首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The Invasion of Ukraine prompts us to support our Ukranian colleagues but also to keep open communication with the Russian scientists who oppose the war.

In the eyes of the civilized world, Russia has already lost the war: politically, it is becoming ever more isolated; economically as the sanctions take an enormous toll; militarily as the losses of the Russian army mount. In contrast, the courage of Ukrainian people fighting for their independence has united the Western world that is providing enormous support for those Ukrainians who fight the Russian invasion and those who have fled their war‐torn country. Once this war is over, Ukraine will have to heal the wounds of war, reunite families, restore its economy, reestablish infrastructure, and rebuild science and education. Russia will have to restore its dignity and overcome its self‐inflicted isolation.Europe’s unity in condemning Russia’s war of aggression and showing its solidarity with Ukraine has been impressive. This includes not the least welcoming and accommodating millions of refugees. We, the scientific community in Europe, have a moral obligation to help Ukrainian students and colleagues by providing safe space to study and to continue their research. First, European research organizations and funding agencies should develop strategies to support them in the years to come. Second, efforts by EMBO, research funders, universities, and research institutions to support Ukrainian students and scientists are necessary. As a first priority, dedicated and unbureaucratic short‐term scholarship and grant programs are required to accommodate Ukrainian scientists; such programs have been already initiated by many organizations, for example, by EMBO, Volkswagen Stiftung, Max Planck Society, and the ERC among others. These help Ukrainian scientists to stay connected to research and become integrated into the European research landscape. In the long‐term and after the war, this aid should be complemented by funding for research centers of excellence in Ukraine, to which scientists could then return.Even though the priority must be to help Ukrainians, we must also think of students and colleagues in Russia who oppose the war and are affected by the sanctions. As the Iron Curtain closes again, we have to think differently about our ongoing and future collaborations. Although freezing most, if not all, research collaborations with official Russian organizations is justified, it would be a mistake to extend these sanctions to all scientists and students. There is already an exodus of Russian and Belarusian scholars, which will only accelerate in the next months and years, and accepting scientists who ask for political asylum will be beneficial for Europe.The fraction of Russian society in open opposition to the war is, unfortunately, smaller than that officially in support of it. At the beginning of the war, a number of Russian scientists published an open letter on the internet, in which they condemn this war (https://t‐invariant.org/2022/02/we‐are‐against‐war/). They clearly state that "The responsibility for unleashing a new war in Europe lies entirely with Russia. There is no rational justification for this war”, and “demand an immediate halt to all military operations directed against Ukraine". At the same time, other prominent Russian science and education officials signed the “Statement of the Russian Union of University Rectors (Provosts)”, which expressed unwavering support for Russia, its president and its Army and their goal to “to achieve demilitarization and denazification of Ukraine and thus to defend ourselves from the ever‐growing military threat” (https://www.rsr‐online.ru/news/2022‐god/obrashchenie‐rossiyskogo‐soyuza‐rektorov1/).Inevitably, Russian scientists must decide themselves how to live and continue their scientific work under the increasingly tight surveillance of the Kremlin regime. History is repeating itself. Not long ago, during the Cold War, Soviet scientists were largely isolated from the international research community and worked in government‐controlled research. In some fields, no one knew what they were working on or where. However, even in those dark times, courageous individuals such as Andrei Sakharov spoke out against the regime and tried to educate the next generation about the importance of free will. Many Soviet geneticists had been arrested under Stalin’s regime of terror and as a result of Lysenkoism and were executed or sent to the Gulag or had to emigrate, such as Nikolaj Timofeev‐Resovskij, one of the great geneticists of his time and an opponent of communism. As a result of sending dissident scientists to Siberia, great educational institutions were created in the region, which trained many famous scientists. History tells us that it is impossible to kill free will and the search for truth.The Russian invasion of Ukraine is a major humanitarian tragedy and a tragedy for science at many levels. Our hope is that the European science community, policymakers, and funders will be prepared to continue and expand support for our colleagues from Ukraine and eventually help to rebuild the bridges with Russian science that have been torn down.This commentary has been endorsed and signed by the EMBO Young Investigators and former Young Investigators listed below.

All signatories are current and former EMBO Young Investigators and endorse the statements in this article.
Igor AdameykoKarolinska Institut, Stockholm, Sweden
Bungo AkiyoshiUniversity of Oxford, United Kingdom
Leila AkkariNetherlands Cancer Institute, Amsterdam, Netherlands
Panagiotis AlexiouMasaryk University, Brno, Czech Republic
Hilary AsheFaculty of Life Sciences, University of Manchester, United Kingdom
Michalis AverofInstitut de Génomique Fonctionnelle de Lyon (IGFL), France
Katarzyna BandyraUniversity of Warsaw, Poland
Cyril BarinkaInstitute of Biotechnology AS CR, Prague, Czech Republic
Frédéric BergerGregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
Vitezslav BryjaInstitute of Experimental Biology, Masaryk University, Brno, Czech Republic
Janusz BujnickiInternational Institute of Molecular and Cell Biology, Warsaw, Poland
Björn BurmannUniversity Gothenburg, Sweden
Andrew CarterMRC Laboratory of Molecular Biology, Cambridge, United Kingdom
Pedro CarvalhoSir William Dunn School of Pathology University of Oxford, United Kingdom
Ayse Koca CaydasiKoç University, Istanbul, Turkey
Hsu‐Wen ChaoMedical University, Taipei, Taiwan
Jeffrey ChaoFriedrich Miescher Institute, Basel, Switzerland
Alan CheungUniversity of Bristol, United Kingdom
Tim ClausenResearch Institute for Molecular Pathology (IMP), Vienna, Austria
Maria Luisa CochellaThe Johns Hopkins University School of Medicine, USA
Francisco CubillosSantiago de Chile, University, Chile
Uri Ben‐DavidTel Aviv University, Tel Aviv, Israel
Sebastian DeindlUppsala University, Sweden
Pierre‐Marc DelauxLaboratoire de Recherche en Sciences Végétales, Castanet‐Tolosan, France
Christophe DessimozUniversity, Lausanne, Switzerland
Maria DominguezInstitute of Neuroscience, CSIC ‐ University Miguel Hernandez, Alicante, Spain
Anne DonaldsonInstitute of Medical Sciences, University of Aberdeen, United Kingdom
Peter DraberBIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
Xiaoqi FengJohn Innes Centre, Norwich, United Kingdom
Luisa FigueiredoInstitute of Molecular Medicine, Lisbon, Portugal
Reto GassmannInstitute for Molecular and Cell Biology, Porto, Portugal
Kinga Kamieniarz‐GdulaAdam Mickiewicz University in Poznań, Poland
Roger GeigerInstitute for Research in Biomedicine, Bellinzona, Switzerland
Niko GeldnerUniversity of Lausanne, Switzerland
Holger GerhardtMax Delbrück Center for Molecular Medicine, Berlin, Germany
Daniel Wolfram GerlichInstitute of Molecular Biotechnology (IMBA), Vienna, Austria
Jesus GilMRC Clinical Sciences Centre, Imperial College London, United Kingdom
Sebastian GlattMalopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
Edgar GomesInstitute of Molecular Medicine, Lisbon, Portugal
Pierre GönczySwiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Maria GornaUniversity of Warsaw, Poland
Mina GoutiMax‐Delbrück‐Centrum, Berlin, Germany
Jerome GrosInstitut Pasteur, Paris, France
Anja GrothBiotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
Annika GuseCentre for Organismal Studies, Heidelberg, Germany
Ricardo HenriquesInstituto Gulbenkian de Ciência, Oeiras, Portugal
Eva HoffmannCenter for Chromosome Stability, University of Copenhagen, Denmark
Thorsten HoppeCECAD at the Institute for Genetics, University of Cologne, Germany
Yen‐Ping HsuehAcademia Sinica, Taipei, Taiwan
Pablo HuertasAndalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
Matteo IannaconeIRCCS San Raffaele Scientific Institute, Milan, Italy
Alvaro Rada‐IglesiasInstitue of Biomedicine and Biotechnology of Cantabria (IBBTEC)
University of Cantabria, Santander, Spain
Axel InnisInstitut Européen de Chimie et Biologie (IECB), Pessac, France
Nicola IovinoMPI für Immunbiologie und Epigenetik, Freiburg, Germany
Carsten JankeInstitut Curie, France
Ralf JansenInterfaculty Institute for Biochemistry, Eberhard‐Karls‐University Tübingen, Germany
Sebastian JessbergerHiFo / Brain Research Institute, University of Zurich, Switzerland
Martin JinekUniversity of Zurich, Switzerland
Simon Bekker‐JensenUniversity, Copenhagen, Denmark
Nicole JollerUniversity of Zurich, Switzerland
Luca JovineDepartment of Biosciences and Nutrition & Center for
Biosciences, Karolinska Institutet, Stockholm, Sweden
Jan Philipp JunkerMax‐Delbrück‐Centrum, Berlin, Germany
Anna KarnkowskaUniversity, Warsaw, Poland
Zuzana KeckesovaInstitute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
René KettingInstitute of Molecular Biology (IMB), Mainz, Germany
Bruno KlaholzInstitute of Genetics and Molecular and Cellular Biology (IGBMC), University of Strasbourg, Illkirch, France
Jürgen KnoblichInstitute of Molecular Biotechnology (IMBA), Vienna, Austria
Taco KooijCentre for Molecular Life Sciences, Nijmegen, Netherlands
Romain KoszulInstitut Pasteur, Paris, France
Claudine KraftInstitute for Biochemistry and Molecular Biology, Universität Freiburg, Germany
Alena KrejciFaculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
Lumir KrejciNational Centre for Biomolecular Research (NCBR), Masaryk University, Brno, Czech Republic
Arnold KristjuhanInstitute of Molecular and Cell Biology, University of Tartu, Estonia
Yogesh KulathuMRC Protein Phosphorylation & Ubiquitylation Unit, University of Dundee, United Kingdom
Edmund KunjiMRC Mitochondrial Biology Unit, Cambridge, United Kingdom
Karim LabibMRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, United Kingdom
Thomas LecuitDevelopmental Biology Institute of Marseilles ‐ Luminy (IBDML), France
Gaëlle LegubeCenter for Integrative Biology in Toulouse, Paul Sabatier University, France
Suewei LinAcademia Sinica, Taipei, Taiwan
Ming‐Jung LiuAcademia Sinica, Taipei, Taiwan
Malcolm LoganRandall Division of Cell and Molecular Biophysics, King’s College London, United Kingdom
Massimo LopesUniversity of Zurich, Switzerland
Jan LöweStructural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
Martijn LuijsterburgUniversity Medical Centre, Leiden, Netherlands
Taija MakinenUppsala University, Sweden
Sandrine Etienne‐MannevilleInstitut Pasteur, Paris, France
Miguel ManzanaresSpanish National Center for Cardiovascular Research (CNIC), Madrid, Spain
Jean‐Christophe MarineCenter for Biology of Disease, Laboratory for Molecular Cancer Biology, VIB & KU Leuven, Belgium
Sascha MartensMax F. Perutz Laboratories, University of Vienna, Austria
Elvira MassUniversität Bonn, Germany
Olivier MathieuClermont Université, Aubière, France
Ivan MaticMax Planck Institute for Biology of Ageing, Cologne, Germany
Joao MatosMax Perutz Laboratories, Vienna, Austria
Nicholas McGranahanUniversity College London, United Kingdom
Hind MedyoufGeorg‐Speyer‐Haus, Frankfurt, Germany
Patrick MeraldiUniversity of Geneva, Switzerland
Marco MilánICREA & Institute for Research in Biomedicine (IRB), Barcelona, Spain
Eric MiskaWellcome Trust/Cancer Research UK Gurdon Institute,
University of Cambridge, United Kingdom
Nuria MontserratInstitut de Bioenginyeria de Catalunya (IBEC), Barcelona, Spain
Nuno Barbosa‐MoraisInstitute of Molecular Medicine, Lisbon, Portugal
Antonin MorillonInstitut Curie, Paris, France
Rafal MostowyJagiellonian University, Krakow, Poland
Patrick MüllerUniversity of Konstanz, Konstanz, Germany
Miratul MuqitUniversity of Dundee, United Kigdom
Poul NissenCentre for Structural Biology, Aarhus University, Denmark
Ellen NollenEuropean Research Institute for the Biology of Ageing, University of Groningen, Netherlands
Marcin NowotnyInternational Institute of Molecular and Cell Biology, Warsaw, Poland
John O''NeillMRC Laboratory of Molecular Biology, Cambridge, United Kigdom
Tamer ÖnderKoc University School of Medicine, Istanbul, Turkey
Elin OrgUniversity of Tartu, Estonia
Nurhan ÖzlüKoç University, Istanbul, Turkey
Bjørn Panyella PedersenAarhus University, Denmark
Vladimir PenaLondon, The Institute of Cancer Research, United Kingdom
Camilo PerezBiozentrum, University of Basel, Switzerland
Antoine PetersFriedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
Clemens PlaschkaIMP, Vienna, Austria
Pavel PlevkaCEITEC, Masaryk University, Brno, Czech Republic
Hendrik PoeckTechnische Universität, München, , Germany
Sophie PoloUniversité Diderot (Paris 7), Paris, France
Simona PoloIFOM ‐ The FIRC Institute of Molecular Oncology, Milan, Italy
Magdalini PolymenidouUniversity of Zurich, Switzerland
Freddy RadtkeSwiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Markus RalserInstitute of Biochemistry Charité, Berlin, Germany & MRC National Institute for Medical Research, London, United Kingdom
Jan RehwinkelJohn Radcliffe Hospital, Oxford, United Kingdom
Maria RescignoEuropean Institute of Oncology (IEO), Milan, Italy
Katerina RohlenovaPrague, Institute of Biotechnology, Czech Republic
Guadalupe SabioCentro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
Ana Jesus Garcia SaezUniversity of Cologne, CECAD Research Center, Germany
Iris SaleckerInstitut de Biologie de l''Ecole Normale Supérieure (IBENS), Paris, France
Peter SarkiesUniversity of Oxford, United Kingdom
Frédéric SaudouGrenoble Institute of Neuroscience, France
Timothy SaundersCentre for Mechanochemical Cell Biology, Interdisciplinary Biomedical Research Building, Warwick Medical School, Coventry, United Kingdom
Orlando D. SchärerIBS Center for Genomic Integrity, Ulsan, South Korea
Arp SchnittgerBiozentrum Klein Flottbek, University of Hamburg, Germnay
Frank SchnorrerAix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
Maya SchuldinerDepartment of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
Schraga SchwartzWeizmann Institute of Science, Rehovot, Israel
Martin SchwarzerInstitute of Microbiology, Academy of Sciences of the Czech Republic
Claus MariaInstituto de Medicina Molecular Faculdade de Medicina da Universidade de Lisboa, Portugal
Hayley SharpeThe Babraham Institute, United Kingdom
Halyna ShcherbataInstitute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
Eric SoDepartment of Haematological Medicine, King''s College London, United Kingdom
Victor SourjikMax Planck Institute for Terrestrial Microbiology, Marburg, Germany
Anne SpangBiozentrum, University of Basel, Switzerland
Irina StanchevaInstitute of Cell Biology, University of Edinburgh, United Kingdom
Bas van SteenselDepartment of Gene Regulation, The Netherlands Cancer Institute, Amsterdam, Netherlands
Richard SteflCEITEC, Masaryk University, Brno, Czech Republic
Yonatan StelzerWeizmann Institute of Science, Rehovot, Israel
Julian StingeleLudwig‐Maximilians‐Universität, München, Germany
Katja SträßerInstitute for Biochemistry, University of Giessen, Germany
Kvido StrisovskyInstitute of Organic Chemistry and Biochemistry ASCR, Prague, Czech Republic
Joanna SulkowskaUniversity, Warsaw, Poland
Grzegorz SumaraNencki Institute of Experimental Biology, Warsaw, Poland
Karolina SzczepanowskaInternational Institute Molecular Mechanisms & Machines PAS, Warsaw, Poland
Luca TamagnoneInstitute for Cancer Research and Treatment, University of Torino Medical School, Italy
Meng How TanSingapore, Nanyang Technological University, Singapore
Nicolas TaponCancer Research UK London Research Institute, United Kingdom
Nicholas M. I. TaylorUniversity, Copenhagen, Denmark
Sven Van TeeffelenUniversité de Montréal, Canada
Maria Teresa TeixeiraLaboratory of Molecular and Cellular Biology of Eukaryotes, IBPC, Paris, France
Aurelio TelemanGerman Cancer Research Center (DKFZ), Heidelberg, Germany
Pascal TherondInstitute Valrose Biology, University of Nice‐Sophia Antipolis, France
Pavel TolarUniversity College London, United Kingdom
Isheng Jason TsaiAcademia Sinica, Taipei, Taiwan
Helle UlrichInstitute of Molecular Biology (IMB), Mainz, Germany
Stepanka VanacovaCentral European Institute of Technology, Masaryk University, Brno, Czech Republic
Henrique Veiga‐FernandesChampalimaud Center for the Unknown, Lisboa, Portugal
Marc VeldhoenInstituto de Medicina Molecular, Lisbon, Portugal
Louis VermeulenAcademic Medical Centre, Amsterdam, Netherlands
Uwe VinkemeierUniversity of Nottingham Medical School, United Kingdom
Helen WaldenMRC Protein Phosphorylation & Ubiquitylation Unit, University of Dundee, United Kingdom
Michal WandelInstitute of Biochemistry and Biophysics, PAS, Warsaw, Poland
Julie WelburnWellcome Trust Centre, Edinburgh, United Kingdom
Ervin WelkerInstitute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
Gerhard WingenderIzmir Biomedicine and Genome Center, Dokuz Eylul University, Izmir, Turkey
Thomas WollertInstitute Pasteur, Membrane Biochemistry and Transport, Centre François Jacob, Paris, France
Hyun YoukUniversity of Massachusetts Medical School, USA
Christoph ZechnerMPI für molekulare Zellbiologie und Genetik, Dresden, Germany
Philip ZegermanWellcome Trust / Cancer Research UK Gurdon Institute, University of Cambridge, United Kingdom
Alena ZikováInstitute of Parasitology, Biology Centre AS CR, Ceske Budejovice, Czech Republic
Piotr ZiolkowskiAdam Mickiewicz University, Poznan, Poland
David ZwickerMPI für Dynamik und Selbstorganisation, Göttingen, Germany
Open in a separate window  相似文献   

