首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cyclic GMP (cGMP) regulates many physiological processes by cooperating with the other signaling molecules such as cyclic AMP (cAMP) and Ca2+. Genetically encoded sensors for cGMP have been developed based on fluorescence resonance energy transfer (FRET) between fluorescent proteins. However, to analyze the dynamic relationship among these second messengers, combined use of existing sensors in a single cell is inadequate because of the significant spectral overlaps. A single wavelength indicator is an effective alternative to avoid this problem, but color variants of a single fluorescent protein-based biosensor are limited. In this study, to construct a new color fluorescent sensor, we converted the FRET-based sensor into a single wavelength indicator using a dark FRET acceptor. We developed a blue fluorescent cGMP biosensor, which is spectrally compatible with a FRET-based cAMP sensor using cyan and yellow fluorescent proteins (CFP/YFP). We cotransfected them and loaded a red fluorescent probe for Ca2+ into cells, and accomplished triple-parameter fluorescence imaging of these cyclic nucleotides and Ca2+, confirming the applicability of this combination to individually monitor their dynamics in a single cell. This blue fluorescent sensor and the approach using this FRET pair would be useful for multiparameter fluorescence imaging to understand complex signal transduction networks.  相似文献   

2.
Fluorescence resonance energy transfer (FRET) using fluorescent protein variants are used for studying the associations and biomolecular motions of macromolecules inside the cell. Intramolecular FRET utilizing fluorescent chemical labels has been applied in nucleic acid chemistry for detection of specific sequence. However, the biotechnological applications of intramolecular FRET in fluorescent proteins have not been exploited. This study demonstrates the intramolecular FRET between fluorescent protein and conjugated chemical label whereby FRET occurs from inside to outside and vice versa for fluorescent protein. The fluorescent protein is modified for the attachment of chemical fluorophores and the novel FRET pairs created by conjugation are MDCC (435/475)-Citrine (516/529) and Citrine-Alexa fluor (568/603). These protein-label pairs exhibited strong intramolecular FRET and the energy transfer efficiency was determined based on the time evolution of the ratio of emission intensities of labeled and unlabeled proteins. The efficiency was found to be 0.79 and 0.89 for MDCC-Citrine and 0.24 and 0.65 for Citrine-Alexa Fluor pairs when the label is conjugated at different sites in the protein. Fo?rster distance and the average distance between the fluorophores were also determined. The bidirectional approach described here can provide new insights into designing FRET-based sensors.  相似文献   

3.
Förster resonance energy transfer (FRET) is a nonradiative process for the transfer of energy from an optically excited donor molecule (D) to an acceptor molecule (A) in the ground state. The underlying theory predicting the dependence of the FRET efficiency on the sixth power of the distance between D and A has stood the test of time. In contrast, a comprehensive kinetic-based theory developed recently for FRET efficiencies among multiple donors and acceptors in multimeric arrays has waited for further testing. That theory has been tested in the work described in this article using linked fluorescent proteins located in the cytoplasm and at the plasma membrane of living cells. The cytoplasmic constructs were fused combinations of Cerulean as donor (D), Venus as acceptor (A), and a photoinsensitive molecule (Amber) as a nonfluorescent (N) place holder: namely, NDAN, NDNA, and ADNN duplexes, and the fully fluorescent quadruplex ADAA. The membrane-bound constructs were fused combinations of GFP2 as donor (D) and eYFP as acceptor (A): namely, two fluorescent duplexes (i.e., DA and AD) and a fluorescent triplex (ADA). According to the theory, the FRET efficiency of a multiplex such as ADAA or ADA can be predicted from that of analogs containing a single acceptor (e.g., NDAN, NDNA, and ADNN, or DA and AD, respectively). Relatively small but statistically significant differences were observed between the measured and predicted FRET efficiencies of the two multiplexes. While elucidation of the cause of this mismatch could be a worthy endeavor, the discrepancy does not appear to question the theoretical underpinnings of a large family of FRET-based methods for determining the stoichiometry and quaternary structure of complexes of macromolecules in living cells.  相似文献   

