首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quantitative genetic analysis was conducted on the amounts and distribution of variation of 20 floral, reproductive and life history traits of a self-compatible perennial,Oxalis cornlculata L. (Oxalidaceae). This species comprises two floral morphs, homostyled and long-styled, with different breeding systems. The hierarchical design of the experiments on three homostyled and three long-styled populations allowed partitioning of variation into four levels of organization using nested ANOVAs. Seven of the 20 traits examined were differentiated between homostyled and long-styled populations. Significant genetic variance components were detected in the major traits (114 of the 120 traits) examined for six populations. Average values of variance components among families within a population across 20 traits for homostyled populations were higher than those of long-styled populations. These responses likely reflect the consequences of different levels of selfing and/or mixed mating on genetic variation in the two floral morphs ofO. corniculata. Pearson product-moment correlations for family means of seven traits selected were also calculated. Two groups of trait combinations (i.e., between floral traits, and between reproductive and life history traits) showed significant family mean correlation coefficients. The origins of these varlation patterns found in different populations ofO. corniculata are discussed in terms of the underlying selective regimes operating in each population.  相似文献   

2.
Natural selection should reduce phenotypic variation and increase integration of floral traits involved in placement of pollen grains on stigmas. In this study, we examine the role of pollinators and breeding system on the evolution of floral traits by comparing the patterns of floral phenotypic variances and covariances in 20 Ipomoea species that differ in their level of pollination specialization and pollinator dependence incorporating phylogenetic relatedness. Plants with specialized pollination (i.e., those pollinated by one functional group or by few morphospecies) displayed less phenotypic variation and greater floral integration than generalist plants. Self‐compatible species also displayed greater floral integration than self‐incompatible species. Floral traits involved in pollen placement and pick up showed less variation and greater integration than floral traits involved in pollinator attraction. Analytical models indicate that both breeding system and the number of morphospecies had significant effects on floral integration patterns although only differences in the former were significant after accounting for phylogeny. These results suggest that specialist/self‐compatible plants experience more consistent selection on floral traits than generalist/self‐incompatible plants. Furthermore, pollinators and breeding system promote integration of floral traits involved in pollen placement and pick up rather than integration of the whole flower.  相似文献   

3.
This study examines patterns of variation in quantitative floral traits among 18 disjunct populations of Viola cazorlensis (Violaceae), a relict endemic violet of south-eastern Spain. At all sites, the species is almost exclusively pollinated by a single species of day-flying hawkmoth. Differences between populations were significant for all traits examined, and population means exhibit a broad range of variation. When all characters are considered together, each population displays a unique combination of characters. Despite interpopulation differences in character means, local populations retain most of the variability of the entire species. Floral traits do not vary in unison among flowers, and at least four different subsets of independently varying traits are identifiable. Floral similarity between populations of V. cazorlensis was largely unrelated to geographic proximity, as revealed by analyses at both large and small geographic scales. The geographic pattern of floral variation among populations represents a random patchwork, with unique combinations of character means occurring randomly across the study region. Marked population differences in quantitative floral traits in spite of spatial constancy in the identity of pollinators, a disintegrated floral phenotype, and prevailingly random geographic variation among populations, suggest low adaptedness of the floral phenotype of V. cazorlensis to its current hawkmoth pollinators.  相似文献   

4.
Itagaki  Tomoyuki  Misaki  Ando  Sakai  Satoki 《Plant Ecology》2020,221(5):347-359

Pollinator-mediated selection might lead to among-trait differences in the degree and pattern of floral integration and intra-flower variation. To examine the patterns of intra-flower variation in floral traits, including nectar volume, we performed a field study using the zygomorphic flowers of Aconitum japonicum ssp. subcuneatum. We investigated (1) correlations between the sizes of the left and right sepals and petals, (2) variation in floral traits among plants, within plants and within flowers, (3) effects of sexual phases on floral integration variation in floral and nectar traits, and (4) the effect of size and intra-flower variation in traits of the left and right sepals and petals on pollen removal by pollinators. Lateral sepal area, but not lower sepal area, was highly correlated between the left and right sepals. Floral traits were more integrated during the male phase than during the female phase. Nectar standing crop in male-phase flowers correlated with helmet height and lateral and lower sepal area, but in female-phase flowers it only correlated with spur length. While intra-flower variance in lateral sepal area accounted for approximately 10% of the overall variance in these traits, the variance in lower sepal area accounted for 70% of the overall variance. Lateral sepal area had a negative effect on the number of pollen grains remaining after pollinator visits. Low variance in lateral sepals within flowers and measurements of pollen removal suggest that lateral sepals play a more important role in pollen export than the other traits. Left and right sepals may be the targets of selection for symmetry in zygomorphic flowers.

