首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Physiological and behavioral adjustments of small mammals are important strategies in response to variations in food availability. Although numerous of studies have been carried out in rodents, behavioral patterns in response to food deprivation and re-feeding (FD–RF) are still inconsistent. Here we examined effects of a 24 h FD followed by RF on general activity, serum leptin concentrations and gene expression of orexigenic and anorexigenic hypothalamic neuropeptides in striped hamsters (Cricetulus barabensis) with/without leptin supplements. The time spent on activity was increased by 2.5 fold in FD hamsters compared with controls fed ad libitum (P < 0.01). Body mass, fat mass as well as serum leptin concentrations were significantly decreased in FD hamsters in comparison with ad libitum controls, which were in parallel with hyperactivity. During re-feeding, leptin concentrations increased rapidly to pre-deprivation levels by 12 h, but locomotor activity decreased gradually and did not return to pre-deprivation levels until 5 days after re-feeding. Leptin administration to FD hamsters significantly attenuated the increased activity. Gene expression of hypothalamic neuropeptide Y (NPY) was upregulated in FD hamsters and fell down to control levels when hamsters were re-fed ad libitum, similar to that observed in activity behavior. Leptin supplement induced increases in serum leptin concentrations (184.1%, P < 0.05) in FD hamsters and simultaneously attenuated the increase in activity (45.8%, P < 0.05) and NPY gene expression (35%, P < 0.05). This may allow us to draw a more generalized conclusion that decreased leptin concentrations function as a starvation signal in animals under food shortage; to induce an increase in activity levels, leading animals to forage and/or migrate, and consequently increasing the chance of survival. Decreased concentrations of serum leptin in animals subjected to food shortage may induce an upregulation of gene expression of hypothalamus NPY, consequently driving a significant increase in foraging behavior.  相似文献   

4.
5.
The sexually dimorphic expression of the urinary protein genes of mice (Mup genes) in the liver is mediated by the different male and female temporal patterns of circulating GH. Normal females were induced to male levels when GH was administered by injection to mimic the male GH pattern, showing that expression at the male level does not require a male sex steroid status in addition to intermittent GH. Two Mup-alpha 2u-globulin hybrid transgenes with different Mup gene promoters showed sexually dimorphic expression, and their expression in females increased to male levels upon testosterone treatment. GH-deficient (lit/lit) mice did not express these transgenes, and GH-deficient females did not respond to testosterone treatment, showing that GH was required for induction. Both normal and GH-deficient females were induced to male levels when GH was administered by injection. This is the first report of a transgene responsive to GH. A transgene consisting of a Mup promoter fused to a Herpes simplex virus thymidine kinase reporter sequence also showed sexual dimorphism, although to a lesser degree. It was expressed at the same level in normal females and GH-deficient mice of both sexes and was induced when GH-deficient mice were treated with GH. We propose that this transgene has a basal constitutive expression, possibly due to the absence of any rodent DNA downstream of the promoter. Since expression of the transgene was significantly induced by GH, the GH response is due at least in part to sequences in the promoter region.  相似文献   

6.
Alveolar regenerative gene expression is unidentified partly because its onset, after a regenerative stimulus, is unknown. Toward addressing this void, we used a mouse model in which calorie restriction produces alveolar loss, and ad libitum access to food after calorie restriction induces alveolar regeneration. We selected four processes (cell replication, angiogenesis, extracellular matrix remodeling, and guided cell motion) that would be required to convert a flat segment of alveolar wall into a septum that increases gas-exchange surface area. Global gene expression supportive of processes required to form a septum was present within 3 h of allowing calorie-restricted mice food ad libitum. One hour after providing calorie-restricted mice food ad libitum, RNA-level expression supportive of cell replication was present with little evidence of expression supportive of angiogenesis, extracellular matrix remodeling, or guided cell motion. Cell replication was more directly assayed by measuring DNA synthesis in lung. This measurement was made 3 h after allowing calorie-restricted mice food ad libitum because translation may be delayed. Ad libitum food intake, following calorie restriction, elevated DNA synthesis. Thus RNA expression 1 h after allowing calorie-restricted mice food ad libitum supported increased cell replication; measurements at 3 h revealed increased DNA synthesis and RNA expression, supportive of the three other processes required to form a septum. These findings identify the first hour after providing calorie-restricted mice ad libitum access to food as the onset of gene expression in this model that supports processes needed for alveolar regeneration.  相似文献   