2.
This study investigated the added value, i.e. discriminative and concurrent validity and reproducibility, of an eye-hand coordination test relevant to table tennis as part of talent identification. Forty-three table tennis players (7–12 years) from national (n = 13), regional (n = 11) and local training centres (n = 19) participated. During the eye-hand coordination test, children needed to throw a ball against a vertical positioned table tennis table with one hand and to catch the ball correctly with the other hand as frequently as possible in 30 seconds. Four different test versions were assessed varying the distance to the
TotalNationalRegionalLocal
Total43131119
Boys268810
Girls17539
Age (years)10.4±1.410.9±1.510.4±1.510.1±1.4
7 year olds1--1
8 year olds5113
9 year olds3-3-
10 year olds12327
11 year olds11515
12 year olds11443
Length (cm)149±11150±12150±12148±10
Weight (kg )38±837±737±738±9
Right-handed359917
Left-handed8422
Training (hours*week-1)6 (0–20)11 (7–20)7 (4–11)2 (0–3)
Competition (points)173 (−52–430)297 (144–430)188 (72–317)36 (−52–130)
Open in a separate windowData are frequencies, except for age, length and weight (years±SD), and training and competition (mean (range)).  相似文献   

3.
Perioperative Opioid Counseling Reduces Opioid Use Following Primary Total Joint Arthroplasty     
Christopher N. Carender  Christopher A. Anthony  Edward O. Rojas  Nicolas O. Noiseux  Nicholas A. Bedard  Timothy S. Brown 《The Iowa orthopaedic journal》2022,42(1):169
BackgroundPreoperative counseling may reduce postoperative opioid requirements; however, there is a paucity of randomized controlled trials (RCTs) demonstrating efficacy. The purpose of this study was to perform an interventional, telehealth-based RCT evaluating the effect of peri-operative counseling on quantity and duration of opioid consumption following primary total joint arthroplasty (TJA).MethodsParticipants were randomized into three groups: 1. Control group, no perioperative counseling; 2. Intervention group, preoperative educational video; 3. Intervention group, preoperative educational video and postoperative acceptance and commitment therapy (ACT). Opioid consumption was evaluated daily for 14 days and at 6 weeks postoperatively. Best-case and worse-case intention to treat analyses were performed to account for non-responses. Bonferroni corrections were applied.Results183 participants were analyzed (63 in Group 1, 55 in Group 2, and 65 in Group 3). At 2 weeks postoperatively, there was no difference in opioid consumption between Groups 1, 2, and 3 (p>0.05 for all). At 6 weeks postoperatively, Groups 2 and 3 had consumed significantly less opioids than Group 1 (p=0.04, p<0.001) (VariableGroupp-value1. Control2. Video OnlyVideo + ACTSex (n, % female)39 (62%)32 (58%)40 (62%)0.90Surgery (n, % THA)26 (41%)21 (38%)31 (47%)0.56Age (mean ± SD; years)59 ± 1159 ± 1158 ± 9Overall: 0.83
1v2: 0.98
2v3: 0.65
2v3: 0.56Prolonged Opioid Use > 60 mo. (n, %)000-Opioid Use Within 3 mo. of Index Surgery (n, %)0 (14%)4 (7%)5 (8%)0.34
Open in a separate windowSD – standard deviation.Table 2.Quantity of Opioid Consumption at 2 Weeks Postoperatively, Best-Case Scenario
ValueGroupp-valuep-value (corrected)
1. Control2. Video OnlyVideo + ACT
Median192113901v2: 0.281v2: 0.56
IQR60-3088-30815-2481v3: 0.04*1v3: 0.15
Min0002v3: 0.472v3: 0.56
Max690623694
Open in a separate windowMedian, interquartile range (IQR), minimum (min), and maximum (max) values are reported in morphine milliequivalents (MME). * denotes statistical significance.ConclusionPerioperative opioid counseling significantly decreases the quantity and duration of opioid consumption at 6 weeks following primary TJA. Level of Evidence: I  相似文献   

4.
Vast (but avoidable) underestimation of global biodiversity     
John J. Wiens 《PLoS biology》2021,19(8)
The number of species on Earth is highly uncertain. A recent study has suggested that there are less than 2 million prokaryotic species on Earth; this Formal Comment suggests instead that there are more likely hundreds of millions or billions of species, and that the majority of these are bacteria associated with insects and other animals.