  相似文献   

5.
The diversity of floral forms has long been considered a prime example of radiation through natural selection. However, little is still known about the evolution of floral traits, a critical piece of evidence for the understanding of the processes that may have driven flower evolution. We studied the pattern of evolution of quantitative floral traits in a group of Neotropical lianas (Bignonieae, Bignoniaceae) and used a time‐calibrated phylogeny as basis to: (1) test for phylogenetic signal in 16 continuous floral traits; (2) evaluate the rate of evolution in those traits; and (3) reconstruct the ancestral state of the individual traits. Variation in floral traits among extant species of Bignonieae was highly explained by their phylogenetic history. However, opposite signals were found in floral traits associated with the attraction of pollinators (calyx and corolla) and pollen transfer (androecium and gynoecium), suggesting a differential role of selection in different floral whorls. Phylogenetic independent contrasts indicate that traits evolved at different rates, whereas ancestral character state reconstructions indicate that the ancestral size of most flower traits was larger than the mean observed sizes of the same traits in extant species. The implications of these patterns for the reproductive biology of Bignonieae are discussed. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 378–390.  相似文献   

6.

Premise

Floral traits are frequently under pollinator-mediated selection, especially in taxa subject to strong pollen-limitation, such as those reliant on pollinators. However, antagonists can be agents of selection on floral traits as well. The causes of selection acting on spring ephemerals are understudied though these species can experience particularly strong pollen-limitation. I examined pollinator- and antagonist-mediated selection in a narrowly endemic spring ephemeral, Trillium discolor.

Methods

I measured pollen limitation in T. discolor across two years and evaluated its breeding system. I compared selection on floral traits (display height, petal size, petal color, flowering time) between open-pollinated, and pollen-supplemented plants to measure the strength and mode of pollinator-mediated selection. I assessed whether natural levels of antagonism impacted selection on floral traits.

Results

Trillium discolor was self-incompatible and experienced pollen limitation in both years of the study. Pollinators exerted negative disruptive selection on display height and petals size. In one year, pollinator-mediated selection favored lighter petals but in the second year pollinators favored darker petals. Antagonist damage did not alter selection on floral traits.

Conclusions

Results demonstrate that pollinators mediate the strength and mode of selection on floral traits in T. discolor. Interannual variation in the strength, mode, and direction of pollinator-mediated selection on floral traits could be important for maintaining of floral diversity in this system. Observed levels of antagonism were weak agents of selection on floral traits.  相似文献   

7.
Floral traits are commonly thought to be more canalized than vegetative ones. In addition, floral and vegetative traits are hypothesized to be genetically decoupled, enabling vegetative structures to respond plastically to environmental heterogeneity, and to evolve in response to selection without disrupting the reproductive function of flowers. To test these hypotheses, we evaluate the genetic architecture of floral and vegetative traits in natural populations of Arabidopsis thaliana raised under variable light-quality environments. Plants were grown either under high or low ratios of red to far-red (R:FR) light, an aspect of light quality that varies with neighbor proximity and regulates competitive shade-avoidance responses. Across environments, we detected significant genetic variation for the average expression of all measured floral traits (petal length and width, stamen length, pistil length, stigma-anther separation, and exsertion of both the stamen and pistil beyond the corolla). Light quality significantly influenced the absolute size of several floral traits as well as the allometry (i.e., relative scaling) of all floral traits, and genotypes differed in the plasticity of floral traits to the light treatments. Exposure to low relative to high R:FR resulted in significantly greater elongation in the vegetative trait, petiole length, and genotypes again differed in the plasticity of this trait to R:FR. Consistent with prior studies, most floral traits were less plastic than the vegetative trait; herkogamy (i.e., stigma-anther separation) was the exception and expressed more variable trait values across environments than petiole length, apparently as a consequence of the independent responses of stamens and pistils. Flowers also showed strong phenotypic integration; genotypic correlations were significantly positive among floral traits within each light treatment. Although floral-vegetative correlations were not significant in the high R:FR light treatment, significant correlations were detected between petal traits, pistil length, and petiole length under low R:FR, in contrast to the widely held hypothesis that floral and vegetative traits are genetically independent. Finally, we detected selection for reduced herkogamy in the low R:FR light treatment. The observed correlation between functional trait groups suggest that vegetative plasticity may affect the expression of floral traits in some environments, and that environment-specific constraints may exist on the evolution of floral and vegetative traits.  相似文献   