7.
Data analyses examining the relationship between circadian phase shifts and amplitudes are scarce. The aim of this data analysis was to explore the association between the phase shifts of gene expression, their amplitudes, and daily levels as a result of a given treatment under ad libitum or restricted feeding (RF) conditions. Two hundred forty data sets of gene expression (clock and metabolic genes) from various tissues and treatments were statistically analyzed. The data revealed a significant association between phase delays and increased amplitudes. Moreover, upon subgroup analyses, separating the RF from the non-RF groups, phase delays were significantly correlated with increased amplitudes and phase advances with decreased amplitudes. This picture was also achieved when clock genes, but not metabolic genes, were analyzed. In contrast, under RF, increased amplitude of metabolic genes correlated with phase advances. Moreover, phase advances under RF led to increased average daily levels in clock genes, but not in metabolic genes. In summary, these data demonstrated statistically significant association between phase shifts, daily levels, and amplitudes in circadian gene expression in peripheral tissues under timed versus ad libitum feeding conditions. (Author correspondence: )  相似文献   

8.
Energy metabolism, oxygen consumption rate (VO2), and respiratory quotient (RQ) in mice were monitored continuously throughout 12:12-h light-dark cycles before, during, and after time-restricted feeding (RF). Mice fed ad libitum showed robust daily rhythms in both parameters: high during the dark phase and low during the light phase. The daily profile of energy metabolism in mice under daytime-only feeding was reversed at the beginning of the first fasting night. A few days after daytime-only feeding began, RF also reversed the circadian core body temperature rhythm. Moreover, RF for 6 consecutive days shifted the phases of circadian expression patterns of clock genes in liver significantly by 8-10 h. When mice were fed a high-fat (HF) diet ad libitum, the daily rhythm of RQ dampened day by day and disappeared on the sixth day of RF, whereas VO2 showed a robust daily rhythm. Mice fed HF only in the daytime had reversed VO2 and RQ rhythms. Similarly, mice fed HF only in the daytime significantly phase shifted the clock gene expression in liver, whereas ad libitum feeding with HF had no significant effect on the expression phases of liver clock genes. These results suggested that VO2 is a sensitive indicator of entrainment in the mouse liver. Moreover, physiologically, it can be determined without any surgery or constraint. On the basis of these results, we hypothesize that a change in the daily VO2 rhythm, independent of the energy source, might drive phase shifts of circadian oscillators in peripheral tissues, at least in the liver.  相似文献   

9.
The expression of food-anticipatory activity (FAA) is induced by restricted feeding (RF), and its entrainment requires food-entrainable oscillators, the neuroanatomical basis of which is currently unclear. Although RF impacts various hormones, sex-related differences in FAA are unclear. 'Here, we report significantly more food-anticipatory wheel-running activity in male than in female mice during RF. In parallel with the sex-related difference in FAA, male and female mice display different food intake and body weight in response to RF. Since gonadal hormones could be involved in the sex-specific difference in FAA, we compared sham and gonadectomized male and female wild-type mice. In gonadectomized mice, the sex difference in FAA was abolished, indicating a role for gonadal hormones in FAA. Further, plasma concentrations of the hormone ghrelin were higher in female than in male mice during ad libitum (AL) feeding, and RF induced a temporal advance in its peak in both sexes. RF also shifted the expression peak of the circadian gene mPer1 in the hippocampus and liver, although no sex difference was found in either the level or the cyclic phase of its expression. Per1Brdm1 mutant mice were still sexually dimorphic for FAA, but diminished FAA was noted in both male and female Per2Brdm1 mutant mice. In summary, our results imply that gonadal hormones contribute to the sex difference in FAA, possibly through modulating ghrelin activity.  相似文献   

10.
Dietary restriction (DR) increases life span, health span and resistance to stress in a wide range of organisms. Work from a large number of laboratories has revealed evolutionarily conserved mechanisms that mediate the DR response. Here, we analyzed the genome-wide gene expression profiles of Caenorhabditis elegans under DR versus ad libitum conditions. Using the Ortho2ExpressMatrix tool, we searched for C. elegans orthologs of mouse genes that have been shown to be differentially expressed under DR conditions in nearly 600 experiments. Based on our bioinformatic approaches, we obtained 189 DR-responsive genes, and 45 of these are highly conserved from worm to man. Subsequent testing of sixteen genes that are up-regulated under DR identified eight genes that abolish the DR-induced resistance to heat stress in C. elegans. Further analyses revealed that fkb-4, dod-22 and ikb-1 genes also abolish increased life span in response to DR. The identified genes that are necessary for the DR response are sensitive to certain stress signals such as metabolic perturbances (dod-22, fkb-4 and nhr-85), DNA damage (ikb-1), heat shock (hsp-12.6) and cancer-like overgrowth (prk-2 and tsp-15). We propose that most of the DR-responsive genes identified are components of the recently discovered cellular surveillance-activated detoxification and defenses pathway, which is, among others, important for the survival of organisms in times of food deprivation.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-013-0363-5) contains supplementary material, which is available to authorized users.  相似文献   

