首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hibernation is a strategy used by some mammals to survive a cold winter. Small hibernating mammals, such as squirrels and hamsters, use species- and tissue-specific antioxidant defenses to cope with oxidative insults during hibernation. Little is known about antioxidant responses and their regulatory mechanisms in hibernating bats. We found that the total level of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the brain of each of the two distantly related hibernating bats M. ricketti and R. ferrumequinum at arousal was lower than that at torpid or active state. We also found that the levels of malondialdehyde (product of lipid peroxidation) of the two hibernating species of bats were significantly lower than those of non-hibernating bats R. leschenaultia and C. sphinx. This observation suggests that bats maintain a basal level of ROS/RNS that does no harm to the brain during hibernation. Results of Western blotting showed that hibernating bats expressed higher amounts of antioxidant proteins than non-hibernating bats and that M. ricketti bats upregulated the expression of some enzymes to overcome oxidative stresses, such as superoxide dismutase, glutathione reductase, and catalase. In contrast, R. ferrumequinum bats maintained a relatively high level of superoxide dismutase 2, glutathione reductase, and thioredoxin-2 throughout the three different states of hibernation cycles. The levels of glutathione (GSH) were higher in M. ricketti bats than in R. ferrumequinum bats and were significantly elevated in R. ferrumequinum bats after torpor. These data suggest that M. ricketti bats use mainly antioxidant enzymes and R. ferrumequinum bats rely on both enzymes and low molecular weight antioxidants (e.g., glutathione) to avoid oxidative stresses during arousal. Furthermore, Nrf2 and FOXOs play major roles in the regulation of antioxidant defenses in the brains of bats during hibernation. Our study revealed strategies used by bats against oxidative insults during hibernation.  相似文献   

2.
SYNOPSIS. Phenylalanine hydroxylase could not be assayed in extracts of Tetrahymena pyriformis strain W in a system by which the enzyme could be assayed in rat liver extracts. Isotopically labelled phenylalanine, however, was converted to tyrosine by growing or washed cells. Growth conditions which allowed limited synthesis of unconjugated tetrahydropteridine severely reduced the ability of the cells to synthesize tyrosine from phenylalanine. The presence of glucose and acetate in the growth medium resulted in elevated free tyrosine pools and an increased capacity of washed cell suspensions to convert phenylalanine to tyrosine. It would appear that the putative phenylalanine hydroxylation system is not subject to the repressive effects of glucose and acetate which apply to the enzymes of tyrosine catabolism. The significance of this distinction is discussed.  相似文献   

3.
4.
Reduction of dopamine concentrations in the brains of patients with Parkinsonism, together with reported clinical improvement after the administration of dihydroxyphenylalanine, has led to the hypothesis that impaired hydroxylation of tyrosine may be associated with the disease. To test this hypothesis oral loading tests with L-phenylalanine and tyrosine were carried out in patients and controls. After phenylalanine lower blood levels of this were found in Parkinsonian patients than in controls, but tyrosine levels were the same. After tyrosine lower levels of this were also found in patients compared with controls. It is suggested that these findings indicate a decreased rate of tyrosine utilization in Parkinson''s disease together with intestinal malabsorption; the latter is supported by the finding of abnormal D-xylose tolerance in these patients.  相似文献   

5.
6.
The enzyme activities specified by the tyrA and pheA genes were studied in wildtype strain Salmonella typhimurium and in phenylalanine and tyrosine auxotrophs. As in Aerobacter aerogenes and Escherichia coli, the wild-type enzymes of Salmonella catalyze two consecutive reactions: chorismate --> prephenate --> 4-hydroxy-phenylpyruvate (tyrA), and chorismate --> prephenate --> phenylpyruvate (pheA). A group of tyrA mutants capable of interallelic complementation had altered enzymes which retained chorismate mutase T activity but lacked prephenate dehydrogenase. Similarly, pheA mutants (in which interallelic complementation does not occur) had one group with altered enzymes which retained chorismate mutase P but lacked prephenate dehydratase. Tyrosine and phenylalanine auxotrophs outside of these categories showed loss of both activities of their respective bifunctional enzyme. TyrA mutants which had mutase T were considerably derepressed in this activity by tyrosine starvation and consequently excreted prephenate. A new and specific procedure was developed for assaying prephenate dehydrogenase activity.  相似文献   