4.
Förster resonance energy transfer (FRET) technology has been widely used in biological and biomedical research, and it is a very powerful tool for elucidating protein interactions in either dynamic or steady state. SUMOylation (the process of SUMO [small ubiquitin-like modifier] conjugation to substrates) is an important posttranslational protein modification with critical roles in multiple biological processes. Conjugating SUMO to substrates requires an enzymatic cascade. Sentrin/SUMO-specific proteases (SENPs) act as an endopeptidase to process the pre-SUMO or as an isopeptidase to deconjugate SUMO from its substrate. To fully understand the roles of SENPs in the SUMOylation cycle, it is critical to understand their kinetics. Here, we report a novel development of a quantitative FRET-based protease assay for SENP1 kinetic parameter determination. The assay is based on the quantitative analysis of the FRET signal from the total fluorescent signal at acceptor emission wavelength, which consists of three components: donor (CyPet–SUMO1) emission, acceptor (YPet) emission, and FRET signal during the digestion process. Subsequently, we developed novel theoretical and experimental procedures to determine the kinetic parameters, kcat, KM, and catalytic efficiency (kcat/KM) of catalytic domain SENP1 toward pre-SUMO1. Importantly, the general principles of this quantitative FRET-based protease kinetic determination can be applied to other proteases.  相似文献   

5.
F?rster's resonance energy transfer (FRET) can be used to study protein-protein interactions in living cells. Numerous methods to measure FRET have been devised and implemented; however, the accuracy of these methods is unknown, which makes interpretation of FRET efficiency values difficult if not impossible. This problem exists due to the lack of standards with known FRET efficiencies that can be used to validate FRET measurements. The advent of spectral variants of green fluorescent protein and easy access to cell transfection technology suggests a simple solution to this problem: the development of genetic constructs with known FRET efficiencies that can be replicated with high fidelity and freely distributed. In this study, fluorescent protein constructs with progressively larger separation distances between donors and acceptors were generated and FRET efficiencies were measured using fluorescence lifetime spectroscopy, sensitized acceptor emission, and spectral imaging. Since the results from each method were in good agreement, the FRET efficiency value of each construct could be determined with high accuracy and precision, thereby justifying their use as standards.  相似文献   

6.
The novel fluorescent membrane probe, bis(cyclohexyl)-BODIPY (BCHB)-labeled phosphatidylcholine, is structurally similar to 1,3,5,7-tetramethyl-BODIPY (TMB)-labeled phosphatidylcholine. Formally, BCHB and TMB have similar systems of conjugated bonds; however, spectral properties of the probes are notably different. BCHB and TMB have a perfect spectral overlap. The fact makes BCHB a good FRET acceptor for TMB. Thus, the pair of phosphatidylcholines labeled with BCHB and TMB is a good tool for FRET-based membrane studies, e.g. lipid transfer studies.  相似文献   

7.
Förster resonance energy transfer (FRET)-based biosensors for the quantitative analysis of intracellular signaling, including sensors for monitoring cyclic adenosine monophosphate (cAMP), are of increasing interest. The measurement of the donor/acceptor emission ratio in tandem biosensors excited at the donor excitation wavelength is a commonly used technique. A general problem, however, is that this ratio varies not only with the changes in cAMP concentration but also with the changes of the ionic environment or other factors affecting the folding probability of the fluorophores. Here, we use a spectral FRET analysis on the basis of two excitation wavelengths to obtain a reliable measure of the absolute cAMP concentrations with high temporal and spatial resolution by using an “exchange protein directly activated by cAMP”. In this approach, FRET analysis is simplified and does not require additional calibration routines. The change in FRET efficiency (E) of the biosensor caused by [cAMP] changes was determined as ΔE = 15%, whereas E varies between 35% at low and 20% at high [cAMP], allowing quantitative measurement of cAMP concentration in the range from 150 nM to 15 μM. The method described is also suitable for other FRET-based biosensors with a 1:1 donor/acceptor stoichiometry. As a proof of principle, we measured the specially resolved cAMP concentration within living cells and determined the dynamic changes of cAMP levels after stimulation of the Gs-coupled serotonin receptor subtype 7 (5-HT7).  相似文献   

8.
Genetically encoded fluorescence resonance energy transfer (FRET) indicators are powerful tools for real-time detection of second messenger molecules and activation of signal proteins. However, these fluorescent protein-based sensors typically display marginal FRET efficiency. To improve their FRET efficiency for optical imaging and screening, we developed a number of fluorescent protein mutants based on cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP). To improve FRET ratios, which were initially within a narrow dynamic range, we used DNA shuffling to develop a new FRET pair called 3xCFP/Venus. The optimized 3xCFP/Venus pair exhibited higher FRET ratios than CyPet/YPet, which has one of the greatest dynamic ranges of protein-based FRET pairs. We converted this FRET pair to a Ca2+ FRET indicators using circular permutation Venus (cpVenus) linked with 3xCFP to form 3xCFP/cpVenus, which displayed an ∼11-fold change in dynamic range in response to Ca2+ binding. The enhanced dynamic range for Ca2+ concentration detection using 3xCFP/cpVenus was confirmed in PC12 cells using previously established indicators (TN-XXL, ECFP/cpCitrine). To our knowledge, this FRET pair displays the largest dynamic range so far among genetically-encoded sensors, and can be used for sensitive FRET detection.  相似文献   