11.
Pike-naive fathead minnows (Pimephales promelas) were fed ad libitum or deprived of food for 12, 24, or 48 h and then exposed to either conspecific alarm pheromone or distilled water and the odour of a predatory northern pike (Esox lucius). Minnows fed ad libitum or deprived for 12 h showed a stereotypic alarm response to the alarm pheromone (increased time under cover objects and increased occurrence of dashing and freezing behaviour); those deprived of food for 24 h showed a significantly reduced alarm response, while those deprived of food for 48 h did not differ significantly from the minnows exposed to a distilled water control. Upon subsequent testing in an Opto-Varimex activity meter, all groups initially exposed to alarm pheromone and pike odour exhibited an alarm response when exposed to pike odour alone. Those initially conditioned with distilled water and pike odour did nor show an alarm response to pike odour alone. These results demonstrate that there exists a significant trade-off between hunger level and predator-avoidance behaviour in fathead minnows and that minnows can learn the chemical cues of a predatory northern pike through association with alarm pheromone even in the absence of an observable alarm response.  相似文献   

12.
Long-distance migratory passerines initiate testicular recrudescence during spring migration to meet the demands of timely reproduction upon immediate arrival on the breeding grounds. The degree of testicular development is known to depend on environmental factors like stopover habitat quality; reproductive performance may be strongly impacted by testicular maturation upon arrival on the breeding grounds. We investigated the effect of stopover food availability on subsequent reproductive performance in garden warblers (Sylvia borin). Spring migration was simulated by repeated food deprivation and re-feeding to imitate the alternation of flight and stopover periods. During the two final stopover periods, males were either kept under ad libitum food (ad libitum males) or under limited food conditions (limited males). After simulated arrival in the breeding area, manipulation of previous stopover food availability resulted in significantly slower testicular recrudescence (p < 0.001) and decreased plasma testosterone (p < 0.01) in limited males compared to ad libitum males. Body mass change was not significantly different between the two groups (p = 0.38). Limited males also exhibited reduced performance in reproductive behaviours employed in territorial and sexual contexts. Limited males had a longer ‘freezing’ interval (p < 0.05) and decreased activity (p < 0.01) when challenged with a live male decoy. In direct confrontation between limited and ad libitum males in the presence of a female, limited males exhibited significantly fewer behavioural traits in sexual context, i.e. directed to the female (p < 0.001). Therefore, we suggest that conditions encountered during previous migratory stopover may affect subsequent annual reproductive success by influencing key reproductive behaviours.  相似文献   

13.
Mouse major urinary proteins (MUPs) are encoded by a family of ca. 35 genes that are expressed in a tissue-specific manner in several secretory organs; in the liver, in the submaxillary, sublingual, parotid and lachrymal glands, and in the skin sebaceous glands. In this paper we describe the isolation of a Mup gene, Mup-1.5a, which is expressed predominantly in the submaxillary gland of BALB/c mice. We show that Mup-1.5a is a member of a subfamily consisting of two closely related genes, both of which are closely linked to the Mup-1 locus on mouse chromosome 4. Mup-1 is the locus of a class of Mup genes (Group 1) expressed in the liver. The complete nucleotide sequence of Mup-1.5a has been determined, and was compared to a previously sequenced Group 1 Mup gene. The comparison shows that the differentially expressed Mup genes are uniformly divergent in exons, introns and in their flanking sequences. The regions of homology extend at least 5 kb into the 5' flanking region of Mup genes.  相似文献   

14.
15.
The beneficial role of dietary restriction (DR) was studied in streptozotocin (STZ)-induced diabetes in mice. The DR mice exhibited the lower blood glucose (mg/dl) level as compared to ad libitum (AL) fed ones. After 3 months' DR, STZ treatment to both AL and DR mice showed significant (p < 0.001) elevation of the blood glucose level in AL-fed mice, while a lower level of glucose was maintained in DR-fed mice. The ability of maintaining a low blood glucose level in STZ-treated DR mice indicated that STZ might have been ineffective from its action on beta cells of pancreas by long-term DR. Thus, these findings suggested that DR may be an important tool for preventing the diabetic conditions. However, further studies are required to know the mechanism(s) of DR protection against diabetogenic action of STZ in experimental animals.  相似文献   

