首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Branched-chain amino acids (BCAAs) catabolism follows sequential reactions and their metabolites intersect with other metabolic pathways. The initial enzymes in BCAA metabolism, the mitochondrial branched-chain aminotransferase (BCATm), which deaminates the BCAAs to branched-chain α-keto acids (BCKAs); and the branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC), which oxidatively decarboxylates the BCKAs, are organized in a supramolecular complex termed metabolon. Glutamate dehydrogenase (GDH1) is found in the metabolon in rat tissues. Bovine GDH1 binds to the pyridoxamine 5′-phosphate (PMP)-form of human BCATm (PMP-BCATm) but not to pyridoxal 5′-phosphate (PLP)-BCATm in vitro. This protein interaction facilitates reamination of the α-ketoglutarate (αKG) product of the GDH1 oxidative deamination reaction. Human GDH1 appears to act like bovine GDH1 but human GDH2 does not show the same enhancement of BCKDC enzyme activities. Another metabolic enzyme is also found in the metabolon is pyruvate carboxylase (PC). Kinetic results suggest that PC binds to the E1 decarboxylase of BCKDC but does not effect BCAA catabolism. The protein interaction of BCATm and GDH1 promotes regeneration of PLP-BCATm which then binds to BCKDC resulting in channeling of the BCKA products from BCATm first half reaction to E1 and promoting BCAA oxidation and net nitrogen transfer from BCAAs. The cycling of nitrogen through glutamate via the actions of BCATm and GDH1 releases free ammonia. Formation of ammonia may be important for astrocyte glutamine synthesis in the central nervous system. In peripheral tissue association of BCATm and GDH1 would promote BCAA oxidation at physiologically relevant BCAA concentrations.  相似文献   

2.
Elevated amino acid catabolism is common to many cancers. Here, we show that glioblastoma are excreting large amounts of branched‐chain ketoacids (BCKAs), metabolites of branched‐chain amino acid (BCAA) catabolism. We show that efflux of BCKAs, as well as pyruvate, is mediated by the monocarboxylate transporter 1 (MCT1) in glioblastoma. MCT1 locates in close proximity to BCKA‐generating branched‐chain amino acid transaminase 1, suggesting possible functional interaction of the proteins. Using in vitro models, we demonstrate that tumor‐excreted BCKAs can be taken up and re‐aminated to BCAAs by tumor‐associated macrophages. Furthermore, exposure to BCKAs reduced the phagocytic activity of macrophages. This study provides further evidence for the eminent role of BCAA catabolism in glioblastoma by demonstrating that tumor‐excreted BCKAs might have a direct role in tumor immune suppression. Our data further suggest that the anti‐proliferative effects of MCT1 knockdown observed by others might be related to the blocked excretion of BCKAs.  相似文献   

3.
Elevations in branched-chain amino acids (BCAAs) in human obesity were first reported in the 1960s. Such reports are of interest because of the emerging role of BCAAs as potential regulators of satiety, leptin, glucose, cell signaling, adiposity, and body weight (mTOR and PKC). To explore loss of catabolic capacity as a potential contributor to the obesity-related rises in BCAAs, we assessed the first two enzymatic steps, catalyzed by mitochondrial branched chain amino acid aminotransferase (BCATm) or the branched chain alpha-keto acid dehydrogenase (BCKD E1alpha subunit) complex, in two rodent models of obesity (ob/ob mice and Zucker rats) and after surgical weight loss intervention in humans. Obese rodents exhibited hyperaminoacidemia including BCAAs. Whereas no obesity-related changes were observed in rodent skeletal muscle BCATm, pS293, or total BCKD E1alpha or BCKD kinase, in liver BCKD E1alpha was either unaltered or diminished by obesity, and pS293 (associated with the inactive state of BCKD) increased, along with BCKD kinase. In epididymal fat, obesity-related declines were observed in BCATm and BCKD E1alpha. Plasma BCAAs were diminished by an overnight fast coinciding with dissipation of the changes in adipose tissue but not in liver. BCAAs also were reduced by surgical weight loss intervention (Roux-en-Y gastric bypass) in human subjects studied longitudinally. These changes coincided with increased BCATm and BCKD E1alpha in omental and subcutaneous fat. Our results are consistent with the idea that tissue-specific alterations in BCAA metabolism, in liver and adipose tissue but not in muscle, may contribute to the rise in plasma BCAAs in obesity.  相似文献   