The number of species on Earth is a fundamental number in science. Yet, estimates of global biodiversity have been highly uncertain. There are presently approximately 1.9 million described species [1]. Estimates of the actual number (both described and undescribed) have ranged from the low millions into the trillions [2,3]. Furthermore, described species richness [1] is dominated by animals (1.3 million; 68%), not bacteria (approximately 10,000 species; 0.5%). Larsen and colleagues [2] summarized evidence suggesting that the majority of species on Earth may be bacteria associated with insect hosts and that bacterial richness may push global biodiversity into the hundreds of millions of species or even low billions.Louca and colleagues [4] (LEA hereafter) have claimed instead that there are only 40,100 host-associated bacterial species among all animal species and 0.8 to 1.6 million prokaryotic species overall (see their “Author summary”). Strangely, they excluded bacterial species associated with animal hosts from their estimates of total prokaryotic diversity and justified this by claiming that the estimates of Larsen and colleagues [2] were “mathematically flawed.” Here, I examine their claims and present new estimates of global biodiversity.Remarkably, all projections by LEA for host-associated bacterial richness were based on an estimate from one ant genus (Cephalotes), an estimate that is demonstrably incorrect by orders of magnitude (S1 Text). Without examining the underlying data [5], LEA estimated only 40 bacterial species among all 130 ant species in this genus. Yet, simply counting the bacterial species among the 25 sampled ant species in that genus reveals 616 unique bacterial species, of which 539 appear to be unique to the genus and 369 each unique to a single ant species (using the standard 97% cutoff for 16S divergence and data from [5]). Thus, there were >500 bacterial species among 25 ant species, not 40 bacterial species among 130 ant species. This mistake was further exacerbated by inexplicably ignoring data from the other 2 insect genera analyzed by Larsen and colleagues [2], thus maximizing the impact of their incorrect estimate for this genus.Their overall estimate of bacterial richness was also strongly influenced by their questionable assumption that all animal genera can share bacterial species (i.e., reducing their estimate of 3 million host-associated bacterial species to only 40,100). They assumed “a conservative overlap of only 0.1% between any two randomly chosen genera” for the number of bacterial species shared between animal genera. No justification was given for this value of 0.1%, nor were any alternative values explored. Furthermore, they implicitly assumed that any bacterial species can be shared between any pair of animal genera, regardless of their phylogeny, habitat, or geographic range. So, for example, a bacterial species that is a gut endosymbiont of a terrestrial herbivorous insect species endemic to Madagascar could somehow be shared with a deep-sea worm in the northern Pacific Ocean. This is ridiculous: there must be a reason why bacterial species are shared among host species and genera (e.g., shared phylogeny, location, diet). For example, broad-scale studies show that sharing of bacteria among insect hosts is associated with both host phylogeny and diet [6].LEA stated “it is known that substantial overlap exists between the microbiota of different host genera and even of distantly related animal taxa.” However, they provided no numbers to justify this “substantial overlap.” In fact, none of the papers they cited as supporting this assumption actually do (S2 Text). For example, one study [7] found 5 bacterial species shared among 5 insect genera utilizing the same type of host plant (cycads). However, LEA do not mention that this study found 1,789 unique bacterial species among just these 5 insect species (or 177 after filtering). This seems inconsistent with their estimate of only 40,100 bacterial species across all animals. In summary, rather than estimating the overlap of bacterial species among host genera, LEA simply made a number up and combined this with unrealistic, unsupported assumptions about overlap. If LEA had considered Cephalotes (which all their estimates were based on), a survey of this genus and related genera [5] found 1,019 bacterial species, with only 77 of the 616 bacterial species in Cephalotes shared with other sampled genera, and the sharing of bacterial species among hosts strongly related to host phylogeny.Numerous surveys of bacterial diversity in insects strongly suggest that there are far more than 40,100 bacterial species among all animals (8] found roughly twice as many bacterial species as those of approximately 30 insect species [5,9], and the study of 218 insect species [6] found >3.5 times as many as the study of 62 insect species. The simple fact that a study found 9,301 bacterial species among only 218 sampled insect species strongly suggests that there are more than 40,100 bacteria among all animals.Table 1Surveys of bacterial diversity among insect species.LEA incorrectly estimated that a genus of 130 ant species (Cephalotes) hosts only 40 bacterial species and subsequently assumed that all animal genera have the same low number of bacterial species. These broad surveys of bacterial species among insects suggest that many insects (including Cephalotes) host much larger numbers of bacterial species.
Insect group sampledInsect species sampledUnique bacterial species foundReferences
Ants (Cephalotes and 3 related genera)291,019Sanders and colleagues [5]
Lycaenid butterflies311,156Whitaker and colleagues [9]
Native Hawaiian insects (beetles, flies, true bugs)131,094Poff and colleagues [10]
Various insect orders622,073Colman and colleagues [8]
21 insect orders2189,301Yun and colleagues [6]
Open in a separate windowGiven these problems with the estimate of LEA, what is the actual number of bacterial species on Earth? LEA were correct that Larsen and colleagues [2] only estimated the number of species-specific bacteria per insect host species, and those estimates could be wrong. I therefore recalculated those estimates based on more direct counts of species-specific bacteria from the original studies (S3 Text). In 2]. Specifically, Larsen and colleagues [2] projected 0.209 to 5.8 billion species on Earth, of which 66% to 91% are bacteria, whereas I project 0.183 to 4.2 billion, with 58% to 88% bacteria (2] and are explained below. For each scenario, the projected number of species for each group is shown, along with the percentage of the total number of species belonging to that group (note that plants are <0.5% and are rounded down to 0%). In addition to the 4 scenarios, 4 other assumptions were explored. The first 3 involve different estimated numbers of morphologically cryptic arthropod species per morphology-based insect species (from 6 to 2 to 0; for justification, see [2]). These impact the number of animal species, and all downstream estimates for other groups. The final, fourth set of analyses assumes 6 morphologically cryptic arthropod species and that mites host negligible numbers of nematode species. Scenario 1 assumes that all animal species have a full set of bacterial, protist, and fungal endosymbionts, even if they are parasites, but that microsporidian fungi and apicomplexan protists have little or no host-specific bacterial richness. Scenario 2 assumes that symbionts have limited numbers of symbionts themselves (i.e., nematodes have an average of only one host-specific bacterial species) and that microsporidians and apicomplexans have few or no bacterial species. Scenario 3 assumes that all animal species have a full set of symbiont species and that microsporidians and apicomplexans host (on average) as many bacterial species as animal species do. Scenario 4 is identical to Scenario 1, except that it assumes that mites have reduced species richness relative to other arthropods (0.25 mites∶1 other arthropod species). Note that there is an error in Table 3, Scenario 1 in Larsen and colleagues [2]: There should be 27.2 million animal species, not 20.4. The correct number is used here. Archaean species is considered to be limited overall [2], and so is not treated separately.
Scenario 1Scenario 2Scenario 3Scenario 4
Million species% of totalMillion species% of totalMillion species% of totalMillion species% of total
6 cryptic arthropod species
Animals163.29.4163.213.7163.23.9102.09.4
Plants0.300.300.300.30
Fungi165.69.6165.613.9165.63.9104.69.6
Protists163.29.4163.213.7163.23.9102.09.4
Bacteria1,240.371.6701.858.83,721.088.3775.271.5
Total1,732.71,194.14,213.31,084.1
2 cryptic arthropod species
Animals54.49.454.413.654.43.934.09.4
Plants0.300.300.300.30
Fungi56.89.856.814.256.84.036.410.0
Protists54.49.454.413.654.43.934.09.4
Bacteria413.471.4233.958.51,240.388.2258.471.1
Total579.4399.91,406.3363.1
0 cryptic arthropod species
Animals27.29.327.213.527.23.917.09.3
Plants0.300.300.300.30
Fungi29.610.229.614.729.64.219.410.6
Protists27.29.327.213.527.23.917.09.3
Bacteria206.771.0117.058.1620.288.0129.270.6
Total291.1201.3704.5182.9
Mites host limited nematode richness, 6 cryptic arthropod species
Animals122.49.4122.411.9122.43.991.89.4
Plants0.300.300.300.30
Fungi124.89.6124.812.1124.83.994.29.6
Protists122.49.4122.411.9122.43.991.89.4
Bacteria930.271.5661.064.12,790.788.3697.771.5
Total1,300.21,030.93,160.7975.8
Open in a separate windowIn summary, the conclusions of LEA are based on an initial estimate of bacterial richness for one genus that was clearly incorrect, combined with a made-up number (and unrealistic assumptions) to estimate overlap of bacterial species among host genera. Reanalyses here suggest that bacterial richness (and the diversity of life) is more likely in the hundreds of millions or billions.  相似文献   

5.
Cognitive Manic Symptoms in Bipolar Disorder Associated with Polymorphisms in the DAOA and COMT Genes     
Dzana Sudic Hukic  Louise Frisén  Lena Backlund  Catharina Lavebratt  Mikael Landén  Lil Tr?skman-Bendz  Gunnar Edman  Martin Schalling  Urban ?sby 《PloS one》2013,8(7)

Introduction

Bipolar disorder is characterized by severe mood symptoms including major depressive and manic episodes. During manic episodes, many patients show cognitive dysfunction. Dopamine and glutamate are important for cognitive processing, thus the COMT and DAOA genes that modulate the expression of these neurotransmitters are of interest for studies of cognitive function.

Methodology

Focusing on the most severe episode of mania, a factor was found with the combined symptoms of talkativeness, distractibility, and thought disorder, considered a cognitive manic symptoms (CMS) factor. 488 patients were genotyped, out of which 373 (76%) had talkativeness, 269 (55%) distractibility, and 372 (76%) thought disorder. 215 (44%) patients were positive for all three symptoms, thus showing CMS (Bipolar disorder type 1 [n]488Men [n (%)]209 (43)Talkativeness [n (%)]373 (76)Distracibility [n (%)]269 (55)Thought disorder [n (%)]372 (76)Cognitive manic symptoms* [n (%)]215 (44)Men [n (%)]81 (39)Non-Cognitive manic symptoms [n (%)]248 (51)Men [n (%)]117 (56)Unknown [n (%)]25 (5)Men [n (%)]11 (44)Anonymous blood donors (ABD)1044Men [n (%)]616 (59)Open in a separate window*having all three symptoms: talkativeness, distractibility, and tought disorder.

Results

The finding of this study was that cognitive manic symptoms in patients with bipolar 1 disorder was associated with genetic variants in the DAOA and COMT genes. Nominal association for DAOA SNPs and COMT SNPs to cognitive symptoms factor in bipolar 1 disorder was found in both allelic (BP1 CMSBP1 non-CMSABDBP1 CMS vs. non-CMSb BP1 CMS vs. ABD controlsb GeneSNPa aa/ab/bbaa/ab/bbaa/ab/bbpEMP1c EMP2d OR [95% CI] e pEMP1c EMP2d OR [95% CI] e DAOA rs3916967 (C/T)32/88/8950/118/77177/494/3610.0180.0180.210.72 [0.55–0.93]0.0290.0260.280.78 [0.66–1.0] DAOA rs2391191 (A/C)28/75/7939/111/70179/487/3570.0550.0390.500.75 [0.57–1.0]0.0200.0190.210.75 [0.63–1.0] DAOA rs1935062 (C/A)26/67/8935/102/86146/460/4050.120.120.780.80 [0.58–1.0]0.0690.0660.520.80 [0.65–1.0] COMT rs5993883 (T/G)33/120/5371/112/57269/510/2230.0250.0300.270.73 [0.56–0.95]0.0017* 1.0E−4 * 0.021* 0.68 [0.91–1.4] COMT rs165599 (G/A)29/94/8725/93/12687/443/5010.0930.0940.691.27 [1.0–1.8]0.0140.0170.161.34 [1.1–1.7]Open in a separate windowaSNP (minor allele(a)/major allele(b)).bgender and rs1718119 as covariate.cpoint-wise p-value from 10,000 pemutations with no covarite (EMP1).dcorrected empirical p-value by max (T) permutation.eodds ratio (OR), the proportion of minor versus major allele affected (cognitive manic symptoms factor)/proportion of minor versus major allele unaffected (non-cognitive manic symptoms factor or ABD controls).*significant after correction for multiple testing by max (T) permutation.

Table 3

Haplotype association of haplotype group 1 in bipolar 1 patients with cognitive manic symptoms (CMS) compared with non-CMS patients or ABD controls in the DAOA gene.
CMS vs non-CMSb CMS vs ABDb
DAOA rs3916967rs2391191rs1935062Fa pOR [95% CI]c Fa pOR [95% CI]c
Haplotype 1CAC0.320.250.83 [0.66–1.1]0.330.140.83 [0.71–1.1]
Haplotype 2TGC0.0320.340.64 [0.32–1.1]0.0370.190.58 [0.37–1.1]
Haplotype 3CAA0.0740.0770.58 [0.39–0.89]0.0750.100.65 [0.47–1.0]
Haplotype 4TGA0.570.0291.38 [1.17–1.8]0.560.00571.41 [1.1–1.6]
Open in a separate windowafrequency (F) in sample.bgender and rs1718119 as covariates.codds ratios (OR) for each haplotype.

