首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sun J 《生理学报》2007,59(5):544-552
一氧化氮(nitricoxide,NO)作为一种重要的信使分子参与缺血预适应(ischemic preconditioning,IPC)心肌保护。目前普遍认为NO通过经典的NO/cGMP依赖的信号转导途径调节线粒体ATP敏感性钾(ATP-sensitive potassium,KATP通道来发挥其保护作用,然而越来越多的数据表明NO还可能通过蛋白质巯基亚硝基化(S-nitrosylation)来发挥生理功能。蛋白质巯基亚硝基化,即蛋白质半胱氨酸巯基与NO基团形成共价键,是一种氧化还原依赖的蛋白质翻译后可逆修饰。蛋白质巯基亚硝基化不仅可以改变蛋白质的结构和功能,而且还可以阻抑目标半胱氨酸的进一步氧化修饰。IPC增加S-亚硝基硫醇(S-nitrosothi01)含量,引起蛋白质巯基亚硝基化。S-亚硝基硫醇还能发挥药理性预适应作用,抵抗心肌缺血,再灌注损伤。因此,蛋白质巯基亚硝基化是IPC心肌保护的一种重要途径,参与抵抗细胞内氧化应激和亚硝化应激(nitrosative stress)。  相似文献   

2.
Previously we reported that mice infected recurrently with live Fusobacterium nucleatum(Fn) synthesize a significant amount of NO between 12 hr and 24 hr after Fn injection. Fn is a gram-negative rod periodontal pathogen. NO could not be induced by heat-killed Fn or in untreated mice. This NO, derived from the iNOS after infection of live Fn, was not involved in the Fn reduction because Fn clearance occurs within 6 hr. We investigated in this study whether this NO was involved in cytotoxicity in peritoneal exudate cells (PEC) in vivo. The mice were divided into two groups: those treated with live Fn (immune) and those left untreated (normal). PEC number, NO production, detection of apoptosis or death cells, and lactate dehydrogenase (LDH) release activity after injection of live Fn were compared in these groups. In the immune group, the increase of the total cell numbers caused by an increase in neutrophils, a significant NO production only after injection of live Fn at 24 hr and identification of iNOS positive macrophages were confirmed. The apoptotic rate was very low and did not increase at 24 hr in vivo. Therefore, apoptosis was seldom relevant to the NO. In the immune group, LDH activity was remarkable high at 24 hr, and dead cells and macrophages phagocytizing cell fragments increased at the same time. Pretreatment of L NMMA, an inhibitor of iNOS, suppressed LDH activity and cell death. Therefore, the NO derived from the iNOS is involved in the cytotoxicity. These results suggest that NO may contribute to the inflammatory response during Fn infection in periodontitis.  相似文献   

3.
Rhodanese (EC 2.8.1.1.) from bovine liver contains four reduced cysteine groups. The –SH group of cysteine 247, located in a rhodanese active centre, transfers sulfane sulfur in a form of hydrosulfide (–S–SH) from appropriate donors to nucleophilic acceptors. We aimed to discover whether S-nitrosylation of critical cysteine groups in rhodanese can inhibit activity of the enzyme by covalent modification of –SH groups.

The inhibition of rhodanese activity was studied with the use of a number of nitric oxide (NO) donors. We have successfully confirmed using several methods that the inhibition of rhodanese activity is a result of the formation of stable S-nitrosorhodanese.

Low molecular weight NO donors, such as S-nitroso-N-acetylpenicillamine (SNAP) and S-nitrosoglutathione (GSNO), inactivate rhodanese and are much more effective in this regard (100% inhibition at 2.5 mM) than such known inhibitors of this enzyme, as N-ethylmaleimide (NEM) (25 mM < 50%) or sulfates(IV) (90% inhibition at 5 mM). On the other hand, sodium nitroprusside (SNP) and nitrites inhibit rhodanese activity only in the presence of thiols, which suggests that S-nitrosothiols (RSNO) also have to participate in this reaction in this case.

