首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Cyclic electron flow (CEFI) has been proposed to balance the chloroplast energy budget, but the pathway, mechanism, and physiological role remain unclear. We isolated a new class of mutant in Arabidopsis thaliana, hcef for high CEF1, which shows constitutively elevated CEF1. The first of these, hcef1, was mapped to chloroplast fructose-1,6-bisphosphatase. Crossing hcef1 with pgr5, which is deficient in the antimycin A–sensitive pathway for plastoquinone reduction, resulted in a double mutant that maintained the high CEF1 phenotype, implying that the PGR5-dependent pathway is not involved. By contrast, crossing hcef1 with crr2-2, deficient in thylakoid NADPH dehydrogenase (NDH) complex, results in a double mutant that is highly light sensitive and lacks elevated CEF1, suggesting that NDH plays a direct role in catalyzing or regulating CEF1. Additionally, the NdhI component of the NDH complex was highly expressed in hcef1, whereas other photosynthetic complexes, as well as PGR5, decreased. We propose that (1) NDH is specifically upregulated in hcef1, allowing for increased CEF1; (2) the hcef1 mutation imposes an elevated ATP demand that may trigger CEF1; and (3) alternative mechanisms for augmenting ATP cannot compensate for the loss of CEF1 through NDH.  相似文献   

2.
3.
4.
Abstract: Although the mechanism of neuronal death in neurodegenerative diseases remains unknown, it has been hypothesized that relatively minor metabolic defects may predispose neurons to N -methyl- d -aspartate (NMDA) receptor-mediated excitotoxic damage in these disorders. To further investigate this possibility, we have characterized the excitotoxic potential of the reversible succinate dehydrogenase (SDH) inhibitor malonate. After its intrastriatal stereotaxic injection into male Sprague-Dawley rats, malonate produced a dose-dependent lesion when assessed 3 days after surgery using cytochrome oxidase histochemistry. This lesion was attenuated by coadministration of excess succinate, indicating that it was caused by specific inhibition of SDH. The lesion was also prevented by administration of the noncompetitive NMDA antagonist MK-801. MK-801 did not induce hypothermia, and hypothermia itself was not neuroprotective, suggesting that the neuroprotective effect of MK-801 was due to blockade of the NMDA receptor ion channel and not to any nonspecific effect. The competitive NMDA antagonist LY274614 and the glycine site antagonist 7-chlorokynurenate also profoundly attenuated malonate neurotoxicity, further indicating an NMDA receptor-mediated event. Finally, the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) antagonist NBQX (2,3-dihydroxy-6-nitro-7-sulfamoylbenzo( f )-quinoxaline) was ineffective at preventing malonate toxicity at a dose that effectively reduced S -AMPA toxicity, indicating that non-NMDA receptors are involved minimally, if at all, in the production of the malonate lesion. We conclude that inhibition of SDH by malonate results in NMDA receptor-mediated excitotoxic neuronal death. If this mechanism of "secondary" or "weak" excitotoxicity plays a role in neurodegenerative disease, NMDA antagonists and other "antiexcitotoxic" strategies may have therapeutic potential for these diseases.  相似文献   

5.
Succinate dehydrogenase (SDH) was purified by DEAE C-32 chromatography from the mitochondrial fraction of corn ( Zea mays L. ). Free calmodulin (CAM) could not be detected in the purified SDH with the method based on the ability of SDH to stimulate NAD kinase, but it still contained some CAM when measured with the ELISA method. Purified SDH could stimulate NAD kinase only after heating to release free CAM. Plain polyacrylamide gel electrophoresis (PAGE) of the pufffled SDH revealed only one peptide band, but three peptide bands were shown on SDS-PAGE, their molecular weight being 67.0 kD, 30.0 kD, 16.7 kD respectively. The 67.0 kD and 30.0 kD peptides corresponded to the large and small molecular subunit of SDH respectively. The Rf value of the 16.7 kD peptide band was identical to the standard CAM in the SDS-PAGE. From all the above evidence, the authors suggested that CAM might exert its function of SDH regulation in a binding state with the SDH molecule.  相似文献   

