首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein aggregation via polyglutamine stretches occurs in a number of severe neurodegenerative diseases such as Huntington's disease. We have investigated fibrillar aggregates of polyglutamine peptides below, at, and above the toxicity limit of around 37 glutamine residues using solid-state NMR and electron microscopy. Experimental data are consistent with a dry fibril core of at least 70-80 Å in width for all constructs. Solid-state NMR dipolar correlation experiments reveal a largely β-strand character of all samples and point to tight interdigitation of hydrogen-bonded glutamine side chains from different sheets. Two approximately equally frequent populations of glutamine residues with distinct sets of chemical shifts are found, consistent with local backbone dihedral angles compensating for β-strand twist or with two distinct sets of side-chain conformations. Peptides comprising 15 glutamine residues are present as single extended β-strands. Data obtained for longer constructs are most compatible with a superpleated arrangement with individual molecules contributing β-strands to more than one sheet and an antiparallel assembly of strands within β-sheets.  相似文献   

2.
Structural restraints provided by solid-state NMR measurements of the metarhodopsin II intermediate are combined with molecular dynamics simulations to help visualize structural changes in the light activation of rhodopsin. Since the timescale for the formation of the metarhodopsin II intermediate (> 1 ms) is beyond that readily accessible by molecular dynamics, we use NMR distance restraints derived from 13C dipolar recoupling measurements to guide the simulations. The simulations yield a working model for how photoisomerization of the 11-cis retinylidene chromophore bound within the interior of rhodopsin is coupled to transmembrane helix motion and receptor activation. The mechanism of activation that emerges is that multiple switches on the extracellular (or intradiscal) side of rhodopsin trigger structural changes that converge to disrupt the ionic lock between helices H3 and H6 on the intracellular side of the receptor.  相似文献   

3.
Gas vesicles are gas-filled buoyancy organelles with walls that consist almost exclusively of gas vesicle protein A (GvpA). Intact, collapsed gas vesicles from the cyanobacterium Anabaena flos-aquae were studied by solid-state NMR spectroscopy, and most of the GvpA sequence was assigned. Chemical shift analysis indicates a coil-α-β-β-α-coil peptide backbone, consistent with secondary-structure-prediction algorithms, and complementary information about mobility and solvent exposure yields a picture of the overall topology of the vesicle subunit that is consistent with its role in stabilizing an air-water interface.  相似文献   

4.
We present atomistic molecular dynamics results for fully hydrated bilayers composed of ceramide NS-24:0, free fatty acid 24:0 and cholesterol, to address the effect of the different components in the stratum corneum (the outermost layer of skin) lipid matrix on its structural properties. Bilayers containing ceramide molecules show higher in-plane density and hence lower rate of passive transport compared to phospholipid bilayers. At physiological temperatures, for all composition ratios explored, the lipids are in a gel phase with ordered lipid tails. However, the large asymmetry in the lengths of the two tails of the ceramide molecule leads to a fluidlike environment at the bilayer midplane. The lateral pressure profiles show large local variations across the bilayer for pure ceramide or any of the two-component mixtures. Close to the skin composition ratio, the lateral pressure fluctuations are greatly suppressed, the ceramide tails from the two leaflets interdigitate significantly, the depression in local density at the interleaflet region is lowered, and the bilayers have lowered elastic moduli. This indicates that the observed composition ratio in the stratum corneum lipid layer is responsible for both the good barrier properties and the stability of the lipid structure against mechanical stresses.  相似文献   

5.
Microdermabrasion is widely used as a non-invasive cosmetic technique that has recently been adapted to selectively remove stratum corneum to increase skin permeability for transdermal drug delivery. This study measured the kinetics of skin barrier recovery after stratum corneum removal using microdermabrasion in hairless guinea pigs. The skin was abraded at two sites on each animal, one of which was allowed to recover under occlusion while the other remained non-occluded. Histological measurements showed that skin barrier properties to sulforhodamine B largely recovered within 12 h, and the stratum corneum appeared largely reformed within 24 h for both occluded and non-occluded skin. Skin electrical resistance measurements showed significant recovery of the skin barrier within 24 h. We conclude that transdermal drug delivery may occur for up to 12 h after microdermabrasion in guinea pigs; however, humans will probably have a longer recovery time due to expected slower skin healing rates.  相似文献   