4.
The mitochondrial branched-chain α-ketoacid dehydrogenase complex (BCKDC) is negatively regulated by reversible phosphorylation. BCKDC kinase (BDK) inhibitors that augment BCKDC flux have been shown to reduce branched-chain amino acid (BCAA) concentrations in vivo. In the present study, we employed high-throughput screens to identify compound 3,6-dichlorobenzo[b]thiophene-2-carboxylic acid (BT2) as a novel BDK inhibitor (IC50 = 3.19 μm). BT2 binds to the same site in BDK as other known allosteric BDK inhibitors, including (S)-α-cholorophenylproprionate ((S)-CPP). BT2 binding to BDK triggers helix movements in the N-terminal domain, resulting in the dissociation of BDK from the BCKDC accompanied by accelerated degradation of the released kinase in vivo. BT2 shows excellent pharmacokinetics (terminal T½ = 730 min) and metabolic stability (no degradation in 240 min), which are significantly better than those of (S)-CPP. BT2, its analog 3-chloro-6-fluorobenzo[b]thiophene-2-carboxylic acid (BT2F), and a prodrug of BT2 (i.e. N-(4-acetamido-1,2,5-oxadiazol-3-yl)-3,6-dichlorobenzo[b]thiophene-2-carboxamide (BT3)) significantly increase residual BCKDC activity in cultured cells and primary hepatocytes from patients and a mouse model of maple syrup urine disease. Administration of BT2 at 20 mg/kg/day to wild-type mice for 1 week leads to nearly complete dephosphorylation and maximal activation of BCKDC in heart, muscle, kidneys, and liver with reduction in plasma BCAA concentrations. The availability of benzothiophene carboxylate derivatives as stable BDK inhibitors may prove useful for the treatment of metabolic disease caused by elevated BCAA concentrations.  相似文献   

5.
Unlike other amino acids, the branched-chain amino acids (BCAAs) largely bypass first-pass liver degradation due to a lack of hepatocyte expression of the mitochondrial branched-chain aminotransferase (BCATm). This sets up interorgan shuttling of BCAAs and liver–skeletal muscle cooperation in BCAA catabolism. To explore whether complete liver catabolism of BCAAs may impact BCAA shuttling in peripheral tissues, the BCATm gene was stably introduced into mouse liver. Two transgenic mouse lines with low and high hepatocyte expression of the BCATm transgene (LivTg-LE and LivTg-HE) were created and used to measure liver and plasma amino acid concentrations and determine whether the first two BCAA enzymatic steps in liver, skeletal muscle, heart and kidney were impacted. Expression of the hepatic BCATm transgene lowered the concentrations of hepatic BCAAs while enhancing the concentrations of some nonessential amino acids. Extrahepatic BCAA metabolic enzymes and plasma amino acids were largely unaffected, and no growth rate or body composition differences were observed in the transgenic animals as compared to wild-type mice. Feeding the transgenic animals a high-fat diet did not reverse the effect of the BCATm transgene on the hepatic BCAA catabolism, nor did the high-fat diet cause elevation in plasma BCAAs. However, the high-fat-diet-fed BCATm transgenic animals experienced attenuation in the mammalian target of rapamycin (mTOR) pathway in the liver and had impaired blood glucose tolerance. These results suggest that complete liver BCAA metabolism influences the regulation of glucose utilization during diet-induced obesity.  相似文献   