9.
Förster resonance energy transfer (FRET) has become an important tool for analyzing different aspects of interactions among biological macromolecules in their native environments. FRET analysis has also been successfully applied to study the spatiotemporal regulation of various cellular processes using genetically encoded FRET-based biosensors. A variety of procedures have been described for measuring FRET efficiency or the relative abundance of donor-acceptor complexes, based on analysis of the donor fluorescence lifetime or the spectrally resolved fluorescence intensity. The latter methods are preferable if one wants to not only quantify the apparent FRET efficiencies but also calculate donor-acceptor stoichiometry and observe fast dynamic changes in the interactions among donor and acceptor molecules in live cells. This review focuses on a comparison of the available intensity-based approaches used to measure FRET. We discuss their strengths and weaknesses in terms of FRET quantification, and provide several examples of biological applications.  相似文献   

10.
Optical sensors allow dynamic quantification of metabolite levels with subcellular resolution. Here we describe protocols for analyzing cytosolic glucose levels in yeast using genetically encoded F?rster resonance energy transfer (FRET) sensors. FRET glucose sensors with different glucose affinities (K(d)) covering the low nano- to mid- millimolar range can be targeted genetically to the cytosol or to subcellular compartments. The sensors detect the glucose-induced conformational change in the bacterial periplasmic glucose/galactose binding protein MglB using FRET between two fluorescent protein variants. Measurements can be performed with a single sensor or multiple sensors in parallel. In one approach, cytosolic glucose accumulation is measured in yeast cultures in a 96-well plate using a fluorimeter. Upon excitation of the cyan fluorescent protein (CFP), emission intensities of CFP and YFP (yellow fluorescent protein) are captured before and after glucose addition. FRET sensors provide temporally resolved quantitative data of glucose for the compartment of interest. In a second approach, reversible changes of cytosolic free glucose are measured in individual yeast cells trapped in a microfluidic platform, allowing perfusion of different solutions while FRET changes are monitored in a microscope setup. By using the microplate fluorimeter protocol, 96 cultures can be measured in less than 1 h; analysis of single cells of a single genotype can be completed in <2 h. FRET-based analysis has been performed with glucose, maltose, ATP and zinc sensors, and it can easily be adapted for high-throughput screening using a wide spectrum of sensors.  相似文献   

11.
Molecular sensors based on intramolecular Förster resonance energy transfer (FRET) have become versatile tools to monitor regulatory molecules in living tissue. However, their use is often compromised by low signal strength and excessive noise. We analyzed signal/noise (SNR) aspects of spectral FRET analysis methods, with the following conclusions: The most commonly used method (measurement of the emission ratio after a single short wavelength excitation) is optimal in terms of signal/noise, if only relative changes of this uncalibrated ratio are of interest. In the case that quantitative data on FRET efficiencies are required, these can be calculated from the emission ratio and some calibration parameters, but at reduced SNR. Lux-FRET, a recently described method for spectral analysis of FRET data, allows one to do so in three different ways, each based on a ratio of two out of three measured fluorescence signals (the donor and acceptor signal during a short-wavelength excitation and the acceptor signal during long wavelength excitation). Lux-FRET also allows for calculation of the total abundance of donor and acceptor fluorophores. The SNR for all these quantities is lower than that of the plain emission ratio due to unfavorable error propagation. However, if ligand concentration is calculated either from lux-FRET values or else, after its calibration, from the emission ratio, SNR for both analysis modes is very similar. Likewise, SNR values are similar, if the noise of these quantities is related to the expected dynamic range. We demonstrate these relationships based on data from an Epac-based cAMP sensor and discuss how the SNR changes with the FRET efficiency and the number of photons collected.  相似文献   

12.
A self-assembling sensor for oleic acid has been developed. The sensor consists of a self-assembling fluorescent dye labeled BSA and quantum dots CdSe/ZnS capped with 3-mercaptopropionic acid. The detection limit of the new sensor is 10-1000 nM. The influence of the quantum dot size on the FRET efficiency in the course of the interaction of the sensor system with the analyte has been studied. The pH dependence, aggregation stability. and electrophoretic properties of the sensor have been examined. The data suggest a new approach for the development of nanoscale FRET-based sensors operating effectively due to unique fluorescent properties of quantum dots as well as due to selective protein-ligand interactions.  相似文献   