A demonstration that rhodanese activity can be inhibited as a result of S-nitrosylation suggests the possible mechanism by which nitric oxide may regulate sulfane sulfur transport to different acceptors.  相似文献   


4.
He J  Wang T  Wang P  Han P  Yin Q  Chen C 《Journal of neurochemistry》2007,102(6):1863-1874
The susceptibility of neuronal cells to nitric oxide (NO) is a key issue in NO-mediated neurotoxicity. However, the underlying mechanism remains unclear. As a cyclic guanosine monophosphate (cGMP)-independent NO signaling pathway, S -nitrosylation (or S -nitrosation) has been suggested to occur as a post-translational modification in parallel with O-phosphorylation. The underlying mechanism of the involvement of protein S -nitrosylation in the susceptibility of neuronal cells to NO has been little investigated. In this study, we focused on the role of S -nitrosothiols (RSNO) in the susceptibility of a cerebellar cell line R2 to NO. Our results showed the following: (i) S -nitrosoglutathione (GSNO) induced a burst of RSNO in GSH-depleted R2 cells, the majority of which were primarily contributed by the S -nitrosylation of proteins (Pro-SNOs), and was followed by severe neuronal necrosis; (ii) the elevation in the level of Pro-SNOs resulted from a dysfunction of S -nitroglutathione reductase (GSNOR) as a result of its substrate, GSNO, being unavailable in GSH-depleted cells. In the meantime, the suppression of GSNOR increased NO-mediated neurotoxicity in R2 cells, as well as in cerebellar granule neurons; (iii) Our results also demonstrate that the burst of RSNO is the "checkpoint" of cell fate: if RSNO can be reduced to free thiol proteins, cells will survive; if they are further oxidized, cells will die; and (iv) GSH-ethyl ester and Vitamin C protected R2 cells against GSNO neurotoxicity through two distinct mechanisms: by inhibiting the elevation of Pro-SNOs and by reducing Pro-SNOs to free thiol proteins, respectively. A novel mechanism underlying the susceptibility of neuronal cells to NO is proposed and some potential strategies to prevent the NO-mediated neurotoxicity are discussed.  相似文献   

5.
Abstract

Snitric oxide plays important roles in protein S-nitrosylation, in which thionitroxide (RSNHO) may serve as a signal at the cysteine site. Car-Parrinello metadynamics method was employed to investigate the possible fate of thionitroxide (S-nitroxide) in S-nitrosylation, focusing on S–N decomposition that leads to HNO, NO and even thiyl radical. As a result, the lowest-energy pathway from thiol towards S-nitrosothiol via thionitroxide was predicted to be feasible in a form of RSH + 2 NO? = RSNO + HNO. This equilibrium for the chemical modification was likely controlled by surrounding environment, that is, by aqueous solution and methanol in this simulation, and probably by dynamic structure of polar residues in S-nitrosylated protein. This work implied that the general importance of the temporal and spatial transformation of allosteric effect in a predictive modelling of protein post-translational modification could be briefly attested with the artificially intelligent CPMD algorithm.  相似文献   

6.
目的:探讨神经元型一氧化氮合酶(nNOS)催化产生的一氧化氮(NO)在Ⅱ组代谢型谷氨酸受体(mGluR2/3)介导的脑缺血预处理(CIP)保护机制中的作用。方法:36只永久凝闭椎动脉的SD大鼠随机分为6组(n=6):sham、CIP、损伤性缺血、CIP4-损伤性缺血、MqPG+CIP和MTPG+CIP+损伤性缺血组。采用硫堇染色和免疫组化观察海马CA1区迟发性神经元死亡(DND)和nNOS表达的变化。结果:与Sham组相比,CIP组海马nNOS表达出现一定程度的上调,而损伤性脑缺血组则出现nNOS表达的明显上调,预先给与CIP可一定程度上防止损伤性脑缺血所致的nNOS表达的过度升高。在MTPG4-CIP组,预先侧脑室注射mGluR2/3阻断剂MTPG,可阻断CIP引起的nNOS表达增加,但对神经元的存活无影响。而在MTPG+CIP+损伤性缺血组中,出现大量锥体神经元DND,同时nNOS的表达较MTPG+CIP组明显增加,该增加为损伤性脑缺血所致,而非MTPG的作用。结论:nNOS催化产生的NO作为mGluR2/3的下游分子参与脑缺血预处理过程中mGluR2/3介导的脑缺血耐受的形成。  相似文献   

