immune pathways directed at the targeted vacuoles. Targeting of Interferon-inducible GTPases to PVs requires the formation of higher-order protein oligomers, a process negatively regulated by a subclass of IRG proteins called IRGMs. We found that the paralogous IRGM proteins Irgm1 and Irgm3 fail to robustly associate with “non-self” PVs containing either the bacterial pathogen Chlamydia trachomatis or the protozoan pathogen Toxoplasma gondii. Instead, Irgm1 and Irgm3 reside on “self” organelles including lipid droplets (LDs). Whereas IRGM-positive LDs are guarded against the stable association with other IRGs and GBPs, we demonstrate that IRGM-stripped LDs become high affinity binding substrates for IRG and GBP proteins. These data reveal that intracellular immune recognition of organelle-like structures by IRG and GBP proteins is partly dictated by the missing of “self” IRGM proteins from these structures.  相似文献   

14.
15.
Resistance of pathogens to drugs is a growing concern regarding many diseases. Parasites like Leishmania, Plasmodium and Entamoeba histolytica; and neoplastic cells, present the multidrug-resistant phenotype rendering chemotherapy ineffective. The acquired resistance of Leishmania to antimony has generated intense research on the mechanisms involved but the question has not yet been resolved. To test the hypothesis that drug efflux in Leishmania, as measured by flow cytometry using the fluorescent dye Rhodamine-123, is largely dependent on the number of efflux pumps an isolate can express, the amount of Pgp 170 molecules was assessed in ten field isolates (5 “resistant” and 5 “susceptible”) using: Western Blotting, Confocal and Transmission Electron Microscopy, and proteomics. Their survival after exposure to three antileishmanial drugs, in vitro, was evaluated and clinical data were compared to the in vitro results. All isolates were resistant to Glucantime but susceptible to Miltefosine, whilst Amphotericin B was more effective on the “susceptible” isolates. The MDR gene, expressing the transmembrane efflux pump Pgp 170, appears to play a key role in the phenomenon of drug resistance. When “susceptible” versus “resistant” parasites were compared, it was shown that the higher the number of Pgp 170 molecules the higher the Rhodamine-123 efflux from the parasite body and, when exposed to the drug, the number of efflux pumps increased. However, the rate of this increase was not linear and it is possible that there is a maximum number of Pgp 170 molecules an isolate can express. Nevertheless, the phenomenon is a complex one and other factors and proteins are involved in which the HSP-70 group proteins, detected in the “resistant” isolates, may play a significant role.  相似文献   

16.
Humans are colonized by thousands of bacterial species, but it is difficult to assess the metabolic and pathogenic potential of the majority of these because they have yet to be cultured. Here, we characterize an uncultivated vaginal mycoplasma tightly associated with trichomoniasis that was previously known by its 16S rRNA sequence as “Mnola.” In this study, the mycoplasma was found almost exclusively in women infected with the sexually transmitted pathogen Trichomonas vaginalis, but rarely observed in women with no diagnosed disease. The genomes of four strains of this species were reconstructed using metagenome sequencing and assembly of DNA from four discrete mid-vaginal samples, one of which was obtained from a pregnant woman with trichomoniasis who delivered prematurely. These bacteria harbor several putative virulence factors and display unique metabolic strategies. Genes encoding proteins with high similarity to potential virulence factors include two collagenases, a hemolysin, an O-sialoglycoprotein endopeptidase and a feoB-type ferrous iron transport system. We propose the name “Candidatus Mycoplasma girerdii” for this potential new pathogen.  相似文献   