13.
A family of genetically-encoded metabolite sensors has been constructed using bacterial periplasmic binding proteins (PBPs) linearly fused to protein fluorophores. The ligand-induced conformational change in a PBP allosterically regulates the relative distance and orientation of a fluorescence resonance energy transfer (FRET)-compatible protein pair. Ligand binding is transduced into a macroscopic FRET observable, providing a reagent for in vitro and in vivo ligand-measurement and visualization. Sensors with a higher FRET signal change are required to expand the dynamic range and allow visualization of subtle analyte changes under high noise conditions. Various observations suggest that factors other than inter-fluorophore separation contribute to FRET transfer efficiency and the resulting ligand-dependent spectral changes. Empirical and rational protein engineering leads to enhanced allosteric linkage between ligand binding and chromophore rearrangement; modifications predicted to decrease chromophore rotational averaging enhance the signal change, emphasizing the importance of the rotational freedom parameter kappa2 to FRET efficiency. Tighter allosteric linkage of the PBP and the fluorophores by linker truncation or by insertion of chromophores into the binding protein at rationally designed sites gave rise to sensors with improved signal change. High-response sensors were obtained with fluorescent proteins attached to the same binding PBP lobe, suggesting that indirect allosteric regulation during the hinge-bending motion is sufficient to give rise to a FRET response. The optimization of sensors for glucose and glutamate, ligands of great clinical interest, provides a general framework for the manipulation of ligand-dependent allosteric signal transduction mechanisms.  相似文献   

14.
SCAT3 is a fluorescence resonance energy transfer (FRET)-based indicator for activity of caspase-3, which is composed of an enhanced cyan fluorescent protein, a caspase-3-sensitive linker, and an enhanced yellow fluorescent protein with efficient maturation property (Venus). Despite its considerable promise, however, greater responsivity of fluorescence to the proteolysis has been desired for better understanding of spatio-temporal pattern of the activation of caspase-3 during apoptosis. In the present study, the length of linker regions of SCAT3 has been thoroughly optimized by use of a PCR technique. The bacterial colonies expressing the constructs were screened for high FRET efficiency using our home-made fluorescence image analyzer. The FRET signal of an improved SCAT3 changed by about tenfold during apoptotic events in mammalian cells, enabling visualization of caspase-3 activation with better spatial resolution than before. This new high-throughput method will be applicable to development and improvement of FRET-based indicators for proteolysis.  相似文献   

15.
16.
Reversible posttranslational modifications of proteins with ubiquitin or ubiquitin-like proteins (Ubls) are widely used to dynamically regulate protein activity and have diverse roles in many biological processes. For example, SUMO covalently modifies a large number or proteins with important roles in many cellular processes, including cell-cycle regulation, cell survival and death, DNA damage response, and stress response 1-5. SENP, as SUMO-specific protease, functions as an endopeptidase in the maturation of SUMO precursors or as an isopeptidase to remove SUMO from its target proteins and refresh the SUMOylation cycle 1,3,6,7.The catalytic efficiency or specificity of an enzyme is best characterized by the ratio of the kinetic constants, kcat/KM. In several studies, the kinetic parameters of SUMO-SENP pairs have been determined by various methods, including polyacrylamide gel-based western-blot, radioactive-labeled substrate, fluorescent compound or protein labeled substrate 8-13. However, the polyacrylamide-gel-based techniques, which used the "native" proteins but are laborious and technically demanding, that do not readily lend themselves to detailed quantitative analysis. The obtained kcat/KM from studies using tetrapeptides or proteins with an ACC (7-amino-4-carbamoylmetylcoumarin) or AMC (7-amino-4-methylcoumarin) fluorophore were either up to two orders of magnitude lower than the natural substrates or cannot clearly differentiate the iso- and endopeptidase activities of SENPs.Recently, FRET-based protease assays were used to study the deubiquitinating enzymes (DUBs) or SENPs with the FRET pair of cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) 9,10,14,15. The ratio of acceptor emission to donor emission was used as the quantitative parameter for FRET signal monitor for protease activity determination. However, this method ignored signal cross-contaminations at the acceptor and donor emission wavelengths by acceptor and donor self-fluorescence and thus was not accurate.We developed a novel highly sensitive and quantitative FRET-based protease assay for determining the kinetic parameters of pre-SUMO1 maturation by SENP1. An engineered FRET pair CyPet and YPet with significantly improved FRET efficiency and fluorescence quantum yield, were used to generate the CyPet-(pre-SUMO1)-YPet substrate 16. We differentiated and quantified absolute fluorescence signals contributed by the donor and acceptor and FRET at the acceptor and emission wavelengths, respectively. The value of kcat/KM was obtained as (3.2 ± 0.55) x107 M-1s-1 of SENP1 toward pre-SUMO1, which is in agreement with general enzymatic kinetic parameters. Therefore, this methodology is valid and can be used as a general approach to characterize other proteases as well.  相似文献   