6.
In chronic infection, Mycobacterium tuberculosis bacilli are thought to enter a metabolic program that provides sufficient energy for maintenance of the protonmotive force, but is insufficient to meet the demands of cellular growth. We sought to understand this metabolic downshift genetically by targeting succinate dehydrogenase, the enzyme which couples the growth processes controlled by the TCA cycle with the energy production resulting from the electron transport chain. M. tuberculosis contains two operons which are predicted to encode succinate dehydrogenase enzymes (sdh-1 and sdh-2); we found that deletion of Sdh1 contributes to an inability to survive long term stationary phase. Stable isotope labeling and mass spectrometry revealed that Sdh1 functions as a succinate dehydrogenase during aerobic growth, and that Sdh2 is dispensable for this catalysis, but partially overlapping activities ensure that the loss of one enzyme can incompletely compensate for loss of the other. Deletion of Sdh1 disturbs the rate of respiration via the mycobacterial electron transport chain, resulting in an increased proportion of reduced electron carrier (menaquinol) which leads to increased oxygen consumption. The loss of respiratory control leads to an inability to recover from stationary phase. We propose a model in which succinate dehydrogenase is a governor of cellular respiration in the adaptation to low oxygen environments.  相似文献   

7.
Clinical trials have shown oncolytic adenoviruses to be tumor selective with minimal toxicity toward normal tissue. The virus ONYX-015, in which the gene encoding the early region 1B 55-kDa (E1B-55K) protein is deleted, has been most effective when used in combination with either chemotherapy or radiation therapy. Therefore, improving the oncolytic nature of tumor-selective adenoviruses remains an important objective for improving this form of cancer therapy. Cells infected during the G1 phase of the cell cycle with the E1B-55K deletion mutant virus exhibit a reduced rate of viral late protein synthesis, produce fewer viral progeny, and are less efficiently killed than cells infected during the S phase. Here we demonstrate that the G1 restriction imposed on the E1B-55K deletion mutant virus is due to the viral oncogene encoded by open reading frame 1 of early region 4 (E4orf1). E4orf1 has been reported to signal through the phosphatidylinositol 3′-kinase pathway leading to the activation of Akt, mTOR, and p70 S6K. Evidence presented here shows that E4orf1 may also induce the phosphorylation of Akt and p70 S6K in a manner that depends on Rac1 and its guanine nucleotide exchange factor Tiam1. Accordingly, agents that have been reported to disrupt the Tiam1-Rac1 interaction or to prevent phosphorylation of the ribosomal S6 kinase partially alleviated the E4orf1 restriction to late viral protein synthesis and enhanced tumor cell killing by the E1B-55K mutant virus. These results demonstrate that E4orf1 limits the oncolytic nature of a conditionally replicating adenovirus such as ONYX-015. The therapeutic value of similar oncolytic adenoviruses may be improved by abrogating E4orf1 function.Conditionally replicating adenoviruses are a novel class of biological agents used to treat cancer (57). The E1B-55K deletion mutant virus ONYX-015, originally known as dl1520 (4), is one of the first of such agents (7). H101 is another E1B-55K deletion mutant adenovirus that is being used for tumor therapy in China (30, 78). We previously reported that cells infected during the G1 phase of the cell cycle with E1B-55K deletion mutant adenoviruses exhibit a reduced rate of viral late protein synthesis, produce fewer viral progeny, and are less effectively killed than cells infected during S phase (34, 35, 66). These observations indicated that the E1B-55K deletion mutant virus ONYX-015 is restricted in cells infected in G1. This restriction is significant because a large fraction of cells within a tumor exist in the G1 phase of the cell cycle (71). Here we show that the G1 restriction imposed on the E1B-55K deletion mutant virus is due to the viral oncogene encoded by open reading frame 1 of early region 4 (E4orf1).The E4orf1-encoded protein is a small adapter molecule that associates with PDZ domain-containing proteins including MUPP1, PATJ, MAGI-1, ZO-2, and Dlg1 (46). PDZ domain-containing proteins often serve as scaffolds for the assembly of signaling complexes at the plasma membrane (64). Through its association with PDZ domain-containing proteins, the E4orf1-encoded protein promotes signaling through the phosphatidylinositol 3′-kinase (PI3-kinase) pathway to effectors such as protein kinase B (Akt), the mammalian target of rapamycin (mTOR), and the S6 ribosomal protein kinase (p70 S6K) (27, 54). Through these effectors, PI3-kinase alters protein synthesis and cell survival (21, 28). E4orf1 is the principal oncogenic determinant of species D adenovirus type 9 (42). The transforming ability of E4orf1 can be blocked by the PI3-kinase inhibitor LY249002 (27). However, phosphorylation of p70 S6K can also proceed by pathways that are independent of PI3-kinase or Akt. For example, the Rho-like GTPase Rac1 can activate p70 S6K (17). Rac1 is itself regulated by cellular factors to which it binds, including the Rac1-specific guanine nucleotide exchange factor T-cell lymphoma invasion and metastasis 1 protein (Tiam1). Tiam1 and the neural tissue-associated F-actin-binding protein neurabin II or spinophilin recruit p70 S6K into a complex containing Rac1, resulting in increased phosphorylation of p70 S6K (12, 36, 50). Interestingly, both Tiam1 and neurabin II are PDZ-containing proteins. These observations provided a potential basis by which E4orf1 may modulate protein synthesis and cell survival.In this report, we show for the first time that E4orf1 restricts the abilities of the E1B-55K deletion mutant virus to produce viral progeny, to direct viral late protein synthesis, and to kill tumor cells. Drugs that are reported to prevent phosphorylation of p70 S6K or to disrupt the interaction between Tiam1 and Rac1 increase the cell-killing ability of the E1B-55K deletion mutant virus to nearly the same level observed for an E1B-55K/E4orf1 double mutant and the wild-type virus. By uncovering a role for E4orf1 in the course of a lytic adenovirus infection, this study presents novel genetic and pharmacological means by which the effectiveness of replicating oncolytic adenoviruses can be improved.  相似文献   