17.
One fundamental role of the centriole in eukaryotic cells is to nucleate the growth of cilia. The unicellular alga Chlamydomonas reinhardtii provides a simple genetic system to study the role of the centriole in ciliogenesis. Wild-type cells are biflagellate, but “uni” mutations result in failure of some centrioles (basal bodies) to assemble cilia (flagella). Serial transverse sections through basal bodies in uni1 and uni2 single and double mutant cells revealed a previously undescribed defect in the transition of triplet microtubules to doublet microtubules, a defect correlated with failure to assemble flagella. Phosphorylation of the Uni2 protein is reduced in uni1 mutant cells. Immunogold electron microscopy showed that the Uni2 protein localizes at the distal end of the basal body where microtubule transition occurs. These results provide the first mechanistic insights into the function of UNI1 and UNI2 genes in the pathway mediating assembly of doublet microtubules in the axoneme from triplet microtubules in the basal body template.  相似文献   

18.
The bryozoans Bugula neritina and Bugula simplex harbor bacteria in the pallial sinuses of their larvae as seen by electron microscopy. In B. neritina, the bacterial symbiont has been characterized as a gamma-proteobacterium, “Candidatus Endobugula sertula.” “Candidatus E. sertula” has been implicated as the source of the bryostatins, polyketides that provide chemical defense to the host and are also being tested for use in human cancer treatments. In this study, the bacterial symbiont in B. simplex larvae was identified by 16S rRNA-targeted PCR and sequencing as a gamma-proteobacterium closely related to and forming a monophyletic group with “Candidatus E. sertula.” In a fluorescence in situ hybridization, a 16S ribosomal DNA probe specific to the B. simplex symbiont hybridized to long rod-shaped bacteria in the pallial sinus of a B. simplex larva. The taxonomic status “Candidatus Endobugula glebosa” is proposed for the B. simplex larval symbiont. Degenerate polyketide synthase (PKS) primers amplified a gene fragment from B. simplex that closely matched a PKS gene fragment from the bryostatin PKS cluster. PCR surveys show that the symbiont and this PKS gene fragment are consistently and uniquely associated with B. simplex. Bryostatin activity assays and chemical analyses of B. simplex extracts reveal the presence of compounds similar to bryostatins. Taken together, these findings demonstrate a symbiosis in B. simplex that is similar and evolutionarily related to that in B. neritina.  相似文献   

19.
Large-scale analyses of protein complexes have recently become available for Escherichia coli and Mycoplasma pneumoniae, yielding 443 and 116 heteromultimeric soluble protein complexes, respectively. We have coupled the results of these mass spectrometry-characterized protein complexes with the 285 “gold standard” protein complexes identified by EcoCyc. A comparison with databases of gene orthology, conservation, and essentiality identified proteins conserved or lost in complexes of other species. For instance, of 285 “gold standard” protein complexes in E. coli, less than 10% are fully conserved among a set of 7 distantly-related bacterial “model” species. Complex conservation follows one of three models: well-conserved complexes, complexes with a conserved core, and complexes with partial conservation but no conserved core. Expanding the comparison to 894 distinct bacterial genomes illustrates fractional conservation and the limits of co-conservation among components of protein complexes: just 14 out of 285 model protein complexes are perfectly conserved across 95% of the genomes used, yet we predict more than 180 may be partially conserved across at least half of the genomes. No clear relationship between gene essentiality and protein complex conservation is observed, as even poorly conserved complexes contain a significant number of essential proteins. Finally, we identify 183 complexes containing well-conserved components and uncharacterized proteins which will be interesting targets for future experimental studies.  相似文献   

20.
Ecological studies on three bacterial lineages symbiotic in aphids have shown that they impose a variety of effects on their hosts, including resistance to parasitoids and tolerance to heat stress. Phylogenetic analyses of partial sequences of gyrB and recA are consistent with previous analyses limited to 16S rRNA gene sequences and yield improved confidence of the evolutionary relationships of these symbionts. All three symbionts are in the Enterobacteriaceae. One of the symbionts, here given the provisional designation “Candidatus Serratia symbiotica,” is a Serratia species that has acquired a symbiotic lifestyle. The other two symbionts, here designated “Candidatus Hamiltonella defensa” and “Candidatus Regiella insecticola,” are sister groups to one another and together show a relationship to species of Photorhabdus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号