6.
Equinatoxin II (EqtII) is a soluble, 20 kDa pore-forming protein toxin isolated from the sea anemone Actinia equina. Although pore formation has long been known to occur in distinct stages, including monomeric attachment to phospholipid membranes followed by detachment of the N-terminal helical domain and oligomerization into the final pore assembly, atomistic-level detail of the protein-lipid interactions underlying these events remains elusive. Using high-resolution solution state NMR of uniformly-15N-labeled EqtII at the critical micelle concentration of dodecylphosphocholine, we have mapped the lipid-binding site through chemical shift perturbations. Subsequent docking of an EqtII monomer onto a dodecylphosphocholine micelle, followed by 400 ns of all-atom molecular dynamics simulation, saw several high-occupancy lipid-binding pockets stabilized by cation-π, hydrogen bonding, and hydrophobic interactions; and stabilization of the loop housing the conserved arginine-glycine-aspartate motif. Additional simulation of EqtII with an N-acetyl sphingomyelin micelle, for which high-resolution NMR data cannot be obtained due to aggregate formation, revealed that sphingomyelin specificity might occur via hydrogen bonding to the 3-OH and 2-NH groups unique to the ceramide backbone by side chains of D109 and Y113; and main chains of P81 and W112. Furthermore, a binding pocket formed by K30, K77, and P81, proximate to the hinge region of the N-terminal helix, was identified and may be implicated in triggering pore formation.  相似文献   

7.
Bovine lactoferrampin (LFampinB) is a newly discovered antimicrobial peptide found in the N1-domain of bovine lactoferrin (268–284), and consists of 17 amino-acid residues. It is important to determine the orientation and structure of LFampinB in bacterial membranes to reveal the antimicrobial mechanism. We therefore performed 13C and 31P NMR, 13C-31P rotational echo double resonance (REDOR), potassium ion-selective electrode, and quartz-crystal microbalance measurements for LFampinB with mimetic bacterial membrane and molecular-dynamics simulation in acidic membrane. 31P NMR results indicated that LFampinB caused a defect in mimetic bacterial membranes. Ion-selective electrode measurements showed that ion leakage occurred for the mimetic bacterial membrane containing cardiolipin. Quartz-crystal microbalance measurements revealed that LFampinB had greater affinity to acidic phospholipids than that to neutral phospholipids. 13C DD-MAS and static NMR spectra showed that LFampinB formed an α-helix in the N-terminus region and tilted 45° to the bilayer normal. REDOR dephasing patterns between carbonyl carbon nucleus in LFampinB and phosphorus nuclei in lipid phosphate groups were measured by 13C-31P REDOR and the results revealed that LFampinB is located in the interfacial region of the membrane. Molecular-dynamics simulation showed the tilt angle to be 42° and the rotation angle to be 92.5° for Leu3, which are in excellent agreement with the experimental values.  相似文献   

8.
D. Groen 《Biophysical journal》2009,97(8):2242-2249
The characteristic 13-nm lamellar phase that is formed by lipids in the outermost layer of the skin, the stratum corneum (SC), is very important for the barrier function of the skin. To gain more insight into the molecular organization of this lamellar phase, we performed small-angle x-ray diffraction (SAXD) using various lipid mixtures mimicking the lipid composition in SC. In the SAXD pattern of each mixture, at least seven diffraction orders were observed, attributed to the lamellar phase with a repeat distance ranging from 12.1 to 13.8 nm. Using the sampling method based on the variation in repeat distance, we selected phase angles for the first six diffraction orders. Using these phase angles for the lamellar phase, a high-resolution electron density distribution could be calculated. Subsequently, from SAXD patterns of isolated SC, the electron density distribution of the lamellar phase was also calculated and appeared to be very similar to that in the lipid mixtures. This demonstrates that the lipid mixtures serve as an excellent model for the lipid organization in SC, not only with respect to the repeat distance, but also in terms of the electron density distribution within the unit cell.  相似文献   