6.
Maple syrup urine disease (MSUD) is an inherited metabolic disorder biochemically characterized by the accumulation of branched-chain amino acids (BCAAs) and their branched-chain keto acids (BCKAs) in blood and other tissues. Neurological dysfunction is usually present in the affected patients, but the mechanisms of brain damage in this disease are not fully understood. Considering that brain energy metabolism seems to be altered in MSUD, the main objective of this study was to investigate the in vitro effect of BCAAs and BCKAs on creatine kinase activity, a key enzyme of energy homeostasis, in brain cortex of young rats. BCAAs, but not their BCKAs, significantly inhibited creatine kinase activity at concentrations similar to those found in the plasma of MSUD patients (0.5–5 mM). Considering the crucial role creatine kinase plays in energy homeostasis in brain, if this effect also occurs in the brain of MSUD patients, it is possible that inhibition of this enzyme activity may contribute to the brain damage found in this disease.  相似文献   

7.
Iron–sulfur (Fe–S) clusters are ubiquitous cofactors in all life and are used in a wide array of diverse biological processes, including electron transfer chains and several metabolic pathways. Biosynthesis machineries for Fe–S clusters exist in plastids, the cytosol, and mitochondria. A single monothiol glutaredoxin (GRX) is involved in Fe–S cluster assembly in mitochondria of yeast and mammals. In plants, the role of the mitochondrial homolog GRXS15 has only partially been characterized. Arabidopsis (Arabidopsis thaliana) grxs15 null mutants are not viable, but mutants complemented with the variant GRXS15 K83A develop with a dwarf phenotype similar to the knockdown line GRXS15amiR. In an in-depth metabolic analysis of the variant and knockdown GRXS15 lines, we show that most Fe–S cluster-dependent processes are not affected, including biotin biosynthesis, molybdenum cofactor biosynthesis, the electron transport chain, and aconitase in the tricarboxylic acid (TCA) cycle. Instead, we observed an increase in most TCA cycle intermediates and amino acids, especially pyruvate, glycine, and branched-chain amino acids (BCAAs). Additionally, we found an accumulation of branched-chain α-keto acids (BCKAs), the first degradation products resulting from transamination of BCAAs. In wild-type plants, pyruvate, glycine, and BCKAs are all metabolized through decarboxylation by mitochondrial lipoyl cofactor (LC)-dependent dehydrogenase complexes. These enzyme complexes are very abundant, comprising a major sink for LC. Because biosynthesis of LC depends on continuous Fe–S cluster supply to lipoyl synthase, this could explain why LC-dependent processes are most sensitive to restricted Fe–S supply in grxs15 mutants.  相似文献   

8.
Data about metabolic syndrome (MetS) in children is limited in China. We aimed to assess the prevalence of MetS related components, and their association with obesity. Data were collected as part of a representative study on MetS among 19593 children, aged 6–18 years old in Beijing. General obesity was assessed by body mass index (BMI) and central obesity by waist circumference. Finger capillary blood tests were used to assess triglyceride (TG), total cholesterol (TC) and impaired fasting glucose (IFG). Vein blood samples were collected from a subsample of 3814 children aged 10–18 years to classify MetS. MetS was defined according to the International Diabetes Federation 2007 definition. The associations between MetS related components and the degree and type of obesity were tested using logistic regression models. The prevalence of overweight, obesity, high blood pressure, elevated TG, TC and IFG were13.6%, 5.8%, 8.5%, 8.8%, 1.2% and 2.5%, respectively. Compared with normal weight children, overweight and obese children were more likely to have other MetS related components. In the subsample of 3814 children aged 10–18 years, the prevalence of MetS was much higher in obese subjects than in their normal weight counterparts (27.6% vs. 0.2%). Children with both general and central obesity had the highest prevalence of MetS. Compared with normal weight children, overweight and obese children were more likely to have MetS (overweight: OR = 67.33, 95%CI = 21.32–212.61; obesity: OR = 249.99, 95% CI = 79.51–785.98). Prevalence of MetS related components has reached high level among Beijing children who were overweight or obese. The association between metabolic disorders and obesity was strong.  相似文献   