8.
Eleven succinate-accumulating mutants of Bacillus subtilis have been mapped by transformation and transduction crosses and characterized with respect to activities of citric acid cycle enzymes. These mutants could be divided into three genetic groups. Nine of the mutants were found to map between argA and leu in the citF locus. A second group was located between lys-1 and trpC2 and the third group could not be located on the B. subtilis chromosome in extensive transduction crosses. All of the citF mutants lack detectable succinate dehydrogenase activity, whereas both of the other groups show a reduced level of this enzyme. In addition, most of the mutants in the citF locus lack cytochrome a, whereas the level of this cytochrome is normal in the other two groups. A procedure has been devised for the solubilization of the succinate dehydrogenase from the membrane of B. subtilis with the non-ionic detergent Brij 58. Some properties of the soluble and bound forms of succinate dehydrogenase are described.  相似文献   

9.
The enzymatic function of succinate dehydrogenase (SDH) is dependent on covalent attachment of FAD on the ∼70-kDa flavoprotein subunit Sdh1. We show presently that flavinylation of the Sdh1 subunit of succinate dehydrogenase is dependent on a set of two spatially close C-terminal arginine residues that are distant from the FAD binding site. Mutation of Arg582 in yeast Sdh1 precludes flavinylation as well as assembly of the tetrameric enzyme complex. Mutation of Arg638 compromises SDH function only when present in combination with a Cys630 substitution. Mutations of either Arg582 or Arg638/Cys630 do not markedly destabilize the Sdh1 polypeptide; however, the steady-state level of Sdh5 is markedly attenuated in the Sdh1 mutant cells. With each mutant Sdh1, second-site Sdh1 suppressor mutations were recovered in Sdh1 permitting flavinylation, stabilization of Sdh5 and SDH tetramer assembly. SDH assembly appears to require FAD binding but not necessarily covalent FAD attachment. The Arg residues may be important not only for Sdh5 association but also in the recruitment and/or guidance of FAD and or succinate to the substrate site for the flavinylation reaction. The impaired assembly of SDH with the C-terminal Sdh1 mutants suggests that FAD binding is important to stabilize the Sdh1 conformation enabling association with Sdh2 and the membrane anchor subunits.  相似文献   

10.
Khalilov  R. A.  Dzhafarova  A. M.  Abdullaev  V. R. 《Biophysics》2022,67(6):948-959
Biophysics - We have previously shown that short-term moderate (30°C) hypothermia contributed to a significant increase in the intensity of free radical processes and changes in a number of...  相似文献   

11.
Malonate was studied for its effect on succinate dehydrogenase activity and conidiation. It Was found to stimulate the succinate dehydrogenase activity and also conidiation of Neurospora crassa. The efficiency of sucrose metabolization for cellular synthesis was improved in malonate supplemented cultures. High Concentration (0.5 M) had a distinct toxic effect on conidiation and economic efficiency. Teratological structures were observed at 0.5 M malonate concentration. A stimulation of the glyoxylate cycle is considered to be one of the factors responsible for the conidiogenic effect.  相似文献   