9.
NADPH-cytochrome P450 oxidoreductase (CYPOR) is an essential redox partner of the cytochrome P450 (cyt P450) superfamily of metabolic enzymes. In the endoplasmic reticulum of liver cells, such enzymes metabolize ∼75% of the pharmaceuticals in use today. It is known that the transmembrane domain of CYPOR plays a crucial role in aiding the formation of a complex between CYPOR and cyt P450. Here we present the transmembrane structure, topology, and dynamics of the FMN binding domain of CYPOR in a native membrane-like environment. Our solid-state NMR results reveal that the N-terminal transmembrane domain of CYPOR adopts an α-helical conformation in the lipid membrane environment. Most notably, we also show that the transmembrane helix is tilted ∼13° from the lipid bilayer normal, and exhibits motions on a submillisecond timescale including rotational diffusion of the whole helix and fluctuation of the helical director axis. The approaches and the information reported in this study would enable further investigations on the structure and dynamics of the full-length NADPH-cytochrome P450 oxidoreductase and its interaction with other membrane proteins in a membrane environment.  相似文献   

10.
Cross-polarization magic-angle spinning (CPMAS) 13C NMR spectroscopy has been used to characterize covalent conjugates of alachlor, an alpha-chloroacetamide hapten, with glutathione (GSH) and bovine serum albumin (BSA). The solid-state NMR method demonstrates definitively the covalent nature of these conjugates and can also be used to characterize the sites of hapten attachment to proteins. Three different sites of alachlor binding are observed in the BSA system. Accurate quantitation of the amount of hapten covalently bound to GSH and BSA is reported. The solid-state 13C NMR technique can easily be generalized to study other small molecule/protein conjugates and can be used to assist the development and refinement of synthetic methods needed for the successful formation of such protein alkylation products.  相似文献   

11.
NADPH-cytochrome P450 oxidoreductase (CYPOR) is an essential redox partner of the cytochrome P450 (cyt P450) superfamily of metabolic enzymes. In the endoplasmic reticulum of liver cells, such enzymes metabolize ∼75% of the pharmaceuticals in use today. It is known that the transmembrane domain of CYPOR plays a crucial role in aiding the formation of a complex between CYPOR and cyt P450. Here we present the transmembrane structure, topology, and dynamics of the FMN binding domain of CYPOR in a native membrane-like environment. Our solid-state NMR results reveal that the N-terminal transmembrane domain of CYPOR adopts an α-helical conformation in the lipid membrane environment. Most notably, we also show that the transmembrane helix is tilted ∼13° from the lipid bilayer normal, and exhibits motions on a submillisecond timescale including rotational diffusion of the whole helix and fluctuation of the helical director axis. The approaches and the information reported in this study would enable further investigations on the structure and dynamics of the full-length NADPH-cytochrome P450 oxidoreductase and its interaction with other membrane proteins in a membrane environment.  相似文献   

12.
13C NMR spectra of some 3-C branched D-allofuranoses and D-ribofuranoses were obtained and interpreted. The impact of attaching the alkyl substitute to the monosaccharides on chemical shifting of the adjacent carbon atoms was shown. The experimental data are useful for elucidating structures of analogous compounds by 13C NMR.  相似文献   

13.
In this paper, we analyzed the interaction of Z19 prolamin from a BR451 maize variety and pennisetin from a BRS1501 pearl millet variety with 1-(13)C-enriched oleic acid (OA) by (13)C NMR in solution. In both proteins, we identified the presence of free fatty acids by NMR in solid state and solution. The interactions were analyzed at the protein/OA molar ratios of 1:1 and 1:4. In the Z19/OA 1:1 mixture in 70% ethanol and 30% D(2)O, the chemical shift of OA C1 was 182.9 ppm, about 3 ppm above that of the pure OA in the same solvent. In contrast, upon addition of OA to the pennisetin (1:1), the chemical-shift value slightly decreased by less than 1 ppm. The chemical-shift titration curve of OA C1 in an apparent pH range of 5.5-7.3 shifted by approximately 0.3 pH units toward higher pH values in the pennisetin/OA 1:1 complex relative to the pure OA. The results obtained for the pennisetin/OA 1:4 mixture were similar to the complexes at a 1:1 molar ratio. A significant difference was observed between the 1:1 and 1:4 curves for Z19. The titration curve for Z19/OA 1:1 suggested specific binding at the sites with electrostatic interaction.  相似文献   