9.
A recent report from our group demonstrated that insulin facilitates muscle protein synthesis in obese Zucker rats. The purpose of this study was to determine whether PKC, a probable modulator of insulin signal transduction and/or mRNA translation, has a role in this insulin-mediated anabolic response. In the first portion of the study, gastrocnemius muscles of lean and obese Zucker rats (n = 5-7 for each phenotype) were bilaterally perfused with or without insulin to assess cytosolic and membrane PKC activity. Limbs perfused with insulin demonstrated greater PKC activity in both lean and obese Zucker rats (P < 0.05) compared with no insulin, but overall activity was greater in obese animals (by approximately 27% compared with lean, P < 0.05). To determine whether PKC plays a role in muscle protein synthesis, hindlimbs (n = 6-8 for each phenotype) were bilaterally perfused with or without insulin and/or GF-109203X (GF; a PKC inhibitor). The presence of GF did not influence the rates of insulin-mediated protein synthesis in gastrocnemius muscle of lean Zucker rats. However, when obese rats were perfused with GF (P < 0.05), the effect of insulin on elevating rates of protein synthesis was not observed. We also used phorbol 12-myristate 13-acetate (TPA, a PKC activator; n = 5-7 for each phenotype) with and without insulin to determine the effect of PKC activation on muscle protein synthesis. TPA alone did not elevate muscle protein synthesis in lean or obese rats. However, TPA plus insulin resulted in elevated rates of protein synthesis in both phenotypes that were similar to rates of insulin alone of obese rats. These results suggest that PKC is a modulator and is necessary, but not sufficient, for insulin-mediated protein anabolic responses in skeletal muscle.  相似文献   

10.
Pyruvate dehydrogenase (PDH) plays an important role in regulating carbohydrate metabolism in skeletal muscle. PDH is activated by PDH phosphatase (PDP) and deactivated by PDH kinase (PDK). Obesity has a large negative impact on skeletal muscle carbohydrate metabolism, whereas endurance training has been shown to improve regulatory control of skeletal muscle carbohydrate metabolism, more so when coupled with obesity. A majority of this literature has focused on PDK, with little information available on PDP. To determine the relative role of PDP in regulating skeletal muscle PDH activity with obesity and endurance training, obese and lean Zucker rats remained sedentary or were endurance trained (1 h/day, 5 days/wk) for a period of 8 wk. Soleus, red gastrocnemius, (RG), and white gastrocnemius (WG) muscles were sampled after the training period. The main findings were 1) obesity resulted in a 46% decrease in PDP activity expressed per milligram extracted mitochondrial protein only in RG, while PDP isoform content was unchanged; 2) 8 wk of endurance training led to a significant 1.4-2.2-fold increase in PDP activity of all muscle examined from obese rats, and the concomitant increase in PDP1 protein was only seen in soleus and RG; 3) 8 wk of endurance training led to a trending 1.4-2.2-fold increase in PDP activity of all muscle examined from obese rats, and the concomitant increase in PDP1 protein was only seen in soleus and RG; and 4) PDP2 protein content was not affected by obesity or training. These results suggest that decreased PDP activity in oxidative skeletal muscles may play a role in the impairment of carbohydrate metabolism in obese rats, which is reversible with endurance training.  相似文献   