12.
Abstract: We report that a subtoxic dose of the succinate dehydrogenase (SDH) inhibitor malonate greatly enhances the neurotoxicity of three different excitatory amino acid agonists: N-methyl-d -aspartate (NMDA), S-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (S-AMPA), and l -glutamate. In male Sprague-Dawley rats, intrastriatal stereotaxic injection of malonate alone (0.6 µmol), NMDA alone (15 nmol), S-AMPA alone (1 nmol), or glutamate alone (0.6 µmol) produced negligible toxicity as assessed by measurement of lesion volume. Coinjection of subtoxic malonate with NMDA produced a large lesion (15.2 ± 1.4 mm3), as did coinjection of malonate with S-AMPA (11.0 ± 1.0 mm3) or glutamate (12.8 ± 0.7 mm3). Administration of the noncompetitive NMDA antagonist MK-801 (5 mg/kg i.p.) completely blocked the toxicity of malonate plus NMDA (0.5 ± 0.3 mm3). This dose of MK-801 had little effect on the lesion produced by malonate plus S-AMPA (9.0 ± 0.7 mm3), but it attenuated the toxicity of malonate plus glutamate by ~40% (7.5 ± 0.9 mm3). Coinjection of the AMPA antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)-quinoxaline (NBQX; 2 nmol) had no effect on malonate plus NMDA or malonate plus glutamate toxicity (12.3 ± 1.8 and 14.0 ± 0.9 mm3, respectively) but greatly attenuated malonate plus S-AMPA toxicity (1.5 ± 0.9 mm3). Combination of the two antagonists conferred no additional neuroprotection in any paradigm. These results indicate that metabolic inhibition exacerbates both NMDA receptor- and non-NMDA receptor-mediated excitotoxicity. They also suggest that the NMDA receptor may play a major role in situations of metabolic compromise in vivo, where glutamate is the endogenous agonist. Furthermore, glutamate toxicity under conditions of metabolic compromise may not be mediated entirely by ionotropic glutamate receptors.  相似文献   

13.
The large subunit (mol wt: 65,000) of sweet potato succinatedehydrogenase was isolated by SDS-polyacrylamide gel electrophoresisof a succinate dehydrogenase preparation, which had been partiallypurified from root mitochondria by solubilizing the enzyme withEmulgen 810, DEAE-cellulose column chromatography, and polyacrylamidegel electrophoresis. Antibody to the purified large subunitwas produced in a rabbit, and the antiserum obtained was judgedto be specific to the large subunit based on the results ofdouble immunodiffusion tests and immunoelectrophoresis. Rocketimmunoelectrophoresis with the antiserum showed that the increasein succinate dehydrogenase activity during the ageing of sliced,sweet potato root tissue was due to an increase in the amountof enzyme protein. Both the increases in the activity of succinatedehydrogenase and in the amount of the large subunit proteinwere inhibited by cycloheximide or chloramphenicol. We proposethat synthesis of the large subunit of succinate dehydrogenaseon cytoplasmic ribosomes is controlled by a mitochondrial translationproduct(s). 1 This work was supported in part by a research fund from TheIshida Foundation, Nagoya, Japan. (Received November 28, 1981; Accepted February 17, 1982)  相似文献   

14.
Tang  Qing-Xiu  Ni  Zhang-Lin  Wei  Jia-Mian 《Photosynthetica》2002,40(4):529-534
In the mutant CC-1047 of Chlamydomonas reinhardtii, LDS-PAGE showed that the chlorophyll-protein complex I (CPI) is almost absent. The mutant could not grow in a culture medium without organic carbon source while the wild type (WT) C. reinhardtii grew quickly. When an organic carbon source was added into the culture medium, the mutant grew almost as well as WT. The rate of photosystem 1 (PS1) electron transport (DCPIPMV) and the rate of whole chain electron transport (H2OMV) of chloroplasts of the CC-1047 mutant were both lower than those of WT. The photophosphorylation activity, photosynthetic O2 evolution rate, and rate of NADP+ photoreduction of CC-1047 were also much lower than the activities of WT. There were some differences in ATPase activity between the mutant and WT. Two different activation ways were used to activate the latent ATPase using methanol and dithiothreitol (DTT) as activation substrate. More methanol and DTT were required for the mutant than WT to obtain the maximum activity. Thus the photosynthetic apparatus could not operate normally when CPI was absent because of the abnormal PS1 electron transport. Meanwhile, the other adjacent complexes of the thylakoid membrane, for example, ATP synthase complex, were slightly affected.  相似文献   

15.
CHAUHAN  E.; LAL  M. 《Annals of botany》1982,50(6):763-769
Three groups of hydrolases, viz., acid and alkaline phophatasesand esterases and a respiratory enzyme, succinate dehydrogenase,have been localized in the zone constituting the sporophyte-gametophytejunction in the moss Physcomitrium cyathicarpum Mitt. (Funariaceae).Increased respiratory and phosphatase activities in the transfercells of the haustorial foot and vaginula implicate these cellsin active transport. Physcomitrium cyathicarpum Mitt., sporophyte-gametophyte junction, haustorial foot, hydrolases, succinate dehydrogenase, transfer cells, active transport  相似文献   