14.
Solid-state 13C nuclear magnetic resonance was used to characterize the molecular ordering of cellulose in a cell-wall preparation containing mostly primary walls obtained from the leaves of Arabidopsis thaliana. Proton and 13C spin relaxation time constants showed that the cellulose was in a crystalline rather than a paracrystalline state or amorphous state. Cellulose chains were distributed between the interiors (40%) and surfaces (60%) of crystallites, which is consistent with crystallite cross-sectional dimensions of about 3 nm. Digital resolution enhancement revealed signals indicative of triclinic and monoclinic crystalline forms of cellulose mixed in similar proportions. Of the five nuclear spin relaxation processes used, proton rotating-frame relaxation provided the clearest distinction between cellulose and other cell-wall components for purposes of editing solid-state 13C nuclear magnetic resonance spectra.  相似文献   

15.
Solid-state NMR spectroscopy is emerging as a powerful approach to determine structure, topology, and conformational dynamics of membrane proteins at the atomic level. Conformational dynamics are often inferred and quantified from the motional averaging of the NMR parameters. However, the nature of these motions is difficult to envision based only on spectroscopic data. Here, we utilized restrained molecular dynamics simulations to probe the structural dynamics, topology and conformational transitions of regulatory membrane proteins of the calcium ATPase SERCA, namely sarcolipin and phospholamban, in explicit lipid bilayers. Specifically, we employed oriented solid-state NMR data, such as dipolar couplings and chemical shift anisotropy measured in lipid bicelles, to refine the conformational ensemble of these proteins in lipid membranes. The samplings accurately reproduced the orientations of transmembrane helices and showed a significant degree of convergence with all of the NMR parameters. Unlike the unrestrained simulations, the resulting sarcolipin structures are in agreement with distances and angles for hydrogen bonds in ideal helices. In the case of phospholamban, the restrained ensemble sampled the conformational interconversion between T (helical) and R (unfolded) states for the cytoplasmic region that could not be observed using standard structural refinements with the same experimental data set. This study underscores the importance of implementing NMR data in molecular dynamics protocols to better describe the conformational landscapes of membrane proteins embedded in realistic lipid membranes.  相似文献   

16.
C. Wang  Q. Teng    T. A. Cross 《Biophysical journal》1992,61(6):1550-1556
High resolution structural elucidation of macromolecular structure by solid-state nuclear magnetic resonance requires the preparation of uniformly aligned samples that are isotopically labeled. In addition, to use the chemical shift interaction as a high resolution constraint requires an in situ tensor characterization for each site of interest. For 13C in the peptide backbone, this characterization is complicated by the presence of dipolar coupled 14N from the peptide bond. Here the 13C1-Gly2 site in gramicidin A is studied both as a dry powder and in a fully hydrated lipid bilayer environment. Linewidths reported for the oriented samples are a factor of five narrower than those reported elsewhere, and previous misinterpretations of the linewidths are corrected. The observed frequency from oriented samples is shown to be consistent with the recently determined structure for this site in the gramicidin backbone. It is also shown that, whereas a dipolar coupling between 13C and 14N is apparent in dry preparations of the polypeptide, in a hydrated bilayer the dipolar coupling is absent, presumably due to a `self-decoupling' mechanism.  相似文献   