11.
The obese Zucker rat is resistant to insulin for glucose disposal, but it is unknown whether this insulin resistance is accompanied by alterations of insulin-mediated muscle protein synthesis. We examined rates of muscle protein synthesis either with or without insulin in lean and obese Zucker rats with the use of a bilateral hindlimb preparation. Additional experiments examined insulin's effect on protein synthesis with or without rapamycin, an inhibitor of protein synthesis. Protein synthesis in red and white gastrocnemius was stimulated by insulin compared with control (no insulin) in obese (n = 10, P<0.05) but not in lean (n = 10, P>0.05) Zucker rats. In white gastrocnemius, rapamycin significantly reduced rates of protein synthesis compared with control in lean (n = 6) and obese (n = 6) rats; however, in red gastrocnemius, the attenuating effect of rapamycin occurred only in obese rats. The addition of insulin to rapamycin resulted in rates of synthesis that were similar to those for rapamycin alone for lean rats and to those for insulin alone (augmented) for obese rats in both tissues. Our results demonstrate that insulin enhances protein synthesis in muscle that is otherwise characterized as insulin resistant. Furthermore, rapamycin inhibits protein synthesis in muscle of obese Zucker rats; however, stimulation of protein synthesis by insulin is not via a rapamycin-sensitive pathway.  相似文献   

12.
Past studies have suggested that the stress-induced GLUT4 localization pathway is damaged in fast-twitch muscles (white muscles) of obese subjects. In this study, we used obese rodents in an attempt to determine whether the stress-induced GLUT4 localization pathway is abnormal in slow-twitch muscles (red muscles), which are responsible for most daily activities. Protein expression levels of the intracellular stress sensor AMP-activated protein kinase (AMPK), its upstream kinase LKB1, its downstream protein AS160 and the glucose transporter protein 4 (GLUT4) in the red gastrocnemius muscle were measured under either resting or stress conditions (1 h of swimming or 14% hypoxia) in both lean and obese Zucker rats (n = 7 for each group). At rest, obese rats displayed higher fasting plasma insulin levels and increased muscle AMPK and AS160 phosphorylation levels compared with lean controls. No significant difference was found in the protein levels of LKB1, total GLUT4, or membrane GLUT4 between the obese and lean control groups. After one hour of swimming, AMPK and AS160 phosphorylation levels and the amount of GLUT4 translocated to the plasma membrane were significantly elevated in lean rats but remained unchanged in obese rats relative to their resting conditions. One hour 14% hypoxia did not cause significant changes in the LKB1-AMPK-AS160-GLUT4 pathway in either lean or obese rats. This study demonstrated that the AMPK-AS160-GLUT4 pathway was altered at basal levels and after exercise stimulation in the slow-twitch muscle of obese Zucker rats.  相似文献   

13.
Leucine stimulates protein synthesis by modulating the mammalian target of rapamycin (mTOR) signaling pathway. We hypothesized that promotion of the branched-chain amino acid (BCAA) catabolism might influence the leucine-induced protein synthesis. Clofibric acid (an active metabolite of clofibrate) is known to promote the BCAA catabolism by activation of branched-chain alpha-keto acid dehydrogenase complex (BCKDC), the rate-limiting enzyme of the BCAA catabolism. In the present study, we examined the phosphorylation state of mTOR, eukaryotic initiation factor 4E-binding protein-1 (4E-BP1), and ribosomal protein S6 kinase 1 (S6K1) in liver of rats with or without activation of the BCKDC by clofibrate treatment. Clofibrate-treated rats were prepared by oral administration of clofibrate 5 h before sacrifice. In order to stimulate phosphorylation of components in the mTOR signaling pathway, rats were orally administered with leucine 1 h before sacrifice. Clofibrate treatment almost fully activated hepatic BCKDC and significantly decreased the plasma leucine concentration in rats without leucine administration, resulting in decreased mTOR and 4E-BP1 phosphorylation. Similarly, in rats administered with leucine, clofibrate treatment attenuated the predicted increase in plasma leucine concentration as well as the phosphorylation of mTOR, 4E-BP1, and S6K1. These results suggest that BCAA catabolism enhanced by clofibrate treatment has significant influences on the leucine-induced activation of translation initiation processes.  相似文献   