Conclusion

Identifying genes associated with cognitive functioning has clinical implications for assessment of prognosis and progression. Our finding are consistent with other studies showing genetic associations between the COMT and DAOA genes and impaired cognition both in psychiatric disorders and in the general population.  相似文献   

6.
Economic Benefits of Investing in Women’s Health: A Systematic Review     
Kristine Hus?y Onarheim  Johanne Helene Iversen  David E. Bloom 《PloS one》2016,11(3)

Background

Globally, the status of women’s health falls short of its potential. In addition to the deleterious ethical and human rights implications of this deficit, the negative economic impact may also be consequential, but these mechanisms are poorly understood. Building on the literature that highlights health as a driver of economic growth and poverty alleviation, we aim to systematically investigate the broader economic benefits of investing in women’s health.

Methods

Using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, we systematically reviewed health, gender, and economic literature to identify studies that investigate the impact of women’s health on micro- and macroeconomic outcomes. We developed an extensive search algorithm and conducted searches using 10 unique databases spanning the timeframe 01/01/1970 to 01/04/2013. Articles were included if they reported on economic impacts stemming from changes in women’s health (table of outcome measures included in full review, Outcome measures   FertilityIntergenerational Health SpilloverEducationProductivitySavingsMicroeconomic level    Total fertility rateChild survivalEnrollment in schoolIncomeMoneyChange in fertilityChild wellbeing and behaviorYears of schoolingPurchasing powerAssetsAge at first birth/ teenage pregnanciesAnthropometryEarly drop outPerformanceBirth spacingImproved cognitive developmentPerformance in school Life expectancyHigher education  Adult health outcomesLiteracy  Nutrition   Intrauterine growth  Macroeconomic level    Open in a separate windowGross domestic product/gross national product, gross domestic product/gross national product growth, income per capita, labor force participation, per capita income.

Results

The existing literature indicates that healthier women and their children contribute to more productive and better-educated societies. This study documents an extensive literature confirming that women’s health is tied to long-term productivity: the development and economic performance of nations depends, in part, upon how each country protects and promotes the health of women. Providing opportunities for deliberate family planning; healthy mothers before, during, and after childbirth, and the health and productivity of subsequent generations can catalyze a cycle of positive societal development.

Conclusions

This review highlights the untapped potential of initiatives that aim to address women’s health. Societies that prioritize women’s health will likely have better population health overall, and will remain more productive for generations to come.  相似文献   

7.
Immunological Mechanisms Mediating Hantavirus Persistence in Rodent Reservoirs     
Judith D. Easterbrook  Sabra L. Klein 《PLoS pathogens》2008,4(11)
Hantaviruses, similar to several emerging zoonotic viruses, persistently infect their natural reservoir hosts, without causing overt signs of disease. Spillover to incidental human hosts results in morbidity and mortality mediated by excessive proinflammatory and cellular immune responses. The mechanisms mediating the persistence of hantaviruses and the absence of clinical symptoms in rodent reservoirs are only starting to be uncovered. Recent studies indicate that during hantavirus infection, proinflammatory and antiviral responses are reduced and regulatory responses are elevated at sites of increased virus replication in rodents. The recent discovery of structural and non-structural proteins that suppress type I interferon responses in humans suggests that immune responses in rodent hosts could be mediated directly by the virus. Alternatively, several host factors, including sex steroids, glucocorticoids, and genetic factors, are reported to alter host susceptibility and may contribute to persistence of hantaviruses in rodents. Humans and reservoir hosts differ in infection outcomes and in immune responses to hantavirus infection; thus, understanding the mechanisms mediating viral persistence and the absence of disease in rodents may provide insight into the prevention and treatment of disease in humans. Consideration of the coevolutionary mechanisms mediating hantaviral persistence and rodent host survival is providing insight into the mechanisms by which zoonotic viruses have remained in the environment for millions of years and continue to be transmitted to humans.Hantaviruses are negative sense, enveloped RNA viruses (family: Bunyaviridae) that are comprised of three RNA segments, designated small (S), medium (M), and large (L), which encode the viral nucleocapsid (N), envelope glycoproteins (GN and GC), and an RNA polymerase (Pol), respectively. More than 50 hantaviruses have been found worldwide [1]. Each hantavirus appears to have coevolved with a specific rodent or insectivore host as similar phylogenetic trees are produced from virus and host mitochondrial gene sequences [2]. Spillover to humans causes hemorrhagic fever with renal syndrome (HFRS) or hantavirus cardiopulmonary syndrome (HCPS), depending on the virus [3][5]. Although symptoms vary, a common feature of both HFRS and HCPS is increased permeability of the vasculature and mononuclear infiltration [4]. Pathogenesis of HRFS and HCPS in humans is hypothesized to be mediated by excessive proinflammatory and CD8+ T cell responses ().

Table 1

Summary of Immune Responses in Humans during Hantavirus Infection.
Categorical ResponseImmune MarkerEffect of InfectionVirus Speciesa In Vitro/In VivoTissue or Cell Typeb, Phase of Infectionc References
Innate RIG-IElevatedSNVIn vitroHUVEC, ≤24 h p.i. [79]
ReducedNY-1VIn vitroHUVEC, ≤24 h p.i. [37]
TLR3ElevatedSNVIn vitroHUVEC, ≤24 h p.i. [79]
IFN-βElevatedPUUV, PHV, ANDVIn vitroHSVEC, HMVEC-L, ≤24 h p.i. [36],[80]
ReducedTULV, PUUV NSsIn vitroCOS-7 and MRC5 cells, ≤24 h p.i. [32],[33]
IFN-αElevatedPUUV, HTNVIn vitroMФ, DCs, 4 days p.i. [30]
No changeHTNVIn vivoBlood, acute [81]
IRF-3, IRF-7ElevatedSNV, HTNV, PHV, ANDVIn vitroHMVEC-L, ≤24 h p.i. [33],[38]
MxAElevatedHTNV, NY-1V, PHV, PUUV, ANDV, SNV, TULVIn vitroMФ,HUVEC,HMVEC-L, 6 h–4 days p.i. [36], [39][41],[79]
MHC I and IIElevatedHTNVIn vitroDCs, 4 days p.i. [30]
CD11bElevatedPUUVIn vivoBlood, acute [82]
CD40, CD80, CD86ElevatedHTNVIn vitroDCs, 4 days p.i. [30],[83]
NK cellsElevatedPUUVIn vivoBAL, acute [84]
Proinflammatory/Adhesion IL-1βElevatedSNV, HTNVIn vivoBlood, lungs, acute [85],[86]
IL-6ElevatedSNV, PUUVIn vivoBlood, lungs, acute [85],[87],[88]
TNF-αElevatedPUUV, SNV, HTNVIn vivoBlood, lungs, kidney, acute [85],[86],[88],[89]
ElevatedHTNVIn vitroDCs, 4 days p.i. [30]
CCL5ElevatedSNV, HTNVIn vitroHMVEC-L, HUVEC, 12 h–4 days p.i. [38],[39],[90]
CXCL8ElevatedPUUVIn vivoBlood, acute [82]
ElevatedPUUVIn vivoMen, blood, acute [62]
ElevatedTULV, PHV, HTNVIn vitroHUVEC, MФ, 2–4 days p.i. [39],[91]
CXCL10ElevatedSNV, HTNV, PHVIn vitroHMVEC-L,HUVEC, 3–4 days p.i. [38],[39]
ElevatedPUUVIn vivoMen, blood, acute [62]
IL-2ElevatedSNV, HTNV, PUUVIn vivoBlood, lungs, acute [82],[86]
Nitric oxideElevatedPUUVIn vivoBlood, acute [92]
GM-CSFElevatedPUUVIn vivoWomen, blood, acute [62]
ICAM, VCAMElevatedPUUVIn vivoKidney, acute [87]
ElevatedHTNV, PHVIn vitroHUVEC, 3–4 days p.i. [30],[39]
E-selectinElevatedPUUVIn vivoBlood, acute [82]
CD8+ and CD4+ T cells IFN-γElevatedHTNV, SNVIn vivoBlood, CD4+,CD8+, lungs, acute [81],[86]
CD8+ElevatedDOBV, PUUV, HTNVIn vivoBlood, BAL, acute [52],[84],[93]
Virus-specific IFN-γ+CD8+ElevatedPUUV, SNVIn vivoPBMC, acute [45],[94]
Perforin, Granzyme BElevatedPUUVIn vivoBlood, acute [95]
CD4+CD25+ “activated”ElevatedDOBV, PUUVIn vivoPBMC, acute [89],[93]
IL-4ElevatedSNVIn vivoLungs, acute [86]
Regulatory “suppressor T cells”d ReducedHTNVIn vivoBlood, acute [52]
IL-10ElevatedPUUVIn vivoBlood, acute [86]
TGF-βElevatedPUUVIn vivoKidney, acute [89]
Humoral IgM, IgG, IgA, IgEElevatedAll hantavirusesIn vivoBlood [4]
Open in a separate windowaSNV, Sin Nombre virus; NY-1V, New York-1 virus; PUUV, Puumala virus; PHV, Prospect Hill virus; ANDV, Andes virus; TULV, Tula virus; HTNV, Hantaan virus; DOBV, Dobrava virus.bHUVEC, human umbilical vascular endothelial cells; HSVEC, human saphenous vein endothelial cells; HMVEC-L, human lung microvascular endothelial cells; COS-7, African green monkey kidney fibroblasts transformed with Simian virus 40; MRC5, human fetal lung fibroblasts; MФ, macrophages; DCs, dendritic cells; BAL, bronchoalveolar lavage, PBMC, human peripheral blood mononuclear cells.cAcute infection is during symptomatic disease in patients.dSuppressor T cells likely represent cells currently referred to as regulatory T cells.