17.
Solid-state NMR spectroscopy is emerging as a powerful approach to determine structure, topology, and conformational dynamics of membrane proteins at the atomic level. Conformational dynamics are often inferred and quantified from the motional averaging of the NMR parameters. However, the nature of these motions is difficult to envision based only on spectroscopic data. Here, we utilized restrained molecular dynamics simulations to probe the structural dynamics, topology and conformational transitions of regulatory membrane proteins of the calcium ATPase SERCA, namely sarcolipin and phospholamban, in explicit lipid bilayers. Specifically, we employed oriented solid-state NMR data, such as dipolar couplings and chemical shift anisotropy measured in lipid bicelles, to refine the conformational ensemble of these proteins in lipid membranes. The samplings accurately reproduced the orientations of transmembrane helices and showed a significant degree of convergence with all of the NMR parameters. Unlike the unrestrained simulations, the resulting sarcolipin structures are in agreement with distances and angles for hydrogen bonds in ideal helices. In the case of phospholamban, the restrained ensemble sampled the conformational interconversion between T (helical) and R (unfolded) states for the cytoplasmic region that could not be observed using standard structural refinements with the same experimental data set. This study underscores the importance of implementing NMR data in molecular dynamics protocols to better describe the conformational landscapes of membrane proteins embedded in realistic lipid membranes.  相似文献   

18.
The 13C NMR spectra of 15 neolignans of several structural types and two lignans were analyzed and their carbon shifts assigned. The shifts of pyrogallol ether and ethyl phenyl carbinyl ether models were used in this connection. The stereochemistry of a dimeric sideproduct in the preparation of the latter models was determined by 13C NMR analysis.  相似文献   

19.
Penicillium charlesii secretes a galactofuranosyl and phosphodiester-containing peptidophosphogalactomannan (pPGM). A linear mannan was prepared from pPGM by treatment with 48% aqueous HF which selectively cleaves galactofuranosyl and phosphodiesters; treatment with alkaline borohydride releases the mannan from the polypeptide. Mannan from P. charlesii cultured in D-[1,2-13C2]glucose contained mannopyranosyl residues which were enriched in 13C at both C-1 and C-2 and, to a lesser extent, at C-5 and C-6. The mannan was examined with a combination of 13C NMR INADEQUATE pulse sequence and selective 13C saturation to assign the resonance frequency of anomeric carbons directly coupled to specific C-2 signals. Three species of mannosyl residues, each substituted with a glycosidic linkage at C-2, and a fourth species substituted at C-6 and not substituted at C-2 were observed. Mannan obtained from P. charlesii cultured in D-[6-13C]glucose contained mannopyranosyl residues which were enriched in 13C primarily in C-6. The mannan was examined by DEPT 13C NMR to determine the number of species which were substituted at C-6. Mannan, treated as described above, contained a 1----6-linked mannopyranosyl species. pPGM contains minor quantities of at least four other substances attached to hydroxymethyl groups of the hexosyl residues.  相似文献   

20.
13C NMR spectroscopy has been used to characterize Amadori (ketoamine) adducts formed by reaction of [2-13C]glucose with free amino groups of protein. The spectra of glycated proteins were acquired in phosphate buffer at pH 7.4 and were interpreted by reference to the spectra of model compounds, N alpha-formyl-N epsilon-fructose-lysine and glycated poly-L-lysine (GlcPLL). The anomeric carbon region of the spectrum (approximately 90-105 ppm) of glycated cytochrome c was superimposable on that of N alpha-formyl-N epsilon-fructose-lysine, and contained three peaks characteristic of the alpha- and beta-furanose and beta-pyranose anomers of Amadori adducts to peripheral lysine residues on protein (pK alpha approximately 10.5). The spectrum of GlcPLL yielded six anomeric carbon resonances; the second set of three was displaced about 2 ppm to lower shielding of the first and was assigned to the Amadori adduct at the alpha-amino terminus (pK alpha approximately 7.5). The spectrum of glycated RNase was similar to that of GlcPLL, but contained a third set of three signals attributable to modification of active site lysine 41 (pK alpha approximately 8.8). The assignments for RNase were confirmed by analysis of spectra taken at pH 4 and under denaturing conditions. The spectrum of glycated hemoglobin was comparable to that of GlcPLL, and distinct resonances could be assigned to Amadori adducts at amino-terminal valine and intrachain N epsilon-lysine residues. Chemical analyses were performed to measure the relative extent of alpha- and epsilon-amino group modification in the glycated macromolecules, and the results were compared with estimates based on integration of the NMR spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号