7.
Hypoxia results in generation of nitric oxide (NO) free radicals, activation of caspase-3, and genomic DNA fragmentation. The present study tests the hypothesis that hypoxia-induced caspase-3 activation and DNA fragmentation are nitric oxide mediated. Studies were conducted in newborn piglets, divided into normoxic (n = 5), hypoxic (n = 5), and hypoxic-7-NINA (n = 6). Hypoxic-7-NINA group received the neuronal nitric oxide synthase inhibitor, 7-Nitroindazole (7-NINA). Caspase-3 activity was determined spectrofluorometrically using enzyme-specific substrates. Sections from the neocortex were stained with an antiserum recognizing active caspase-3. Purified DNA was separated by gel electrophoresis. Administration of 7-NINA resulted in decreased immunoreactivity of caspase-3 (mean LI: 20.2%) as compared to the untreated hypoxia group (mean LI: 57.5%) (P < 0.05). 7-NINA attenuated caspase-3 enzymatic activity as well in comparison to the untreated hypoxia group (P < 0.05). Furthermore, multiple low molecular weight bands corresponding to DNA fragments were present in the hypoxic but not in the normoxic or hypoxic-7-NINA groups. Inhibition of nNOS abates the hypoxia-induced increase in active caspase-3 immunoreactivity, as well as enzymatic activity in cortical neurons, and DNA fragmentation in brain homogenates. We conclude that the coordinate increase of capase-3 activity and fragmentation of nuclear DNA in the hypoxic newborn piglet brain are NO mediated.  相似文献   

8.
Xia CF  Huo Y  Xue L  Zhu GY  Tang CS 《生理学报》2001,53(6):431-434
为探讨抗炎因子--白细胞介素-10(IL-10)对大鼠主动脉一氧化氮(NO)/一氧化氮合酶(NOS)系统的影响,应用Griess试剂、^3H-瓜氨酸生成及蛋白免疫印迹杂交等方法,测定IL-10孵育对血管NO释放、NOS活性及表达的影响。结果发现细菌脂多糖(LPS)呈浓度领带性地激活诱导型NOS(iNOS),促进NO生成。IL-10(10^-10-10^-8g/ml)呈浓度依赖性地上调内皮型NOS(eNOS)蛋白表达及其活性,但对iNOS活性及表达无明显影响,IL-10(10^-9-10^-8g/ml)显著抑制10μg/ml LPS诱导的NO生成和iNOS激活;而高浓度IL-10(10^-7g/ml)则上调iNOS的活性,对eNOS蛋白的表达知活性无明显影响。因此IL-10对NO/NOS系统具有双重影响,一方面可抑制炎症介质诱发的作为炎性物质的iNOS的表达及激活,另一方面可上调内皮源扩血管物质NO的释放。  相似文献   

9.
10.
Sepsis is one of the leading causes of acute kidney injury (AKI), and several mechanisms including microcirculatory alterations, oxidative stress, and endothelial cell dysfunction are involved. Nitric oxide (NO) is one of the common elements to all these mechanisms. Although all three nitric oxide synthase (NOS) isoforms are constitutively expressed within the kidneys, they contribute in different ways to nitrergic signaling. While the endothelial (eNOS) and neuronal (nNOS) isoforms are likely to be the main sources of NO under basal conditions and participate in the regulation of renal hemodynamics, the inducible isoform (iNOS) is dramatically increased in conditions such as sepsis. The overexpression of iNOS in the renal cortex causes a shunting of blood to this region, with consequent medullary ischemia in sepsis. Differences in the vascular reactivity among different vascular beds may also help to explain renal failure in this condition. While most of the vessels present vasoplegia and do not respond to vasoconstrictors, renal microcirculation behaves differently from nonrenal vascular beds, displaying similar constrictor responses in control and septic conditions. The selective inhibition of iNOS, without affecting other isoforms, has been described as the ideal scenario. However, iNOS is also constitutively expressed in the kidneys and the NO produced by this isoform is important for immune defense. In this sense, instead of a direct iNOS inhibition, targeting the NO effectors such as guanylate cyclase, potassium channels, peroxynitrite, and S-nitrosothiols, may be a more interesting approach in sepsis-AKI and further investigation is warranted.  相似文献   