7.
8.
Glucose (Glc) starvation of suspension-cultured carrot (Daucus carota L.) cells resulted in sequential activation of phospholipid catabolic enzymes. Among the assayed enzymes involved in the degradation, phospholipase D (PLD) and lipolytic acyl hydrolase were activated at the early part of starvation, and these activities were followed by β-oxidation and the glyoxylate cycle enzymes in order. The activity of PLD and lipolytic acyl hydrolase was further confirmed by in vivo-labeling experiments. It was demonstrated that Glc added to a medium containing starving cells inhibited the phospholipid catabolic activities, indicating that phospholipid catabolism is negatively regulated by Glc. There was a burst of ethylene production 6 h after starvation. Ethylene added exogeneously to a Glc-sufficient medium activated PLD, indicating that ethylene acts as an element in the signal transduction pathway leading from Glc depletion to PLD activation. Activation of lipid peroxidation, suggestive of cell death, occurred immediately after the decrease of the phospholipid degradation, suggesting that the observed phospholipid catabolic pathway is part of the metabolic strategies by which cells effectively survive under Glc starvation.  相似文献   

9.
An l-glucose-utilizing bacterium, Paracoccus sp. 43P, was isolated from soil by enrichment cultivation in a minimal medium containing l-glucose as the sole carbon source. In cell-free extracts from this bacterium, NAD+-dependent l-glucose dehydrogenase was detected as having sole activity toward l-glucose. This enzyme, LgdA, was purified, and the lgdA gene was found to be located in a cluster of putative inositol catabolic genes. LgdA showed similar dehydrogenase activity toward scyllo- and myo-inositols. l-Gluconate dehydrogenase activity was also detected in cell-free extracts, which represents the reaction product of LgdA activity toward l-glucose. Enzyme purification and gene cloning revealed that the corresponding gene resides in a nine-gene cluster, the lgn cluster, which may participate in aldonate incorporation and assimilation. Kinetic and reaction product analysis of each gene product in the cluster indicated that they sequentially metabolize l-gluconate to glycolytic intermediates, d-glyceraldehyde-3-phosphate, and pyruvate through reactions of C-5 epimerization by dehydrogenase/reductase, dehydration, phosphorylation, and aldolase reaction, using a pathway similar to l-galactonate catabolism in Escherichia coli. Gene disruption studies indicated that the identified genes are responsible for l-glucose catabolism.  相似文献   

10.
Corynebacterium glutamicum grew on resorcinol as a sole source of carbon and energy. By genome-wide data mining, two gene clusters, designated NCgl1110-NCgl1113 and NCgl2950-NCgl2953, were proposed to encode putative proteins involved in resorcinol catabolism. Deletion of the NCgl2950-NCgl2953 gene cluster did not result in any observable phenotype changes. Disruption and complementation of each gene at NCgl1110-NCgl1113, NCgl2951, and NCgl2952 indicated that these genes were involved in resorcinol degradation. Expression of NCgl1112, NCgl1113, and NCgl2951 in Escherichia coli revealed that NCgl1113 and NCgl2951 both coded for hydroxyquinol 1,2-dioxygenases and NCgl1112 coded for maleylacetate reductases. NCgl1111 encoded a putative monooxygenase, but this putative hydroxylase was very different from previously functionally identified hydroxylases. Cloning and expression of NCgl1111 in E. coli revealed that NCgl1111 encoded a resorcinol hydroxylase that needs NADPH as a cofactor. E. coli cells containing Ncgl1111 and Ncgl1113 sequentially converted resorcinol into maleylacetate. NCgl1110 and NCgl2950 both encoded putative TetR family repressors, but only NCgl1110 was transcribed and functional. NCgl2953 encoded a putative transporter, but disruption of this gene did not affect resorcinol degradation by C. glutamicum. The function of NCgl2953 remains unclear.  相似文献   