17.
Fluorescence resonance energy transfer (FRET) between fluorescent proteins is a powerful tool for visualization of signal transduction in living cells, and recently, some strategies for imaging of dual FRET pairs in a single cell have been reported. However, these necessitate alteration of excitation light between two different wavelengths to avoid the spectral overlap, resulting in sequential detection with a lag time. Thus, to follow fast signal dynamics or signal changes in highly motile cells, a single-excitation dual-FRET method should be required. Here we reported this by using four-color imaging with a single excitation light and subsequent linear unmixing to distinguish fluorescent proteins. We constructed new FRET sensors with Sapphire/RFP to combine with CFP/YFP, and accomplished simultaneous imaging of cAMP and cGMP in single cells. We confirmed that signal amplitude of our dual FRET measurement is comparable to of conventional single FRET measurement. Finally, we demonstrated to monitor both intracellular Ca2+ and cAMP in highly motile cardiac myocytes. To cancel out artifacts caused by the movement of the cell, this method expands the applicability of the combined use of dual FRET sensors for cell samples with high motility.  相似文献   

18.
The study of protein interactions in living cells is an important area of research because the information accumulated both benefits industrial applications as well as increases basic fundamental biological knowledge. Förster (Fluorescence) Resonance Energy Transfer (FRET) between a donor molecule in an electronically excited state and a nearby acceptor molecule has been frequently utilized for studies of protein-protein interactions in living cells. The proteins of interest are tagged with two different types of fluorescent probes and expressed in biological cells. The fluorescent probes are then excited, typically using laser light, and the spectral properties of the fluorescence emission emanating from the fluorescent probes is collected and analyzed. Information regarding the degree of the protein interactions is embedded in the spectral emission data. Typically, the cell must be scanned a number of times in order to accumulate enough spectral information to accurately quantify the extent of the protein interactions for each region of interest within the cell. However, the molecular composition of these regions may change during the course of the acquisition process, limiting the spatial determination of the quantitative values of the apparent FRET efficiencies to an average over entire cells. By means of a spectrally resolved two-photon microscope, we are able to obtain a full set of spectrally resolved images after only one complete excitation scan of the sample of interest. From this pixel-level spectral data, a map of FRET efficiencies throughout the cell is calculated. By applying a simple theory of FRET in oligomeric complexes to the experimentally obtained distribution of FRET efficiencies throughout the cell, a single spectrally resolved scan reveals stoichiometric and structural information about the oligomer complex under study. Here we describe the procedure of preparing biological cells (the yeast Saccharomyces cerevisiae) expressing membrane receptors (sterile 2 α-factor receptors) tagged with two different types of fluorescent probes. Furthermore, we illustrate critical factors involved in collecting fluorescence data using the spectrally resolved two-photon microscopy imaging system. The use of this protocol may be extended to study any type of protein which can be expressed in a living cell with a fluorescent marker attached to it.Download video file.(90M, mov)  相似文献   

19.
Fluorescence Resonance Energy Transfer (FRET) using fluorescent protein variants is widely used to study biochemical processes in living cells. FRET detection by fluorescence lifetime measurements is the most direct and robust method to measure FRET. The traditional cyan-yellow fluorescent protein based FRET pairs are getting replaced by green-red fluorescent protein variants. The green-red pair enables excitation at a longer wavelength which reduces cellular autofluorescence and phototoxicity while monitoring FRET. Despite the advances in FRET based sensors, the low FRET efficiency and dynamic range still complicates their use in cell biology and high throughput screening. In this paper, we utilized the higher lifetime of NowGFP and screened red fluorescent protein variants to develop FRET pairs with high dynamic range and FRET efficiency. The FRET variations were analyzed by proteolytic activity and detected by steady-state and time-resolved measurements. Based on the results, NowGFP-tdTomato and NowGFP-mRuby2 have shown high potentials as FRET pairs with large fluorescence lifetime dynamic range. The in vitro measurements revealed that the NowGFP-tdTomato has the highest Förster radius for any fluorescent protein based FRET pairs yet used in biological studies. The developed FRET pairs will be useful for designing FRET based sensors and studies employing Fluorescence Lifetime Imaging Microscopy (FLIM).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号