11.
12.
Paraquat (PQ) is a well-known pneumotoxicant that exerts its toxic effect by elevating intracellular levels of superoxide. In addition, production of pro-inflammatory cytokines has possibly been linked to PQ-induced inflammatory processes through reactive oxygen species (ROSs) and nitric oxide (NO). However, the role of NO in PQ-induced cell injury has been controversial. To explore this problem, we examined the effect of NO on A549 cells by exposing them to the exogenous NO donor NOC18 or to cytokines; tumor necrosis factor-α, interleukin-1 β and interferon-γ, as well as PQ. Although the exogenous NO donor on its own had no effect on the release of lactate dehydrogenase (LDH), remarkable release was observed when the cells were exposed to high concentrations of NOC18 and PQ. This cellular damage caused by 1 mM NOC18 plus 0.2 mM PQ was ascertained by phase contrast microscopy. On the other hand, NO derived from 25–50 μM NOC18 added into the medium improved the MTT reduction activity of mitochondria, suggesting a beneficial effect of NO on the cells. Incubation of A549 cells with cytokines increased in inducible NO synthase (iNOS) expression and nitrite accumulation, resulting in LDH release. PQ further potentiated this release. The increase in nitrite levels could be completely prevented by NOS inhibitors, while the leakage of LDH was not attenuated by the inhibition of NO production with them. On the other hand, ROS scavenging enzymes, superoxide dismutase and catalase, inhibited the leakage of LDH, whereas they had no effect on the increase in the nitrite level. These results indicate that superoxide, not NO, played a key role in the cellular damage caused by PQ/cytokines. Our in vitro models demonstrate that NO has both beneficial and deleterious actions, depending on the concentrations produced and model system used.  相似文献   

13.
The role of nitric oxide in cancer   总被引:4,自引:0,他引:4  
Nitric oxide (NO) is a pleiotropic regulator, critical to numerous biological processes, including va-sodilatation, neurotransmission and macrophage-mediated immunity. The family of nitric oxide synthases (NOS) comprises inducible NOS (iNOS), endothelial NOS (eNOS), and neuronal NOS (nNOS). Interestingly, various studies have shown that all three isoforms can be involved in promoting or inhibiting the etiology of cancer. NOS activity has been detected in tumour cells of various histogenetic origins and has been associated with tumour grade, proliferation rate and expression of important signaling components associated with cancer development such as the oestrogen receptor. It appears that high levels of NOS expression (for example, generated by activated macrophages) may be cytostatic or cytotoxic for tumor cells, whereas low level activity can have the opposite effect and promote tumour growth. Paradoxically therefore, NO (and related reactive nitrogen species) may have both genotoxic and angiogenic pro  相似文献   

14.
In recent years nitric oxide (NO) has been recognized as an important signal molecule in plants. Both, reductive and oxidative pathways and different subcellular compartments appear involved in NO production. The reductive pathway uses nitrite as substrate, which is exclusively generated by cytosolic nitrate reductase (NR) and can be converted to NO by the same enzyme. The mitochondrial electron transport chain is another site for nitrite to NO reduction, operating specifically when the normal electron acceptor, O2, is low or absent. Under these conditions, the mitochondrial NO production contributes to hypoxic survival by maintaining a minimal ATP formation. In contrast, excessive NO production and concomitant nitrosative stress may be prevented by the operation of NO-scavenging mechanisms in mitochondria and cytosol. During pathogen attacks, mitochondrial NO serves as a nitrosylating agent promoting cell death; whereas in symbiotic interactions as in root nodules, the turnover of mitochondrial NO helps in improving the energy status similarly as under hypoxia/anoxia. The contribution of NO turnover during pathogen defense, symbiosis and hypoxic stress is discussed in detail.  相似文献   