Table 2

Summary of Immune Responses in Rodents during Hantavirus Infection.
Categorical ResponseImmune MarkerEffect of InfectionVirus Speciesa Host, Tissue or Cell Typeb Phase of Infectionc References
Innate TLR7ReducedSEOVMale Norway rats, lungsAcute, Persistent [19]
ElevatedSEOVFemale Norway rats, lungsAcute, Persistent [19]
RIG-IElevatedSEOVFemale Norway rats, lungsAcute, Persistent [19]
ElevatedSEOVNewborn rats, thalamusAcute [96]
TLR3ElevatedSEOVMale Norway rats, lungsAcute, Persistent [19]
IFN-βReducedSEOVMale Norway rats, lungsAcute, Persistent [19],[61]
ElevatedSEOVFemale Norway rat lungsAcute [19],[61]
Mx2ReducedSEOVMale Norway rats, lungsAcute, Persistent [19],[60]
ElevatedSEOVFemale Norway rats, lungsAcute, Persistent [19],[60]
ElevatedHTNV, SEOVMiced, fibroblasts transfected with Mx23–4 days p.i. [97]
JAK2ElevatedSEOVFemale Norway rats, lungsAcute [60]
MHC IIElevatedPUUVBank volesGenetic susceptibility [74]
Proinflammatory/Adhesion IL-1βReducedSEOVMale Norway rats, lungsPersistent [29]
IL-6ReducedSEOVMale and female Norway rats, lungsAcute, Persistent [29],[61]
ElevatedSEOVMale rats, spleenAcute [29]
TNF-αReducedHTNVNewborn miced, CD8+, spleenAcute [49],[50]
ReducedSEOVMale Norway rats, lungsAcute, Persistent [29],[42],[61]
ElevatedSEOVFemale Norway rats, lungsPersistent [61]
CX3CL1, CXCL10ReducedSEOVMale Norway rats, lungsAcute, Persistent [29]
ElevatedSEOVMale Norway rats, spleenAcute [29]
CCL2, CCL5ElevatedSEOVMale Norway rats, spleenAcute [29]
NOS2ReducedSEOVMale Norway rats, lungsAcute, Persistent [29],[61]
ElevatedSEOVMale Norway rats, spleenAcute [29]
ElevatedHTNVMouse MФd, in vitro6 h p.i. [98]
VCAM, VEGFElevatedSEOVMale Norway rats, spleenAcute [29]
CD8+ and CD4+ T cells CD8+ReducedHTNVNewborn miced, spleenPersistent [50]
ElevatedHTNVSCID miced, CD8+ transferred, spleenPersistence [49]
ElevatedSEOVFemale Norway rats, lungsPersistent [61]
IFN-γElevatedSEOVFemale Norway rats, lungsPersistent [61]
ElevatedSEOVMale Norway rats, spleenAcute [29]
ElevatedSEOVMale and female Norway rats, splenocytesAcute [20]
ElevatedSNVDeer mice, CD4+ T cellsAcute [48]
ElevatedHTNVNewborn miced, CD8+ T cells, spleenAcute [50]
ReducedHTNVNewborn miced, CD8+ T cells, spleenPersistent [99]
IFN-γRElevatedSEOVFemale Norway rats, lungsAcute, Persistent [60]
ReducedSEOVMale Norway rats, lungsPersistent [60]
T cellsElevatedSEOVNude ratsPersistence [47]
ElevatedHTNVNude miced Persistence [100]
IL-4ReducedSEOVMale Norway rats, lungsAcute, Persistent [61]
ElevatedSNVDeer mice, CD4+ T cellsAcute [48]
ElevatedSEOVMale and female Norway rats, splenocytesAcute [20]
Regulatory Regulatory T cellsElevatedSEOVMale Norway rats, lungsPersistent [42],[61]
FoxP3ElevatedSEOVMale Norway rats, lungsPersistent [29],[42],[61]
TGF-βElevatedSEOVMale Norway rats, lungsPersistent [29]
SNVDeer mice, CD4+ T cellsPersistent [48]
IL-10ReducedSEOVMale Norway rats, lungs and spleenAcute, Persistent [29]
ElevatedSNVDeer mice, CD4+ T cellsAcute [48]
Humoral IgGElevatedSNVDeer micePersistent [12],[57]
ElevatedSEOVNorway ratsPersistent [16],[17]
ElevatedHTNVField micePersistent [15]
ElevatedPUUVBank volesPersistent [14]
ElevatedBCCVCotton ratsPersistent [18],[58]
Open in a separate windowaSEOV, Seoul virus; HTNV, Hantaan virus, PUUV, Puumala virus; SNV, Sin Nombre virus; PUUV, Puumala virus; BCCV, Black Creek Canal virus.bMФ, macrophages.cAcute infection is <30 days p.i. and persistent infection is ≥30 days p.i.d Mus musculus, non-natural reservoir host for hantaviruses.In contrast to humans, hantaviruses persistently infect their reservoir hosts, presumably causing lifelong infections [6]. Hantaviruses are shed in saliva, urine, and feces, and transmission among rodents or from rodents to humans occurs by inhalation of aerosolized virus in excrement or by transmission of virus in saliva during wounding [7],[8]. Although widely disseminated throughout the rodent host, high amounts of hantaviral RNA and antigen are consistently identified in the lungs of their rodent hosts, suggesting that the lungs may be an important site for maintenance of hantaviruses during persistent infection [9][18]. Hantavirus infection in rodents is characterized by an acute phase of peak viremia, viral shedding, and virus replication in target tissues, followed by a persistent phase of reduced, cyclical virus replication despite the presence of high antibody titers (Figure 1) [12][16], [18][20]. The onset of persistent infection varies across hantavirus–rodent systems, but generally the acute phase occurs during the first 2–3 weeks of infection and virus persistence is established thereafter (Figure 1).Open in a separate windowFigure 1Kinetics of Hantavirus Infection in Rodents.Adapted from Lee et al. [15] and others [12][14],[16],[18],[20], the kinetics of relative hantaviral load in blood (red), saliva (green), and lung tissue (blue) and antibody responses (black) during the acute and persistent phases of infection are represented. The amount of genomic viral RNA, infectious virus titer, and/or relative amount of viral antigen have been incorporated as relative hantaviral load. The antibody response is integrated as the relative amount of anti-hantavirus IgG and/or neutralizing antibody titers.Hantavirus infection alone does not cause disease, as reservoir hosts and non-natural hosts (e.g., hamsters infected with Sin Nombre virus [SNV] or Choclo virus) may support replicating virus in the absence of overt disease [12],[14],[16],[18],[21],[22]. Our primary hypothesis is that certain immune responses that are mounted in humans during hantavirus infection are suppressed in rodent reservoirs to establish and maintain viral persistence, while preventing disease (相似文献   

8.
Stability of Murine Cytomegalovirus Genome after In Vitro and In Vivo Passage     
Tammy P. Cheng  Mark C. Valentine  Jian Gao  Jeanette T. Pingel  Wayne M. Yokoyama 《Journal of virology》2010,84(5):2623-2628
  相似文献   

9.
Conventional transmission electron microscopy     
Mark Winey  Janet B. Meehl  Eileen T. O'Toole  Thomas H. Giddings  Jr. 《Molecular biology of the cell》2014,25(3):319-323
Researchers have used transmission electron microscopy (TEM) to make contributions to cell biology for well over 50 years, and TEM continues to be an important technology in our field. We briefly present for the neophyte the components of a TEM-based study, beginning with sample preparation through imaging of the samples. We point out the limitations of TEM and issues to be considered during experimental design. Advanced electron microscopy techniques are listed as well. Finally, we point potential new users of TEM to resources to help launch their project.Transmission electron microscopy (TEM) has been an important technology in cell biology ever since it was first used in the early 1940s. The most frequently used TEM application in cell biology entails imaging stained thin sections of plastic-embedded cells by passage of an electron beam through the sample such that the beam will be absorbed and scattered, producing contrast and an image (see TermDefinitionBeem capsulePlastic forms that hold samples in resin during polymerizationBlocks (bullets)Polymerized samples in plastic removed from the Beem capsule and ready to sectionBlock faceSmall surface trimmed on a block before sectioningBoatWater reservoir in which sections float after being cut by a knifeCLEMCorrelative light and electron microscopyDehydrationRemoval of water from a sample by replacement with solventElectron tomography (ET)A method to image thick sections (200–300 nm) and produce three-dimensional imagesEmbeddingProcess of infiltrating the sample with resinFixationSample preservation with low temperature and/or chemicals to maintain sample integrityGridSmall metal support that holds the sections for viewing in the electron microscopeHPF/FSHigh-pressure freezing/freeze substitution sample preparation techniqueImmuno-EMDetection of proteins in EM samples using antibodiesIn-FXXKing credible!!!!Actual user quote in response to particularly beautiful sample. You may embellish with your own words.KnifeA very sharp edge, either glass or diamond, used to slice off resin-embedded samples into sectionsPre-embedding labelingApplication of antibodies before fixation and embeddingPost-embedding labelingApplication of antibodies to sections on the gridPoststainingStaining with heavy metals of sections on a gridResinLiquid form of the plastics used for embeddingRibbonCollection of serial sections placed on the gridSerials sectionsOne-after-the-other thin sections in a ribbonTEMTransmission electron microscopyThin sectionsThe 60- to 70-nm sections cut from the samples in blocksTrimmingProcess of cutting away excess resin to create a block faceUltramicrotomeInstrument used to cut sectionsVitrification/vitreous iceUnordered ice in which samples can be viewed without fix or stainOpen in a separate windowTEM has proven valuable in the analysis of nearly every cellular component, including the cytoskeleton, membrane systems, organelles, and cilia, as well as specialized structures in differentiated cells, such as microvilli and the synaptonemal complex. There is simply no way to visualize the complexity of cells and see cellular structures without TEM. Despite its power, the use of TEM does have limitations. Among the limitations are the relatively small data set of cells that can be imaged in detail, the obligate use of fixed—therefore deceased—cells, and the ever-present potential for fixation and staining artifacts. However, many of these artifacts are well known and have been catalogued (e.g., Bozzola and Russell, 1999 ; Maunsbach and Afzelius, 1999) .A typical TEM experiment consists of two phases: the live-cell experiment, in which a cell type, possibly a mutant, is grown under given conditions for analysis, followed by preparation of the specimen and imaging by TEM. Specimen preparation for conventional TEM is comprehensively reviewed in Hayat (1970) and briefly described here (Figure 1).Open in a separate windowFIGURE 1:A brief flowchart showing the work to be done with different types of sample preparation for conventional electron microscopy (yellow background). The advanced cryo-EM techniques are shown with a blue background. For immuno-EM, the samples can be stained before embedding (pre-embedding staining) or the sections can be stained (post-embedding staining).  相似文献   

10.
Proteomics of Saccharomyces cerevisiae Organelles     
Elena Wiederhold  Liesbeth M. Veenhoff  Bert Poolman    Dirk Jan Slotboom 《Molecular & cellular proteomics : MCP》2010,9(3):431-445
  相似文献   

11.
Diminished Susceptibility to Cefoperazone/Sulbactam and Piperacillin/Tazobactam in Enterobacteriaceae Due to Narrow-Spectrum β-Lactamases as Well as Omp Mutation     
Fengzhen Yang  Qi Zhao  Lipeng Wang  Jinying Wu  Lihua Jiang  Li Sheng  Leyan Zhang  Zhaoping Xue  Maoli Yi 《Polish journal of microbiology》2022,71(2):251
Cefoperazone/sulbactam (CSL) and piperacillin/tazobactam (TZP) are commonly used in clinical practice in China because of their excellent antimicrobial activity. CSL and TZP-nonsusceptible Enterobacteriaceae are typically resistant to extended-spectrum cephalosporins such as ceftriaxone (CRO). However, 11 nonrepetitive Enterobacteriaceae strains, which were resistant to CSL and TZP yet susceptible to CRO, were collected from January to December 2020. Antibiotic susceptibility tests and whole-genome sequencing were conducted to elucidate the mechanism for this rare phenotype. Antibiotic susceptibility tests showed that all isolates were amoxicillin/clavulanic-acid resistant and sensitive to ceftazidime, cefepime, cefepime/tazobactam, cefepime/zidebactam, ceftazidime/avibactam, and ceftolozane/tazobactam. Whole-genome sequencing revealed three of seven Klebsiella pneumoniae strains harbored blaSHV-1 only, and four harbored blaSHV-1 and blaTEM-1B. Two Escherichia coli strains carried blaTEM-1B only, while two Klebsiella oxytoca isolates harbored blaOXY-1-3 and blaOXY-1-1, respectively. No mutation in the β-lactamase gene and promoter sequence was found. Outer membrane protein (Omp) gene detection revealed that numerous missense mutations of OmpK36 and OmpK37 were found in all strains of K. pneumoniae. Numerous missense mutations of OmpK36 and OmpK35 and OmpK37 deficiency were found in one K. oxytoca strain, and no OmpK gene was found in the other. No Omp mutations were found in E. coli isolates. These results indicated that narrow spectrum β-lactamases, TEM-1, SHV-1, and OXY-1, alone or in combination with Omp mutation, contributed to the resistance to CSL and TZP in CRO-susceptible Enterobacteriaceae.Antibiotic susceptibility tests
AntibioticsBreakpoint, (μg/ml)Klebsiella pneumoniae
Escherichia cou
Klebriehd axyoca
E1E3E4E7E9E10E11E6E8E2E5
CRO≤1≥4≤0.5≤0.5≤0.5≤0.5 1≤0.51≤0.5≤0.511
CAZ4 ≥161214444241 1
FEP≤2 216 110.2512220.521 1
AMC≤8 ≥32≥128≥128≥128≥128≥128≥128≥128≥128≥128≥128≥128
CSL≤16 ≥6464646464≥128128≥12864128128≥128
TZP≤16 ≥128≥256≥256≥256≥25622562256≥256≥256≥256≥256≥256
FPT≤2 ≥1610.50.060.1252120.2510.1250.25
FPZ≤2 2160.250.250.060.1250.250.25 10.1250.250.1250.125
CZA≤8 216 10.50.250.2510.2510.50.50.50.25
CZT≤2 28210.5 1222 1122
Open in a separate windowCROceftriaxone, CAZceftazidime, FEPcefepime, AMC:amoxicillin clavulanic-acid, CSLcefoperazone/sulbactam, TZP:piperadllin/tazobactam, FPT:cefepime tazobactam, FPZ:cefepime/zidebactam, CZA:ceftazidime/avibactam, CZTceftolozane/tazobactam Gene sequencing results
NumberStrainSTp-Lactamase genePromoter sequence mutationOmp mutation
ElKpn45blaSHV-1, blaTEM-lBnoneOmpK36, OmpK3 7
E3Kpn45blaSHV-1, blaTEM-lBnoneOmpK36. OmpK3 7
E4Kpn2854blaSHV-1noneOmpK36, OmpK3 7
E7Kpn2358blaSHV-1 - blaTEM-lBnoneOmpK36, OmpK3 7
E9Kpn2358blaSHV-1. blaTEM-lBnoneOmpK36. OmpK3 7
E10Kpn 189blaSHV-1noneOmpK36. OmpK3 7
EllKpn45blaSHV-1noneOmpK36, OmpK3 7
E6Eco88blaTEM-lBnonenone
ESEco409blaTEM-1Bnonenone
E2Kox194blaOXY-1-3noneOmpK36 mutations. OmpK35 and OmpK 37 deficiency
E5Kox 11blaOXY-1-1noneno OmpK (OmpK3 5, OmpK36 and OmpK37) gene found
Open in a separate window  相似文献   