14.
The branched‐chain amino acids (BCAAs) are vital to both growth and virulence of the human pathogen Staphylococcus aureus. In addition to supporting protein synthesis, the BCAAs serve as precursors for branched‐chain fatty acids (BCFAs), which are predominant membrane fatty acids, and, in association with the global regulatory protein CodY, the BCAAs are key co‐regulators of virulence factors. Despite these critical functions, S. aureus represses Leu and Val synthesis, instead preferring to acquire them from the extracellular milieu. We previously identified BrnQ1 as a BCAA transporter, yet a brnQ1 mutant remained capable of BCAA acquisition. Here, we describe BcaP as an additional BCAA transporter, and determine that it plays a secondary role to BrnQ1 during S. aureus growth in a chemically defined medium. Furthermore, membrane fatty acid composition analysis revealed that BrnQ1, and not BcaP, is required for transporting Leu and Val to be used for iso‐BCFA synthesis. Despite a predominant role for BrnQ1 in vitro, both BrnQ1 and BcaP are required for S. aureus fitness in vivo in a hematogenous spread infection model and a nasal colonisation model. These data demonstrate the importance of BrnQ1 and BcaP for growth, environmental adaptation and virulence of S. aureus.  相似文献   

15.

Objective

Obesity and renin angiotensin system (RAS) hyperactivity are profoundly involved in cardiovascular diseases, however aerobic exercise training (EXT) can prevent obesity and cardiac RAS activation. The study hypothesis was to investigate whether obesity and its association with EXT alter the systemic and cardiac RAS components in an obese Zucker rat strain.

Methods

The rats were divided into the following groups: Lean Zucker rats (LZR); lean Zucker rats plus EXT (LZR+EXT); obese Zucker rats (OZR) and obese Zucker rats plus EXT (OZR+EXT). EXT consisted of 10 weeks of 60-min swimming sessions, 5 days/week. At the end of the training protocol heart rate (HR), systolic blood pressure (SBP), cardiac hypertrophy (CH) and function, local and systemic components of RAS were evaluated. Also, systemic glucose, triglycerides, total cholesterol and its LDL and HDL fractions were measured.

Results

The resting HR decreased (∼12%) for both LZR+EXT and OZR+EXT. However, only the LZR+EXT reached significance (p<0.05), while a tendency was found for OZR versus OZR+EXT (p = 0.07). In addition, exercise reduced (57%) triglycerides and (61%) LDL in the OZR+EXT. The systemic angiotensin I-converting enzyme (ACE) activity did not differ regardless of obesity and EXT, however, the OZR and OZR+EXT showed (66%) and (42%), respectively, less angiotensin II (Ang II) plasma concentration when compared with LZR. Furthermore, the results showed that EXT in the OZR prevented increase in CH, cardiac ACE activity, Ang II and AT2 receptor caused by obesity. In addition, exercise augmented cardiac ACE2 in both training groups.

Conclusion

Despite the unchanged ACE and lower systemic Ang II levels in obesity, the cardiac RAS was increased in OZR and EXT in obese Zucker rats reduced some of the cardiac RAS components and prevented obesity-related CH. These results show that EXT prevented the heart RAS hyperactivity and cardiac maladaptive morphological alterations in obese Zucker rats.  相似文献   

16.
Protein metabolism adapts during caloric restriction (CR) to minimize protein loss, and it is unclear whether greater fat stores favorably affect this response. We sought to determine whether protein metabolism is related to degree of obesity and whether the response to CR is impacted by pre‐CR adiposity level. Whole body protein metabolism was studied in 12 obese women over a wide range of BMI (30–53 kg/m2) as inpatients using [1‐13C]leucine as a tracer following 5 days of a weight‐maintaining diet and then after 30 days of CR (1,400 kcal deficit with maintained protein intake). When expressed as total rates, per body weight (BW) or per fat‐free mass (FFM), leucine rate of appearance (Ra), and nonoxidative leucine disposal (NOLD) were significantly higher in the individuals with a greater degree of obesity (P < 0.05). Leucine oxidation (Rox) was also higher in more highly obese women when expressed as a total rate (P < 0.05) but not if expressed per BW or FFM. CR reduced BW, FFM, and fat mass (P < 0.001), and declines were relatively similar between individuals. CR reduced Ra (P < 0.001), NOLD (P < 0.01), and Rox (P < 0.05), and the relative decline was not affected by differences in fat mass. CR‐induced declines were significant even when Ra and NOLD were normalized to BW or FFM. We conclude that fat mass, like FFM, is a key determinant of protein turnover. However, during CR, higher fat mass does not favorably alter the response of protein metabolism and does not mitigate the loss of FFM.  相似文献   