15.
BACKGROUND: Class 1 haemoglobins (Hbs) are induced in plant cells under hypoxic conditions. They have a high affinity for oxygen, which is two orders of magnitude lower than that of cytochrome oxidase, permitting the utilization of oxygen by the molecule at extremely low oxygen concentrations. Their presence reduces the levels of nitric oxide (NO) that is produced from nitrate ion during hypoxia and improves the redox and energy status of the hypoxic cell. SCOPE: The mechanism by which Hb interacts with NO under hypoxic conditions in plants is examined, and the effects of Hb expression on metabolism and signal transduction are discussed. CONCLUSIONS: The accumulated evidence suggests that a metabolic pathway involving NO and Hb provides an alternative type of respiration to mitochondrial electron transport under limited oxygen. Hb in hypoxic plants acts as part of a soluble, terminal, NO dioxygenase system, yielding nitrate ion from the reaction of oxyHb with NO. NO is mainly formed due to anaerobic accumulation of nitrite. The overall reaction sequence, referred to as the Hb/NO cycle, consumes NADH and maintains ATP levels via an as yet unknown mechanism. Hb gene expression appears to influence signal transduction pathways, possibly through its effect on NO, as evidenced by phenotypic changes in normoxic Hb-varying transgenic plants. Ethylene levels are elevated when Hb gene expression is suppressed, which could be a factor leading to root aerenchyma formation during hypoxic stress.  相似文献   

16.
Nitric oxide (NO) is a pleiotropic regulator, critical to numerous biological processes, including va-sodilatation, neurotransmission and macrophage-mediated immunity. The family of nitric oxide synthases(NOS) comprises inducible NOS (iNOS), endothelial NOS (eNOS), and neuronal NOS (nNOS). Interest-ingly, various studies have shown that all three isoforms can be involved in promoting or inhibiting theetiology of cancer. NOS activity has been detected in tumour cells of various histogenetic origins and hasbeen associated with tumour grade, proliferation rate and expression of important signaling componentsassociated with cancer development such as the oestrogen receptor. It appears that high levels of NOSexpression (for example, generated by activated macrophages) may be cytostatic or cytotoxic for tumorcells, whereas low level activity can have the opposite effect and promote tumour growth. Paradoxicallytherefore, NO (and related reactive nitrogen species) may have both genotoxic and angiogenic properties.Increased NO-generation in a cell may select mutant p53 cells and contribute to tumour angiogenesis byupregulating VEGF. In addition, NO may modulate tumour DNA repair mechanisms by upregulating p53,poly(ADP-ribose) polymerase (PARP) and the DNA-dependent protein kinase (DNA-PK). An understand-ing at the molecular level of the role of NO in cancer will have profound therapeutic implications for thediagnosis and treatment of disease.  相似文献   

17.
Nitrosyl ruthenium complexes have been characterized as nitric oxide (NO) donors that induce relaxation in the denuded rat aorta. There are some differences in their vascular relaxation mechanisms compared with sodium nitroprusside. This study investigates whether the endothelium could interfere with the [Ru(terpy)(bdq)NO]3+-TERPY-induced vascular relaxation, by analyzing the maximal relaxation (Emax) and potency (pD2) of TERPY. Vascular reactivity experiments showed that the endothelium negatively modulates (pD2: 6.17 ± 0.07) the TERPY relaxation in intact rat aortic rings compared with the denuded rat aorta (pD2: 6.65 ± 0.07). This effect is abolished by a non-selective NO-synthase (NOS) inhibitor L-NAME (pD2: 6.46 ± 0.10), by the superoxide anion () scavenger TIRON (pD2: 6.49 ± 0.08), and by an NOS cofactor BH4 (pD2: 6.80 ± 0.10). The selective dye for (DHE) shows that TERPY enhances concentration in isolated endothelial cells (intensity of fluorescence (IF):11258.00 ± 317.75) compared with the basal concentration (IF: 7760.67 ± 381.50), and this enhancement is blocked by L-NAME (IF: 8892.33 ± 1074.41). Similar results were observed in vascular smooth muscle cells (concentration of superoxide after TERPY: 2.63 ± 0.17% and after TERPY + L-NAME: −4.63 ± 0.14%). Considering that TERPY could induce uncoupling NOS, thus producing , we have also investigated the involvement of prostanoids in the negative modulation of the endothelium. The non-selective cyclooxygenase (COX) inhibitor indomethacin and the selective tromboxane (TXA2) receptor antagonist SQ29548 reduce the effect of the endothelium on TERPY relaxation (pD2 INDO: 6.80 ± 0.17 and SQ29548: 6.85 ± 0.15, respectively). However, a selective prostaglandin F receptor antagonist (AH6809) does not change the endothelium effect. Moreover, TERPY enhances the concentration of TXA2 stable metabolite (TXB2), but this effect is blocked by L-NAME and TIRON. The present findings indicate that TERPY induces uncoupling of eNOS, enhancing concentration. This enhancement in concentration induces COX activation, producing TXA2, which negatively modulates the rat aorta relaxation induced by the NO donor TERPY.  相似文献   