11.
Phenethyl alcohol inhibits the growth of many microorganisms. It is believed that the growth inhibition is mediated by its effect on the cell membrane. Differences between sensitive and resistant strains are suggested to be due to alterations in membrane structure. We report that, in some strains, an unexpected relationship exists between auxotrophy for tryptophan, tyrosine and phenylalanine and sensitivity to phenethyl alcohol.  相似文献   

12.
Site-directed mutagenesis experiments on all the conserved residues of Phe and Tyr in all the known squalene-hopene cyclases (SHCs) were carried out to identify the active site residues of thermophilic Alicyclobacillus acidocaldarius SHC. The following functions are proposed on the basis of kinetic data and trapping of the prematurely cyclized products: (1) The Y495 residue probably amplifies the D376 acidity, which is assumed to work as a proton donor for initiating the polycyclization cascade, but its role is moderate. (2) Y609 possibly assists the function of F365, which has previously been assigned to exclusively stabilize the C-8 carbocation intermediate through cation-π interaction. The Y609A mutant produced a partially cyclized bicyclic triterpene. (3) Y612 works to stabilize both the C10 and C8 carbocations, this being verified by the finding that mono- and bicyclic products were formed with the Y612A mutant. (4) F129 was first identified to play a crucial role in catalysis. (5) The three redsidues, Y372, Y474 and Y540, are responsible for reinforcing the protein structure against thermal denaturation, Y474 being located inside QW motif 3.  相似文献   

13.
At present, there are no published data on catabolic pathways of N-heterocyclic compounds, in which all carbon atoms carry a substituent. We identified the genetic locus and characterized key reactions in the aerobic degradation of tetramethylpyrazine in Rhodococcus jostii strain TMP1. By comparing protein expression profiles, we identified a tetramethylpyrazine-inducible protein of 40 kDa and determined its identity by tandem mass spectrometry (MS-MS) de novo sequencing. Searches against an R. jostii TMP1 genome database allowed the identification of the tetramethylpyrazine-inducible protein-coding gene. The tetramethylpyrazine-inducible gene was located within a 13-kb genome cluster, denominated the tetramethylpyrazine degradation (tpd) locus, that encoded eight proteins involved in tetramethylpyrazine catabolism. The genes from this cluster were cloned and transferred into tetramethylpyrazine-nondegrading Rhodococcus erythropolis strain SQ1. This allowed us to verify the function of the tpd locus, to isolate intermediate metabolites, and to reconstruct the catabolic pathway of tetramethylpyrazine. We report that the degradation of tetramethylpyrazine is a multistep process that includes initial oxidative aromatic-ring cleavage by tetramethylpyrazine oxygenase, TpdAB; subsequent hydrolysis by (Z)-N,N′-(but-2-ene-2,3-diyl)diacetamide hydrolase, TpdC; and further intermediate metabolite reduction by aminoalcohol dehydrogenase, TpdE. Thus, the genes responsible for bacterial degradation of pyrazines have been identified, and intermediate metabolites of tetramethylpyrazine degradation have been isolated for the first time.  相似文献   

14.
THERE is much evidence that catecholamines may act as synaptic transmitters in the mammalian brain1. Enzymatic activities necessary for the synthesis of catecholamines have been located in central neurones1 and it is generally believed that tyrosine hydroxylase2 is the rate limiting enzyme in brain as well as peripheral tissues containing catecholamines3. While it is clear that tyrosine can serve as a precursor of catecholamine synthesis in the brain1, 3, 4, the significance of phenylalanine is problematic. It was believed that the mammalian brain is devoid of enzymatic activity necessary to convert phenylalanine to tyrosine6, 7, while liver is known to be rich in the enzyme phenylalanine hydroxylase8. The earlier attempts to demonstrate hydroxylation of phenylalanine in brain tissue may have been unsuccessful due to methodological problems9. Recent evidence suggests that tyrosine hydroxylase prepared from peripheral sympathetically innervated tissues or from brain can hydroxylate either phenylalanine or tyrosine9. Initially, the rate of hydroxylation of phenylalanine by tyrosine hydroxylase was thought to be as little as 5% that of tyrosine9. It has been found recently, however, that structural variations in the pteridine cofactor present in the incubation mixture lead to striking changes in the ability of partially purified tyrosine hydroxylase from bovine adrenal medulla to hydroxylate phenylalanine10. Thus, tetrahydrobiopterin allowed the hydroxylation of phenylalanine to proceed at least as rapidly as that of tyrosine or faster10. As the structure of the endogenous pteridine cofactor of tyrosine hydroxylase is not known, it is possible that synthesis of catecholamines from phenylalanine as well as tyrosine could occur in intact neuronal tissues. Evidence has been presented that after the injection of large quantities of 14C-phenylalanine into the lateral ventricle of the rat brain, small amounts of labelled tyrosine and traces of newly synthesized catecholamines were detected in brain tissues, giving qualitative evidence that catecholamines may be synthesized in brain from phenylalanine in vivo11.  相似文献   