12.
A conifer genome spruces up plant phylogenomics     
Pamela S Soltis  Douglas E Soltis 《Genome biology》2013,14(6):122
The Norway spruce genome provides key insights into the evolution of plant genomes, leading to testable new hypotheses about conifer, gymnosperm, and vascular plant evolution.In the past year a burst of plant genome sequences have been published, providing enhanced phylogenetic coverage of green plants (Figure (Figure1)1) and inclusion of new agricultural, ecological, and evolutionary models. Collectively, these sequences are revealing some extraordinary structural and evolutionary attributes in plant genomes. Perhaps most surprising is the exceptionally high frequency of whole-genome duplication (WGD): nearly every genome that has been analyzed has borne the signature of one or more WGDs, with particularly notable events having occurred in the common ancestors of seed plants, of angiosperms, and of core eudicots (the latter ''WGD'' represents two WGDs in close succession) [1,2]. Given this tendency for plant genomes to duplicate and then return to an essentially diploid genetic system (an example is the cotton genomes, which have accumulated the effects of perhaps 15 WGDs [3]), the conservation of genomes in terms of gene number, chromosomal organization, and gene content is astonishing. From the publication of the first plant genome, Arabidopsis thaliana [4], the number of inferred genes has been between 25,000 and 30,000, with many gene families shared across all land plants, although the number of members and patterns of expansion and contraction vary. Furthermore, conserved synteny has been detected across the genomes of diverse angiosperms, despite WGDs, diploidization, and millions of years of evolution.Open in a separate windowFigure 1Simplified phylogeny of land plants, showing major clades and their component lineages. Asterisks indicate species (or lineage) for which whole-genome sequence (or sequences) is (are) available. Increases and decreases in genome size are shown by arrows.Despite the proliferation of genome sequences available for angiosperms, genome-level data for both ferns (and their relatives, collectively termed monilophytes; Figure Figure1)1) and gymnosperms have been conspicuously lacking - until recently, with the publication of the genome sequence of the gymnosperm Norway spruce (Picea abies) [5]. The large genome sizes for both monilophytes and gymnosperms have discouraged attempts at genome sequencing and assembly, whereas the smaller genome size of angiosperms has resulted in more genome sequences being available (Table (Table1)1) [6]. Because of this limited phylogenetic sample, our understanding of the timing and phylogenetic positions of WGDs, the core number of plant genes, possible conserved syntenic regions, and patterns of expansion and contraction of gene families across both tracheophytes (vascular plants) and across all land plants is imperfect. This sampling problem is particularly acute in analyses of the genes and genomes of seed plants; many hundreds of genes are present in angiosperms that are not present in mosses or lycophytes, but whether these genes arose in the common ancestor of seed plants or of angiosperms cannot be determined without a gymnosperm genome sequence. The Norway spruce genome therefore offers tremendous power, not only for understanding the structure and evolution of conifer genomes, but also as a reference for interpreting gene and genome evolution in angiosperms.

Table 1

Genome sizes in land plants
LineageRange (1C; pg)Mean
Gymnosperms
  Conifers
    Pinaceae9.5-36.023.7
    Cupressaceae8.3-32.112.8
    Sciadopitys 20.8n/a
  Gnetales
    Ephedraceae8.9-15.78.9
    Gnetaceae2.3-4.02.3
    Cycadaceae12.6-14.813.4
    Ginkgo biloba11.75n/a
Monilophytes
    Ophioglossaceae10.2-65.631.05
    Equisetaceae12.9-30422.0
    Psilotum72.7n/a
  Leptosporangiate ferns
    Polypodiaceae7.5-19.77.5
    Aspleniaceae4.1-9.16.2
    Athyriaceae6.3-9.37.6
    Dryopteridaceae6.8-23.611.7
  Water ferns
    Azolla0.77n/a
Angiosperms
    Oryza sativa 0.50n/a
    Amborella trichopoda0.89n/a
    Arabidopsis thaliana0.16n/a
    Zea mays2.73n/a
Open in a separate windown/a, not applicable. Data based on [6].  相似文献   

13.
Ophthalmic artery chemosurgery for less advanced intraocular retinoblastoma: five year review     
Abramson DH  Marr BP  Brodie SE  Dunkel I  Palioura S  Gobin YP 《PloS one》2012,7(4):e34120

Background

Ophthalmic artery chemosurgery (OAC) for retinoblastoma was introduced by us 5 years ago for advanced intraocular retinoblastoma. Because the success was higher than with existing alternatives and systemic side effects limited we have now treated less advanced intraocular retinoblastoma (Reese-Ellsworth (RE) I-III and International Classification Retinoblastoma (ICRB) B and C).

Methodology/Principal Findings

Retrospective review of 5 year experience in eyes with Reese Ellsworth (Reese-Ellsworth (RE) Classification For Intraocular Retinoblastoma GROUP I a. Solitary tumor, less than 4 disc diameters in size, at or behind the equator b. Multiple tumors, none over 4 disc diameters in size, all at or behind the equator GROUP II a. Solitary tumor, less than 4 to 10 disc diameters in size, at or behind the equator b. Multiple tumors, none over 4 to 10 disc diameters in size, all at or behind the equator GROUP III a. Any lesion anterior to the equator b. Solitary tumors larger than 10 disc diameters behind the equator GROUP IV a. Multiple tumors, some larger than 10 disc diameters b. Any lesion extending anteriorly to the ora serrata GROUP V a . Massive tumors involving over half the retina b . Vitreous seeding Open in a separate window

Table 2

International Classification for Retinoblastoma (ICRB) Scheme.
International Classification for Intraocular Retinoblastoma (ICRB)
Group A Small intraretinal tumors away from foveola and disc
* All tumors are 3 mm or smaller in greatest dimension, confined to the retina and * All tumors are located further than 3 mm from the foveola and 1.5 mm from the optic disc
Group B All remaining discrete tumors confined to the retina
* All other tumors confined to the retina not in Group A * Tumor-associated subretinal fluid less than 3 mm from the tumor with no subretinal seeding
Group C Discrete Local disease with minimal subretinal or vitreous seeding
* Tumor(s) are discrete * Subretinal fluid, present or past, without seeding involving up to ¼ retina * Local fine vitreous seeding may be present close to discrete tumor * Local subretinal seeding less than 3 mm (2DD) from the tumor
Group D Diffuse disease with significant vitreous or subretinal seeding
* Tumor(s) may be massive or diffuse * Subretinal fluid, present or past without seeding, involving up to total retinal detachment * Diffuse or massive vitreous disease may include “greasy” seeds or avascular tumor masses * Diffuse subretinal seeding may include subretinal plaques or tumor nodules
Group E Presence of any one or more of these poor prognosis features
* Tumor touching the lens * Tumor anterior to anterior vitreous face involving ciliary body or anterior segment * Diffuse infiltrating retinoblastoma * Neovascular glaucoma * Opaque media from hemorrhage * Tumor necrosis with aseptic orbital cellulites * Phthisis bulbi
Open in a separate window

Conclusions/Significance

Ophthalmic artery chemosurgery for retinoblastoma that was Reese-Ellsworth I, II and III (or International Classification B or C) was associated with high success (100% of treatable eyes were retained) and limited toxicity with results that equal or exceed conventional therapy with less toxicity.  相似文献   

14.
Genome-Wide Characterization of the SloR Metalloregulome in Streptococcus mutans     
Kevin P. O'Rourke  Jeremy D. Shaw  Mitchell W. Pesesky  Brian T. Cook  Susanne M. Roberts  Jeffrey P. Bond  Grace A. Spatafora 《Journal of bacteriology》2010,192(5):1433-1443
  相似文献   

15.
The Pre-mRNA Splicing Machinery of Trypanosomes: Complex or Simplified?     
Arthur Günzl 《Eukaryotic cell》2010,9(8):1159-1170
  相似文献   

16.
Nooks and Crannies in Type VI Secretion Regulation     
Christophe S. Bernard  Yannick R. Brunet  Erwan Gueguen  Eric Cascales 《Journal of bacteriology》2010,192(15):3850-3860
  相似文献   

17.
Use of methotrexate therapy is not associated with decreased prevalence of metabolic syndrome     
Hennie G Raterman  Alexandre E Voskuyl  Ben AC Dijkmans  Michael T Nurmohamed 《Arthritis research & therapy》2009,11(5):413-2
With great interest, we read the article by Toms and colleagues [1] in the previous issue of Arthritis Research & Therapy, in which they assessed prevalences of metabolic syndrome (MetS) in rheumatoid arthritis (RA) patients. Moreover, they identified demographic and clinical factors that may be associated with MetS. Toms and colleagues found prevalences of up to 45% of MetS and demonstrated older age and health status (health assessment questionnaire) to be associated with MetS irrespectively of the definition used. Of most interest, an association between methotrexate (MTX) use and decreased presence of MetS was observed in patients more than 60 years of age. The investigators hypothesized that this may be attributed to a drug-specific effect (and not to an anti-inflammatory effect) either by changing levels of adenosine, which is known to interact with glucose and lipid metabolism, or by an indirect effect mediated through concomitant folic acid administration, thereby decreasing homocysteine levels.Recently, we also examined the prevalence of MetS in (a subgroup of) RA patients in the CARRÉ investigation, a prospective cohort study on prevalent and incident cardiovascular disease and its underlying cardiovascular risk factors [2]. The findings of Toms and colleagues stimulated us to perform additional analyses in our total study population (n = 353).The prevalences of MetS were 35% and 25% (Table (Table1)1) according to criteria of National Cholesterol Education Program (NCEP) 2004 and NCEP 2001, respectively. In multivariate backward regression analyses, we found significant associations between body mass index, pulse rate, creatinine levels, hypothyroidism and diabetes mellitus and the presence of MetS independently of the criteria used (Table (Table2).2). However, an independent association between single use of MTX or use of MTX in combination with other disease-modifying antirheumatic drugs, on the one hand, and a decreased prevalence of MetS, on the other hand, could not be demonstrated (even in the subgroup of patients over the age of 60).