18.
The role of nitric oxide in inflammatory reactions   总被引:3,自引:0,他引:3  
Nitric oxide (NO) was initially described as a physiological mediator of endothelial cell relaxation, an important role in hypotension. NO is an intercellular messenger that has been recognized as one of the most versatile players in the immune system. Cells of the innate immune system--macrophages, neutrophils and natural killer cells--use pattern recognition receptors to recognize the molecular patterns associated with pathogens. Activated macrophages then inhibit pathogen replication by releasing a variety of effector molecules, including NO. In addition to macrophages, a large number of other immune-system cells produce and respond to NO. Thus, NO is important as a toxic defense molecule against infectious organisms. It also regulates the functional activity, growth and death of many immune and inflammatory cell types including macrophages, T lymphocytes, antigen-presenting cells, mast cells, neutrophils and natural killer cells. However, the role of NO in nonspecific and specific immunity in vivo and in immunologically mediated diseases and inflammation is poorly understood. This Minireview will discuss the role of NO in immune response and inflammation, and its mechanisms of action in these processes.  相似文献   

19.
大鼠脑线粒体NOS及L—Arg转运的生化特性   总被引:4,自引:0,他引:4  
Cao J  Wang L  Zhao BL  Chen QT  Qi YF  Tang CS 《生理学报》2001,53(4):261-264
测定分离纯化的大鼠脑线粒体(mitochondria,Mt)L-精氨酸(L-arginine,L-Arg)/一氧化氮合酶(nitricoxidesynthase,NOS)/NO系统,L-Arg转运和NOS的活性。结果显示正常大鼠脑Mt膜上存在高亲和、低转运、可饱和的L-Arg转运体。最大转运速率Vmax为5.87±0.46nmol/mgpro·min  相似文献   

20.
Both adenosine and nitric oxide (NO) are known for their role in sleep homeostasis, with the basal forebrain (BF) wakefulness center as an important site of action. Previously, we reported a cascade of homeostatic events, wherein sleep deprivation (SD) induces the production of inducible nitric oxide synthase (iNOS)-dependent NO in BF, leading to enhanced release of extracellular adenosine. In turn, increased BF adenosine leads to enhanced sleep intensity, as measured by increased non-rapid eye movement sleep EEG delta activity. However, the presence and time course of similar events in cortex has not been studied, although a frontal cortical role for the increase in non-rapid eye movement recovery sleep EEG delta power is known. Accordingly, we performed simultaneous hourly microdialysis sample collection from BF and frontal cortex (FC) during 11 h SD. We observed that both areas showed sequential increases in iNOS and NO, followed by increases in adenosine. BF increases began at 1 h SD, whereas FC increases began at 5 h SD. iNOS and Fos-double labeling indicated that iNOS induction occurred in BF and FC wake-active neurons. These data support the role of BF adenosine and NO in sleep homeostasis and indicate the temporal and spatial sequence of sleep homeostatic cascade for NO and adenosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号