15.
目的:改造大肠杆菌苯丙氨酸生物合成的中心代谢途径,优化关键酶基因pheA、aroF、ppsA、tktA的协同表达,进一步提高苯丙氨酸产量。方法:构建重组质粒pZE12-AFPT,鉴定后通过SDS-PAGE观察其蛋白表达量,并转入缺陷菌大肠杆菌MGΔ中构建工程菌,发酵培养后测量苯丙氨酸产量,与本室保存的重组质粒MGΔpZE12-AF做对比;构建重组质粒pZE21-AF和pZA31-PT,将后者转入感受态pZE12-AF和pZE21-AF中,得到双抗性质粒,并比较转化前后苯丙氨酸的产量。结果:工程菌MGΔpZE12-AFPT的苯丙氨酸产量比对照菌株MGΔpZE12-AF提高了近1.6倍,并且实现了4个串联基因的协同表达;质粒pZA31-PT转入pZE12-AF和pZE21-AF后,苯丙氨酸产量比原质粒pZE12-AF和pZE21-AF分别提高了近0.6倍和2.8倍。结论:实现了4个关键酶基因的串联表达,改造了苯丙氨酸的生物合成途径,使得苯丙氨酸产量有所提高,为进一步得到其高产菌株奠定了基础。  相似文献   

16.
Both phenylalanine ammonia lyase and tyrosine ammonia lyase were detected in tobacco (Nicotiana tabacum L. Wisconsin 38) callus. The enzymes were separated from each other by Sephadex G-200 column chromatography. Increased activity of tyrosine ammonia lyase was observed during culture of tobacco callus under shoot-forming conditions, while activity of phenylalanine ammonia lyase increased during culture under non-organ-forming conditions. Confirmation of these findings was obtained by examining the incorporation of [14C]tyrosine and [14C]phenylalanine into p-coumarate and trans-cinnamate, respectively.  相似文献   

17.
18.
  1. Download : Download high-res image (217KB)
  2. Download : Download full-size image
  相似文献   

19.
The aromatic amino acids are synthesized via a common biosynthetic pathway. A tryptophan-producing mutant of Corynebacterium glutamicum was genetically engineered to produce tyrosine or phenylalanine in abundance. To achieve this, three biosynthetic genes encoding the first enzyme in the common pathway, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DS), and the branch-point enzymes chorismate mutase and prephenate dehydratase were individually cloned from regulatory mutants of C. glutamicum which have either of the corresponding enzymes desensitized to end product inhibition. These cloned genes were assembled one after another onto a multicopy vector of C. glutamicum to yield two recombinant plasmids. One plasmid, designated pKY1, contains the DS and chorismate mutase genes, and the other, designated pKF1, contains all three biosynthetic genes. The enzymes specified by both plasmids were simultaneously overexpressed approximately sevenfold relative to the chromosomally encoded enzymes in a C. glutamicum strain. When transformed with pKY1 or pKF1, tryptophan-producing C. glutamicum KY10865, with the ability to produce 18 g of tryptophan per liter, was altered to produce a large amount of tyrosine (26 g/liter) or phenylalanine (28 g/liter), respectively, because the accelerated carbon flow through the common pathway was redirected to tyrosine or phenylalanine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号