16.
Death Receptor 5 (DR5) agonists demonstrate anti-tumor activity in preclinical models but have yet to demonstrate robust clinical responses. A key limitation may be the lack of patient selection strategies to identify those most likely to respond to treatment. To overcome this limitation, we screened a DR5 agonist Nanobody across >600 cell lines representing 21 tumor lineages and assessed molecular features associated with response. High expression of DR5 and Casp8 were significantly associated with sensitivity, but their expression thresholds were difficult to translate due to low dynamic ranges. To address the translational challenge of establishing thresholds of gene expression, we developed a classifier based on ratios of genes that predicted response across lineages. The ratio classifier outperformed the DR5+Casp8 classifier, as well as standard approaches for feature selection and classification using genes, instead of ratios. This classifier was independently validated using 11 primary patient-derived pancreatic xenograft models showing perfect predictions as well as a striking linearity between prediction probability and anti-tumor response. A network analysis of the genes in the ratio classifier captured important biological relationships mediating drug response, specifically identifying key positive and negative regulators of DR5 mediated apoptosis, including DR5, CASP8, BID, cFLIP, XIAP and PEA15. Importantly, the ratio classifier shows translatability across gene expression platforms (from Affymetrix microarrays to RNA-seq) and across model systems (in vitro to in vivo). Our approach of using gene expression ratios presents a robust and novel method for constructing translatable biomarkers of compound response, which can also probe the underlying biology of treatment response.  相似文献   

17.
18.
Single nucleotide polymorphisms (SNPs) in the FK506 binding protein 5 (FKBP5) gene combine with traumatic events to increase risk for post-traumatic stress and major depressive disorders (PTSD and MDD). These SNPs increase FKBP51 protein expression through a mechanism involving demethylation of the gene and altered glucocorticoid signaling. Aged animals also display elevated FKBP51 levels, which contribute to impaired resiliency to depressive-like behaviors through impaired glucocorticoid signaling, a phenotype that is abrogated in FKBP5−/− mice. But the age of onset and progressive stability of these phenotypes remain unknown. Moreover, it is unclear how FKBP5 deletion affects other glucocorticoid-dependent processes or if age-associated increases in FKBP51 expression are mediated through a similar epigenetic process caused by SNPs in the FKBP5 gene. Here, we show that FKBP51-mediated impairment in stress resiliency and glucocorticoid signaling occurs by 10 months of age and this increased over their lifespan. Surprisingly, despite these progressive changes in glucocorticoid responsiveness, FKBP5−/− mice displayed normal longevity, glucose tolerance, blood composition and cytokine profiles across lifespan, phenotypes normally associated with glucocorticoid signaling. We also found that methylation of Fkbp5 decreased with age in mice, a process that likely explains the age-associated increases in FKBP51 levels. Thus, epigenetic upregulation of FKBP51 with age can selectively impair psychological stress-resiliency, but does not affect other glucocorticoid-mediated physiological processes. This makes FKBP51 a unique and attractive therapeutic target to treat PTSD and MDD. In addition, aged wild-type mice may be a useful model for investigating the mechanisms of FKBP5 SNPs associated with these disorders.  相似文献   

19.
Macronutrient composition of diets can influence body-weight development and energy balance. We studied the short-term effects of high-protein (HP) and/or high-fat (HF) diets on energy expenditure (EE) and uncoupling protein (UCP1-3) gene expression. Adult male rats were fed ad libitum with diets containing different protein-fat ratios: adequate protein-normal fat (AP-NF): 20% casein, 5% fat; adequate protein-high fat (AP-HF): 20% casein, 17% fat; high protein-normal fat (HP-NF): 60% casein, 5% fat; high protein-high fat (HP-HF): 60% casein, 17% fat. Wheat starch was used for adjustment of energy content. After 4 days, overnight EE and oxygen consumption, as measured by indirect calorimetry, were higher and body-weight gain was lower in rats fed with HP diets as compared with rats fed diets with adequate protein content (P<.05). Exchanging carbohydrates by protein increased fat oxidation in HF diet fed groups. The UCP1 mRNA expression in brown adipose tissue was not significantly different in HP diet fed groups as compared with AP diet fed groups. Expression of different homologues of UCPs positively correlated with nighttime oxygen consumption and EE. Moreover, dietary protein and fat distinctly influenced liver UCP2 and skeletal muscle UCP3 mRNA expressions. These findings demonstrated that a 4-day ad libitum high dietary protein exposure influences energy balance in rats. A function of UCPs in energy balance and dissipating food energy was suggested. Future experiments are focused on the regulation of UCP gene expression by dietary protein, which could be important for body-weight management.  相似文献   

20.
The specific binding of [3H] dexamethasone to its receptor, activation of the hormone-receptor complexes and DNase I digestion of nuclear bound hormone-receptor complexes were studied in the liver of mice during dietary restriction (alternate days of feeding for 3 months) compared to animals fed ad libitum. Results indicate an increase of receptor level (fmol/mg protein) in the diet-restricted (DR) animals as compared to those fed ad libitum (AL). Scatchard analyses confirm the increase in the level of receptors in DR animals, while the affinity (Kd) remained same in both groups of mice. Protein slot-blot analysis also depicts the increase of the receptor level in DR fed compared to the AL fed animals. The extent of temperature- and salt-dependent activation of receptors showed no marked difference in AL- and DR-fed mice. DNase I extraction of bound hormone-receptor complexes from nuclei revealed similar pattern of digestion in both groups of animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号