Table 1

Characteristics of the study population
MetS presentaMetS absentaMetS presentbMetS absentb
n = 84n = 265n = 121n = 228P valueaP valueb
Demographics
 Age, years63.8 (± 8)63.1 (± 7)64.3 (± 8)62.7 (± 7)0.460.045
 Female, percentage766374620.0220.028
RA-related characteristics
 DAS284.2 (± 1.3)3.9 (± 1.4)4.1 (± 1.3)3.8 (± 1.4)0.210.062
 ESR, mm/hour22 (10-35)16 (9-30)20 (10-34)17 (9-31)0.0590.33
 CRP, mg/L11 (4-21)6 (3-16)8 (3-18)6 (3-19)0.0210.46
 RA duration, years7 (4-10)7 (4-10)7 (4-10)7 (5-10)0.830.19
 Erosion, percentage778379830.200.36
 Number of DMARDs1 (1-2)1 (1-1)1 (1-2)1 (1-1)0.260.43
 MTX current, percentage626063590.710.46
 MTX only, percentage393941380.950.67
 SSZ only, percentage8139140.230.22
 HCQ only, percentage14340.310.55
 Combination of DMARDs, percentage312529250.240.38
 TNF-blocking agent, percentage1191190.730.65
 Prednisolone only, percentage12311.000.42
Cardiovascular risk factors
 Current smoker, percentage263125320.420.15
 Pack-years, years17 (0-34)19 (2-38)19 (0-35)18 (2-38)0.230.75
 BMI, kg/m230 (± 4)26 (± 5)29 (± 4)25 (± 5)< 0.001< 0.001
 Creatinine, μmol/L89 (± 21)89 (± 16)91 (± 22)87 (± 14)0.990.070
 Renal clearance, mL/minute81 (± 24)72 (± 19)77 (± 23)73 (± 19)0.0030.062
 Pulse, beats per minute76 (± 11)73 (± 9)75 (± 11)73 (± 9)0.0050.015
 Diabetes mellitus, percentage143123< 0.0010.001
 Hypothyroidism, percentage122920.0010.003
Open in a separate windowaMetabolic syndrome (MetS) according to National Cholesterol Education Program (NCEP) 2001; bMetS according to NCEP 2004. Continuous variables are presented as means (± standard deviations) in cases of normal distribution or as medians (interquartile ranges) in cases of non-normal distribution. BMI, body mass index; CRP, C-reactive protein; DAS28, disease activity score using 28 joint counts; DMARD, disease-modifying antirheumatic drug; ESR, erythrocyte sedimentation rate; HCQ, hydroxychloroquine; MTX, methotrexate; RA, rheumatoid arthritis; SSZ, sulfasalazine; TNF, tumour necrosis factor.

Table 2

Variables associated with metabolic syndrome
UnivariateMultivariatea


OR95% CIP valueOR95% CIP value
Body mass index1.21.1-1.3< 0.0011.21.1-1.3< 0.001
Pulse1.031.01-1.060.0111.031.00-1.060.020
Creatinine1.011.00-1.020.0801.021.00-1.030.017
Hypothyroidism4.51.5-13.20.0074.71.5-15.00.009
Diabetes mellitus4.81.8-12.90.0024.51.4-15.20.014
Open in a separate windowaIn multivariate analyses, the following variables were used: gender, age, prednisolone only, methotrexate only, sulfasalazine only, hydroxychloroquine only, tumour necrosis factor-blocking agents, combination of disease-modifying antirheumatic drugs, pack-years, smoking, erosions, DAS28 (disease activity score using 28 joint counts), body mass index, pulse rate, creatinine levels, renal clearance, hypothyroidism and diabetes mellitus. CI, confidence interval; OR, odds ratio.Therefore, to get more support for a drug-specific effect, it is of interest to know whether or not in the study of Toms and colleagues the MTX effect was present only in the group of RA patients with single use of MTX or in the group of MTX-treated patients with other antirheumatic drugs. As patients with MetS were significantly older, it would give further information whether age was an independent risk factor for MetS in regression analyses. Moreover, as readers, we are not informed about comorbidities like diabetes and clinical hypothyroidism, which are notorious cardiometabolic risk factors. On the whole, we could not confirm a plausible protective role for the use of MTX and presence of MetS, and hence further investigation is required to explain the discrepancy between our findings and those of Toms and colleagues.  相似文献   

18.
Hepatitis C Virus (HCV) Sequence Variation Induces an HCV-Specific T-Cell Phenotype Analogous to Spontaneous Resolution     
Victoria Kasprowicz  Yu-Hoi Kang  Michaela Lucas  Julian Schulze zur Wiesch  Thomas Kuntzen  Vicki Fleming  Brian E. Nolan  Steven Longworth  Andrew Berical  Bertram Bengsch  Robert Thimme  Lia Lewis-Ximenez  Todd M. Allen  Arthur Y. Kim  Paul Klenerman  Georg M. Lauer 《Journal of virology》2010,84(3):1656-1663
Hepatitis C virus (HCV)-specific CD8+ T cells in persistent HCV infection are low in frequency and paradoxically show a phenotype associated with controlled infections, expressing the memory marker CD127. We addressed to what extent this phenotype is dependent on the presence of cognate antigen. We analyzed virus-specific responses in acute and chronic HCV infections and sequenced autologous virus. We show that CD127 expression is associated with decreased antigenic stimulation after either viral clearance or viral variation. Our data indicate that most CD8 T-cell responses in chronic HCV infection do not target the circulating virus and that the appearance of HCV-specific CD127+ T cells is driven by viral variation.Hepatitis C virus (HCV) persists in the majority of acutely infected individuals, potentially leading to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The cellular immune response has been shown to play a significant role in viral control and protection from liver disease. Phenotypic and functional studies of virus-specific T cells have attempted to define the determinants of a successful versus an unsuccessful T-cell response in viral infections (10). So far these studies have failed to identify consistent distinguishing features between a T-cell response that results in self-limiting versus chronic HCV infection; similarly, the impact of viral persistence on HCV-specific memory T-cell formation is poorly understood.Interleukin-7 (IL-7) receptor alpha chain (CD127) is a key molecule associated with the maintenance of memory T-cell populations. Expression of CD127 on CD8 T cells is typically only observed when the respective antigen is controlled and in the presence of significant CD4+ T-cell help (9). Accordingly, cells specific for persistent viruses (e.g., HIV, cytomegalovirus [CMV], and Epstein-Barr virus [EBV]) have been shown to express low levels of CD127 (6, 12, 14) and to be dependent on antigen restimulation for their maintenance. In contrast, T cells specific for acute resolving virus infections, such as influenza virus, respiratory syncytial virus (RSV), hepatitis B virus (HBV), and vaccinia virus typically acquire expression of CD127 rapidly with the control of viremia (5, 12, 14). Results for HCV have been inconclusive. The expected increase in CD127 levels in acute resolving but not acute persisting infection has been found, while a substantial proportion of cells with high CD127 expression have been observed in long-established chronic infection (2). We tried to reconcile these observations by studying both subjects with acute and chronic HCV infection and identified the presence of antigen as the determinant of CD127 expression.Using HLA-peptide multimers we analyzed CD8+ HCV-specific T-cell responses and CD127 expression levels in acute and chronic HCV infection. We assessed a cohort of 18 chronically infected subjects as well as 9 individuals with previously resolved infection. In addition, we longitudinally studied 9 acutely infected subjects (5 individuals who resolved infection spontaneously and 4 individuals who remain chronically infected) (Tables (Tables11 and and2).2). Informed consent in writing was obtained from each patient, and the study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki, as reflected in a priori approval from the local institutional review boards. HLA-multimeric complexes were obtained commercially from Proimmune (Oxford, United Kingdom) and Beckman Coulter (CA). The staining and analysis procedure was as described previously (10). Peripheral blood mononuclear cells (PBMCs) were stained with the following antibodies: CD3 from Caltag; CD8, CD27, CCR7, CD127, and CD38 from BD Pharmingen; and PD-1 (kindly provided by Gordon Freeman). Primer sets were designed for different genotypes based on alignments of all available sequences from the public HCV database (http://hcvpub.ibcp.fr). Sequence analysis was performed as previously described (8).

TABLE 1.

Patient information and autologous sequence analysis for patients with chronic and resolved HCV infection
CodeGenotypeStatusEpitope(s) targetedSequencea
02-031bChronicA1 NS3 1436-1444P: ATDALMTGY
A: no sequence
00-261bChronicA1 NS3 1436-1444P: ATDALMTGY
A: no sequence
99-242aChronicA2 NS3 1073-1083P: CINGVCWTV
No recognitionA: S-S--L---
A2 NS3 1406-1415P: KLVALGINAV
No recognitionA: A-RGM-L---
A2 NS5B 2594-2602P: ALYDVVTKL
A: no sequence
1111aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
A2 NS5 2594-2602P: ALYDVVTKL
A: ---------
00X3aChronicA2 NS5 2594-2602P: ALYDVVTKL
No recognitionA: -----IQ--
O3Qb1aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
03Sb1aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
02A1aChronicA1 NS3 1436-1444P: ATDALMTGY
A: no sequence
01N1aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
03H1aChronicA2 NS3 1073-1083P: CINGVCWTV
Full recognitionA: ----A----
01-391aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
03-45b1aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
06P3aChronicA1 NS3 1436-1444P: ATDALMTGY
DiminishedA: --------F
GS127-11aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
GS127-61aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
GS127-81bChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
GS127-161aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
GS127-201aChronicA2 NS3 1073-1083P: CINGVCWTV
A: ---------
04D4ResolvedA2 NS5 1987-1996P: VLSDFKTWKL
01-49b1ResolvedA2 NS5 1987-1996P: VLSDFKTWKL
A2 NS3 1406-1415P: KLVALGINAV
01-311ResolvedA1 NS3 1436-1444P: ATDALMTGY
B57 NS5 2629-2637P: KSKKTPMGF
04N1ResolvedA1 NS3 1436-1444P: ATDALMTGY
01E4ResolvedA2 NS5 1987-1996P: VLSDFKTWKL
98A1ResolvedA2 NS3 1073-1083P: CINGVCWTV
00-10c1ResolvedA24 NS4 1745-1754P: VIAPAVQTNW
O2Z1ResolvedA1 NS3 1436-1444P: ATDALMTGY
99-211ResolvedB7 CORE 41-49P: GPRLGVRAT
OOR1ResolvedB35 NS3 1359-1367P: HPNIEEVAL
Open in a separate windowaP, prototype; A, autologous. Identical residues are shown by dashes.bHIV coinfection.cHBV coinfection.

TABLE 2.