17.
1. The effect of insulin upon glucose transport and metabolism in soleus muscles of genetically obese (fa/fa) and heterozygote lean Zucker rats was investigated at 5–6 weeks and 10–11 weeks of age. Weight-standardized strips of soleus muscles were used rather than the intact muscle in order to circumvent problems of diffusion of substrates. 2. In younger obese rats (5–6 weeks), plasma concentrations of immunoreactive insulin were twice those of controls, whereas their circulating triacylglycerol concentrations were normal. Insulin effects upon 2-deoxyglucose uptake and glucose metabolism by soleus muscles of these rats were characterized by both a decreased sensitivity and a decrease in the maximal response of this tissue to the hormone. 3. In older obese rats (10–11 weeks), circulating concentrations of insulin and triacylglycerols were both abnormally elevated. A decrease of 25–35% in insulin-binding capacity to muscles of obese rats was observed. The soleus muscles from the older obese animals also displayed decreased sensitivity and maximal response to insulin. However, at a low insulin concentration (0.1m-i.u./ml), 2-deoxyglucose uptake by muscles of older obese rats was stimulated, but such a concentration was ineffective in stimulating glucose incorporation into glycogen, and glucose metabolism by glycolysis. 4. Endogenous lipid utilization by muscle was calculated from the measurements of O2 consumption, and glucose oxidation to CO2. The rate of utilization of fatty acids was normal in muscles of younger obese animals, but increased in those of the older obese rats. Increased basal concentrations of citrate, glucose 6-phosphate and glycogen were found in muscles of older obese rats and may reflect intracellular inhibition of glucose metabolism as a result of increased lipid utilization. 5. Thus several abnormalities are responsible for insulin resistance of muscles from obese Zucker rats among which we have observed decreased insulin binding, decreased glucose transport and increased utilization of endogenous fatty acid which could inhibit glucose utilization.  相似文献   

18.
Abstract: Because it is well known that excess branched-chain amino acids (BCAAs) have a profound influence on neurological function, studies were conducted to determine the impact of BCAAs on neuronal and astrocytic metabolism and on trafficking between neurons and astrocytes. The first step in the metabolism of BCAAs is transamination with α-ketoglutarate to form the branched-chain α-keto acids (BCKAs). The brain is unique in that it expresses two separate branched-chain aminotransferase (BCAT) isoenzymes. One is the common peripheral form [mitochondrial (BCATm)], and the other [cytosolic (BCATc)] is unique to cerebral tissue, placenta, and ovaries. Therefore, attempts were made to define the isoenzymes' spatial distribution and whether they might play separate metabolic roles. Studies were conducted on primary rat brain cell cultures enriched in either astroglia or neurons. The data show that over time BCATm becomes the predominant isoenzyme in astrocyte cultures and that BCATc is prominent in early neuronal cultures. The data also show that gabapentin, a structural analogue of leucine with anticonvulsant properties, is a competitive inhibitor of BCATc but that it does not inhibit BCATm. Metabolic studies indicated that BCAAs promote the efflux of glutamine from astrocytes and that gabapentin can replace leucine as an exchange substrate. Studying astrocyte-enriched cultures in the presence of [U-14C]glutamate we found that BCKAs, but not BCAAs, stimulate glutamate transamination to α-ketoglutarate and thus irreversible decarboxylation of glutamate to pyruvate and lactate, thereby promoting glutamate oxidative breakdown. Oxidation of glutamate appeared to be largely dependent on the presence of an α-keto acid acceptor for transamination in astrocyte cultures and independent of astrocytic glutamate dehydrogenase activity. The data are discussed in terms of a putative BCAA/BCKA shuttle, where BCATs and BCAAs provide the amino group for glutamate synthesis from α-ketoglutarate via BCATm in astrocytes and thereby promote glutamine transfer to neurons, whereas BCATc reaminates the amino acids in neurons for another cycle.  相似文献   