16.
朱道立 《动物学杂志》2003,38(2):32-35,T002
研究大鼠、家兔和人跖肌的肌纤维型构成比例与分布。应用肌球蛋白腺苷三磷酸酶(ATP酶)和琥珀酸脱氢酶(SDH酶)染色法,观察比较各型肌纤维的组织化学特性。结果表明:肌球蛋白ATP酶染色,大鼠、家兔和人跖肌的肌纤维可分成I型、ⅡA型、ⅡB型肌纤维,横切面呈多边形或椭圆形,分别约占25%、35%和40%;琥珀酸脱氢酶染色,肌纤维呈蔚蓝色,以镶嵌交叉排列,可分为中染S0、深染FOG和浅染FG三型,分别约占25%、30%和45%,种系间无显著性差异。ATP酶活性反应肌纤维收缩的生理特性,而SDH活性反应肌纤维的代谢特征,两种分型的方法有所差异。  相似文献   

17.
Studies on the active product of pepsin digestion of rabbit immunoglobulin G (IgG), F(ab')(2) produced from antiserum against Neurospora glutamate dehydrogenase, showed it to behave in the same way, in both antienzyme and precipitation experiments, as homologous IgG. It is proposed that the inhibition of glutamate dehydrogenase by this antibody preparation is by the same mechanism as proposed for IgG and F(ab), a change in the configuration of the catalytic site brought about by antibodies. Antibodies prepared against two mutant proteins behaved in antienzyme studies in the same way as antibodies prepared against the wild-type protein. It is thought therefore that the antigenic sites on the mutant proteins which initiate the production of neutralizing antibodies were not affected by the mutation which had changed the catalytic properties of the mutant proteins.  相似文献   

18.
Two mutant forms (R132H and R132C) of isocitrate dehydrogenase 1 (IDH1) have been associated with a number of cancers including glioblastoma and acute myeloid leukemia. These mutations confer a neomorphic activity of 2-hydroxyglutarate (2-HG) production, and 2-HG has previously been implicated as an oncometabolite. Inhibitors of mutant IDH1 can potentially be used to treat these diseases. In this study, we investigated the mechanism of action of a newly discovered inhibitor, ML309, using biochemical, cellular, and biophysical approaches. Substrate binding and product inhibition studies helped to further elucidate the IDH1 R132H catalytic cycle. This rapidly equilibrating inhibitor is active in both biochemical and cellular assays. The (+) isomer is active (IC50 = 68 nm), whereas the (−) isomer is over 400-fold less active (IC50 = 29 μm) for IDH1 R132H inhibition. IDH1 R132C was similarly inhibited by (+)-ML309. WT IDH1 was largely unaffected by (+)-ML309 (IC50 >36 μm). Kinetic analyses combined with microscale thermophoresis and surface plasmon resonance indicate that this reversible inhibitor binds to IDH1 R132H competitively with respect to α-ketoglutarate and uncompetitively with respect to NADPH. A reaction scheme for IDH1 R132H inhibition by ML309 is proposed in which ML309 binds to IDH1 R132H after formation of the IDH1 R132H NADPH complex. ML309 was also able to inhibit 2-HG production in a glioblastoma cell line (IC50 = 250 nm) and had minimal cytotoxicity. In the presence of racemic ML309, 2-HG levels drop rapidly. This drop was sustained until 48 h, at which point the compound was washed out and 2-HG levels recovered.  相似文献   

19.
Biophysics - Abstract—The effects of acetylating and deacetylating compounds on the activity of succinate dehydrogenase, as well as on the membrane potential and calcium retention capacity of...  相似文献   

20.
To investigate the stereo-specificity and the genetic control of a succinate transport system, mutants of Escherichia coli defective in the transport of succinate were isolated. The mutants showed no detectable growth on fumarate and malate, as well as on succinate. All of the revertant strains from one of the transport defective mutants, T5, could grow either on succinate, fumarate or malate. The T5 cells accumulated only a trace amount of 14C-succinate or 14C-fumarate. These results indicated that at least succinate, fumarate, and malate were transported by the system involving the same component. From the competition experiments, it was suggested that oxalacetate was also transported by the same system. A partial participation of this system for the transport of aspartate was suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号