Patient information and autologous sequence analysis for patients with acute HCV infection
CodeGenotypeOutcomeEpitope targeted and time analyzedSequencea
5541aPersistingA2 NS3 1073-1083P: CINGVCWTV
wk 8A: ---------
wk 30A: ---------
03-321aPersistingB35 NS3 1359-1367P: HPNIEEVAL
wk 8A: ---------
No recognition (wk 36)A: S--------
04-111a (1st)Persisting (1st) Resolving (2nd)A2 NS5 2594-2602P: ALYDVVTKL
1b (2nd)A: no sequence
00231bPersistingA1 NS3 1436-1444P: ATDALMTGY
Diminished (wk 7)A: --------F
Diminished (wk 38)A: --------F
A2 NS3 1073-1083P: CINGVCWTV
wk 7A: ---------
wk 38A: ---------
A2 NS3 1406-1415P: KLVALGINAV
Full recognition (wk 7)A: --S-------
Full recognition (wk 38)A: --S-------
3201ResolvingA2 NS3 1273-1282P: GIDPNIRTGV
5991ResolvingA2 NS3 1073-1083P: CINGVCWTV
11441ResolvingA2 NS3 1073-1083P: CINGVCWTV
B35 NS3 1359-1367P: HPNIEEVAL
06L3aResolvingB7 CORE 41-49P: GPRLGVRAT
05Y1ResolvingA2 NS3 1073-1083P: CINGVCWTV
Open in a separate windowaP, prototype; A, autologous. Identical residues are shown by dashes.In established persistent infection, CD8+ T-cell responses against HCV are infrequently detected in blood using major histocompatibility complex (MHC) class I tetramers and are only observed in a small fraction of those sampled (10). We were able to examine the expression of CD127 on antigen-specific T cells in such a group of 18 individuals. We observed mostly high levels of CD127 expression (median, 66%) on these populations (Fig. (Fig.1a),1a), although expression was higher on HCV-specific T-cell populations from individuals with resolved infection (median, 97%; P = 0.0003) (Fig. 1a and c). Importantly, chronically infected individuals displayed CD127 expression levels over a much broader range than resolved individuals (9.5% to 100% versus 92 to 100%) (Fig. (Fig.1a1a).Open in a separate windowFIG. 1.Chronically infected individuals express a range of CD127 levels on HCV-specific T cells. (a) CD127 expression levels on HCV-specific T-cell populations in individuals with established chronic or resolved infection. While individuals with resolved infection (11 tetramer stains in 9 subjects) uniformly express high levels of CD127, chronically infected individuals (21 tetramer stains in 18 subjects) express a wide range of CD127 expression levels. (b) CD127 expression levels are seen to be highly dependent on sequence match with the autologous virus, based on analysis of 9 responses with diminished recognition of the autologous virus and 8 responses with intact epitopes. (c) CD127 expression levels on HCV-specific T-cell B7 CORE 41-49-specific T cells from individual 01-49 with resolved HCV infection (left-hand panel). Lower CD127 expression levels are observed on an EBV-specific T-cell population from the same individual (right-hand panel). APC-A, allophycocyanin-conjugated antibody. (d) Low CD127 levels are observed on A2 NS3 1073-1083 HCV-specific T cells from individual 111 with chronic HCV infection in whom sequencing revealed an intact autologous sequence.Given the relationship between CD127 expression and antigenic stimulation as well as the potential of HCV to escape the CD8 T-cell response through viral mutation, we sequenced the autologous circulating virus in subjects with chronic infection (Table (Table1).1). A perfect match between the optimal epitope sequence and the autologous virus was found for only 8 responses. These were the only T-cell populations with lower levels of CD127 expression (Fig. (Fig.1a,1a, b, and d). In contrast, HCV T-cell responses with CD127 expression levels comparable to those observed in resolved infection (>85%) were typically mismatched with the viral sequence, with some variants compatible with viral escape and others suggesting infection with a non-genotype 1 strain (10) (Fig. (Fig.1).1). Enzyme-linked immunospot (ELISPOT) assays using T-cell lines confirmed the complete abrogation of T-cell recognition and thus antigenic stimulation in cases of cross-genotype mismatch (10). Responses targeting the epitope A1-143D expressed somewhat lower levels of CD127 (between 70% and 85%). Viral escape (Y to F at position 9) in this epitope has been shown to be associated with significantly diminished but not fully abolished recognition (11a), and was found in all chronically infected subjects whose T cells targeted this epitope. Thus, expression of CD127 in the presence of viremia is closely associated with the capacity of the T cell to recognize the circulating virus.That a decrease in antigenic stimulation is indeed associated with the emergence of CD127-expressing CD8 T cells is further demonstrated in subject 111. This subject with chronic infection targeted fully conserved epitopes with T cells with low CD127 expression; with clearance of viremia under antiviral therapy, CD127-negative HCV-specific CD8 T cells were no longer detectable and were replaced by populations expressing CD127 (data not shown). Overall these data support the notion that CD127 expression on HCV-specific CD8+ T-cell populations is dependent on an absence of ongoing antigenic stimulation.To further evaluate the dynamic relationship between antigenic stimulation and CD127 expression, we also analyzed HCV-specific T-cell responses longitudinally during acute HCV infection (Fig. (Fig.2a).2a). CD127 expression was generally low or absent during the earliest time points. After resolution of infection, we see a contraction of the HCV-specific T-cell response together with a continuous increase in CD127 expression, until virtually all tetramer-positive cells express CD127 approximately 6 months after the onset of disease (Fig. (Fig.2a).2a). A similar increase in CD127 expression was not seen in one subject (no. 554) with untreated persisting infection that maintained a significant tetramer-positive T-cell population for an extended period of time (Fig. (Fig.2a).2a). Importantly, sequence analysis of the autologous virus demonstrated the conservation of this epitope throughout persistent infection (8). In contrast, subject 03-32 (with untreated persisting infection) developed a CD8 T-cell response targeting a B35-restricted epitope in NS3 from which the virus escaped (8). The T cells specific for this epitope acquired CD127 expression in a comparable manner to those controlling infection (Fig. (Fig.2a).2a). In other subjects with persisting infection, HCV-specific T-cells usually disappeared from blood before the time frame in which CD127 upregulation was observed in the other subjects.Open in a separate windowFIG. 2.CD127 expression levels during acute HCV infection. (a) CD127 expression levels on HCV-specific T cells during the acute phase of HCV infection (data shown for 5 individuals who resolve and two individuals who remain chronically infected). (b) HCV RNA viral load and CD127 expression levels on HCV-specific T cells (A2 NS3 1073-1083 and A1 NS3 1436-1444) for chronically infected individual 00-23. PEG-IFN-α, pegylated alpha interferon. (c) Fluorescence-activated cell sorter (FACS) plots showing longitudinal CD127 expression levels on HCV-specific T cells (A2 NS3 1073-1083 and A1 NS3 1436-1444) from individual 00-23.We also characterized the levels of CD127 expression on HCV-specific CD4+ T-cell populations with similar results: low levels were observed during the acute phase of infection and increased levels in individuals after infection was cleared (data not shown). CD127 expression on CD4 T cells could not be assessed in viral persistence since we failed to detect significant numbers of HCV-specific CD4+ T cells, in agreement with other reports.In our cohort of subjects with acute HCV infection, we had the opportunity to study the effect of reencounter with antigen on T cells with high CD127 expression in 3 subjects in whom HCV viremia returned after a period of viral control. Subject 00-23 experienced viral relapse after interferon treatment (11), while subjects 05-13 and 04-11 were reinfected with distinct viral isolates. In all subjects, reappearance of HCV antigen that corresponded to the HCV-specific T-cell population was associated with massive expansion of HCV-specific T-cell populations and a decrease in CD127 expression on these T cells (Fig. (Fig.22 and and3)3) (data not shown). In contrast, T-cell responses that did not recognize the current viral isolate did not respond with an expansion of the population or the downregulation of CD127. This was observed in 00-23, where the sequence of the A1-restricted epitope 143D was identical to the frequent escape mutation described above in chronically infected subjects associated with diminished T-cell recognition (Fig. (Fig.2b2b and and3a).3a). In 05-13, the viral isolate during the second episode of viremia contained a variant in one of the anchor residues of the epitope A2-61 (Fig. (Fig.2d).2d). These results show that CD127 expression on HCV-specific T cells follows the established principles observed in other viral infections.Open in a separate windowFIG. 3.Longitudinal phenotypic changes on HCV-specific T cells. (a) HCV RNA viral load and CD127 expression (%) levels on A2 NS5B 2594-2602 HCV-specific T cells for individual 04-11. This individual was administered antiviral therapy, which resulted in a sustained virological response. Following reinfection, the individual spontaneously cleared the virus. (b) Longitudinal frequency of A2 NS5B 2594-2602 HCV-specific T cells and PD-1 expression levels (mean fluorescent intensity [MFI]) for individual 04-11. (c) Longitudinal analysis of 04-11 reveals the progressive differentiation of HCV-specific A2 259F CD8+ T cells following repetitive antigenic stimulation. FACS plots show longitudinal CD127, CD27, CD57, and CCR7 expression levels on A2 NS5B 2594-2602 tetramer-positive cells from individual 04-11. PE-A, phycoerthrin-conjugated antibody.In addition to the changes in CD127 expression for T cells during reencounter with antigen, we detected comparable changes in other phenotypic markers shortly after exposure to viremia. First, we detected an increase in PD-1 and CD38 expression—both associated with recent T-cell activation. Additionally, we observed a loss of CD27 expression, a feature of repetitive antigenic stimulation (Fig. (Fig.3).3). The correlation of CD127 and CD27 expression further supports the notion that CD127 downregulation is a marker of continuous antigenic stimulation (1, 7).In conclusion we confirm that high CD127 expression levels are common for detectable HCV-specific CD8+ T-cell populations in chronic infection and find that this phenotype is based on the existence of viral sequence variants rather than on unique properties of HCV-specific T cells. This is further demonstrated by our data from acute HCV infection showing that viral escape as well as viral resolution is driving the upregulation of CD127. We also show that some, but not all, markers typically used to phenotypically describe virus-specific T cells show a similar dependence on cognate HCV antigen. Our data further highlight that sequencing of autologous virus is vital when interpreting data obtained in chronic HCV infection and raise the possibility that previous studies, focused on individuals with established chronic infection, may have been confounded by antigenic variation within epitopes or superinfection with different non-cross-reactive genotypes. Interestingly, it should be pointed out that this finding is supported by previous data from both the chimpanzee model of HCV and from human HBV infection (3, 13).Overall our data clearly demonstrate that the phenotype of HCV-specific CD8+ T cells is determined by the level of antigen-specific stimulation. The high number of CD127 positive virus-specific CD8+ T cells that is associated with the presence of viral escape mutations is a hallmark of chronic HCV infection that clearly separates HCV from other chronic viral infections (4, 14).  相似文献   

19.
Aluminum induced proteome changes in tomato cotyledons     
Suping Zhou  Roger Sauve  Theodore W Thannhauser 《Plant signaling & behavior》2009,4(8):769-772
Cotyledons of tomato seedlings that germinated in a 20 µM AlK(SO4)2 solution remained chlorotic while those germinated in an aluminum free medium were normal (green) in color. Previously, we have reported the effect of aluminum toxicity on root proteome in tomato seedlings (Zhou et al.1). Two dimensional DIGE protein analysis demonstrated that Al stress affected three major processes in the chlorotic cotyledons: antioxidant and detoxification metabolism (induced), glyoxylate and glycolytic processes (enhanced), and the photosynthetic and carbon fixation machinery (suppressed).Key words: aluminum, cotyledons, proteome, tomatoDifferent biochemical processes occur depending on the developmental stages of cotyledons. During early seed germination, before the greening of the cotyledons, glyoxysomes enzymes are very active. Fatty acids are converted to glucose via the gluconeogenesis pathway.2,3 In greening cotyledons, chloroplast proteins for photosynthesis and leaf peroxisomal enzymes in the glycolate pathway for photorespiration are metabolized.24 Enzymes involved in regulatory mechanisms such as protein kinases, protein phosphatases, and mitochondrial enzymes are highly expressed.3,5,6The chlorotic cotyledons are similar to other chlorotic counterparts in that both contains lower levels of chlorophyll, thus the photosynthetic activities are not as active. In order to understand the impact of Al on tomato cotyledon development, a comparative proteome analysis was performed using 2D-DIGE following the as previously described procedure.1 Some proteins accumulated differentially in Al-treated (chlorotic) and untreated cotyledons (Fig. 1). Mass spectrometry of tryptic digestion fragments of the proteins followed by database search has identified some of the differentially expressed proteins (Open in a separate windowFigure 1Image of protein spots generated by Samspot analysis of Al treated and untreated tomato cotyledons proteomes separated on 2D-DIGE.

Table 1

Proteins identified from tomato cotyledons of seeds germinating in Al-solution
Spot No.Fold (treated/ctr)ANOVA (p value)AnnotationSGN accession
12.340.00137412S seed storages protein (CRA1)SGN-U314355
22.130.003651unidentified
32.00.006353lipase class 3 familySGN-U312972
41.960.002351large subunit of RUBISCOSGN-U346314
51.952.66E-05arginine-tRNA ligaseSGN-U316216
61.950.003343unidentified
71.780.009219Monodehydroascorbate reductase (NADH)SGN-U315877
81.780.000343unidentified
91.754.67E-05unidentified
121.700.002093unidentified
131.680.004522unidentified
151.660.019437Glutamate dehydrogenase 1SGN-U312368
161.660.027183unidentified
171.622.01E-08Major latex protein-related, pathogenesis-relatedSGN-U312368
18−1.610.009019RUBisCo activaseSGN-U312543
191.610.003876Cupin family proteinSGN-U312537
201.600.000376unidentified
221.590.037216unidentified
0.003147unidentified
29−1.560.001267RUBisCo activaseSGN-U312543
351.520.001955unidentified
401.470.007025unidentified
411.470.009446unidentified
451.450.001134unidentified
59−1.405.91E-0512 S seed storage proteinSGN-U314355
611.391.96E-05MD-2-related lipid recognition domain containing proteinSGN-U312452
651.370.000608triosephosphate isomerase, cytosolicSGN-U312988
681.360.004225unidentified
811.320.001128unidentified
82−1.310.00140833 kDa precursor protein of oxygen-evolving complexSGN-U312530
871.300.002306unidentified
89−1.30.000765unidentified
921.290.000125superoxide dismutaseSGN-U314405
981.280.000246triosephosphate isomerase, cytosolicSGN-U312988
Open in a separate window  相似文献   

20.
Plasmid pAMS1-Encoded,Bacteriocin-Related “Siblicide” in Enterococcus faecalis     
Christine M. Sedgley  Don B. Clewell  Susan E. Flannagan 《Journal of bacteriology》2009,191(9):3183-3188
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号