19.
AimWe aimed to investigate whether different measures of obesity could similarly predict atrial fibrillation, and whether the atrial fibrillation risk associated with obesity is dependent on presence of metabolic syndrome.ResultsDuring a mean follow-up of 13.6 years, 285 incident atrial fibrillation cases were recorded. One standard deviation increment of each obesity measure was associated with increased atrial fibrillation risk as: body mass index 1.25 (1.12 – 1.40), waist circumference 1.35 (1.19 – 1.54) and sagittal abdominal diameter 1.28 (1.14 – 1.44). Compared to normal weight subjects without metabolic syndrome, increased atrial fibrillation risk was noted for overweight subjects with metabolic syndrome, 1.67 (1.16 – 2.41), obese subjects without metabolic syndrome, 1.75 (1.11 – 2.74) and obese subjects with metabolic syndrome, 1.92 (1.34 – 2.74). Compared to subjects with normal waist circumference without metabolic syndrome, subjects with elevated waist circumference and metabolic syndrome suffered increased atrial fibrillation risk, 2.03 (1.44 – 2.87).ConclusionsBody mass index, waist circumference and sagittal abdominal diameter could similarly predict atrial fibrillation. Obesity was associated with an increased atrial fibrillation risk regardless of metabolic syndrome, whereas overweight and elevated waist circumference was associated with increased atrial fibrillation risk only if metabolic syndrome was present.  相似文献   

20.
The male obese Wistar Diabetic Fatty (WDF) rat is a genetic model of obesity and non-insulin dependent diabetes (NIDDM). The obese Zucker rat shares the same gene for obesity on a different genetic background but is not diabetic. This study evaluated the degree of insulin resistance in both obese strains by examining the binding and post binding effects of muscle insulin receptors in obese, rats exhibiting hyperinsulinemia and/or hyperglycemia. Insulin receptor binding and affinity and tyrosine kinase activity were measured in skeletal muscle from male WDF fa/fa (obese) and Fa/? (lean) and Zucker fa/fa (obese) and Fa/Fa (homozygous lean) rats. Rats were fed a high sucrose (68% of total Kcal) or Purina stock diet for 14 weeks. At 27 weeks of age, adipose depots were removed for adipose cellularity analysis and the biceps femoris muscle was removed for measurement of insulin binding and insulin-stimulated receptor kinase activity. Plasma glucose (13.9 vs. 8.4 mM) and insulin levels (14,754 vs. 7440 pmoI/L) were significantly higher in WDF obese than in Zucker obese rats. Insulin receptor number and affinity and TK activity were unaffected by diet. Insulin receptor number was significantly reduced in obese WDF rats (2.778 ± 0.617 pmol/mg protein), compared to obese Zucker rats (4.441 ± 0.913 pmol/mg potein). Both obese strains exhibited down regulation of the insulin receptor compared to their lean controls. Maximal tyrosine kinase (TK) activity was significantly reduced in obese WDF rats (505 ± 82 fmol/min/mg protein) compared to obese Zucker rats (1907 ± 610 fmol/min/mg protein). Only obese WDF rats displayed a decrease in TK activity per receptor. These observations establish the obese WDF rat as an excellent model for exploring mechanisms of extreme insulin resistance, particularly post-receptor tyrosine kinase-associated defects, in non-insulin dependent diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号