8.
Pollination is a requisite for sexual reproduction in plants and its success may determine the reproductive output of individuals. Pollinator preference for some floral designs or displays that are lacking or poorly developed in focal plants may constrain the pollination process. Foliar herbivory may affect the expression of floral traits, thus reducing pollinator attraction. Natural populations of the Andean species Alstroemeria exerens (Alstromeriaceae) in central Chile show high levels of foliar herbivory, and floral traits show phenotypic variation. In the present field study, we addressed the attractive role of floral traits in A. exerens and the effect of foliar damage on them. Particularly, we posed the following questions: (1) Is there an association between floral display and design traits and the number and duration of pollinator visits? and (2) Does foliar damage affect the floral traits associated with pollinator visitation? To assess the attractiveness of floral traits for pollinators, we recorded the number and duration of visits in 101 focal plants. To evaluate the effects of foliar damage on floral traits, 100 plants of similar size were randomly assigned to control or damage groups during early bud development. Damaged plants were clipped using scissors (50% of leaf area) and control plants were manually excluded from natural herbivores (<5% of leaf area eaten). During the peak of flowering, we recorded the number of open flowers, and estimated corolla and nectar guide areas. The number and duration of pollinator visits was statistically associated with floral design and display traits. Plants with larger displays, corollas and nectar guide areas received more visits. Visits lasted longer as display increases. In addition, foliar damage affected attractive traits. Damaged plants had fewer open flowers and smaller nectar guide areas. We conclude that foliar damage affects plant attractiveness for pollinators and hence may indirectly affect plant fitness.  相似文献   

9.
Distinct floral pollination syndromes have emerged multiple times during the diversification of flowering plants. For example, in western North America, a hummingbird pollination syndrome has evolved more than 100 times, generally from within insect-pollinated lineages. The hummingbird syndrome is characterized by a suite of floral traits that attracts and facilitates pollen movement by hummingbirds, while at the same time discourages bee visitation. These floral traits generally include large nectar volume, red flower colour, elongated and narrow corolla tubes and reproductive organs that are exerted from the corolla. A handful of studies have examined the genetic architecture of hummingbird pollination syndrome evolution. These studies find that mutations of relatively large effect often explain increased nectar volume and transition to red flower colour. In addition, they suggest that adaptive suites of floral traits may often exhibit a high degree of genetic linkage, which could facilitate their fixation during pollination syndrome evolution. Here, we explore these emerging generalities by investigating the genetic basis of floral pollination syndrome divergence between two related Penstemon species with different pollination syndromes—bee-pollinated P. neomexicanus and closely related hummingbird-pollinated P. barbatus. In an F2 mapping population derived from a cross between these two species, we characterized the effect size of genetic loci underlying floral trait divergence associated with the transition to bird pollination, as well as correlation structure of floral trait variation. We find the effect sizes of quantitative trait loci for adaptive floral traits are in line with patterns observed in previous studies, and find strong evidence that suites of floral traits are genetically linked. This linkage may be due to genetic proximity or pleiotropic effects of single causative loci. Interestingly, our data suggest that the evolution of floral traits critical for hummingbird pollination was not constrained by negative pleiotropy at loci that show co-localization for multiple traits.  相似文献   

10.
It has often been suggested that selection on floral traits in hermaphroditic plants should occur primarily through differences in male fitness. However, measurements of selection on floral traits through differences in lifetime male fitness have been lacking. We measured selection on a variety of wild radish floral traits using lifetime male fitness measures derived from genetic paternity analysis. These male fitness estimates were then combined with estimates of lifetime female fitness of the same plants to produce measurements of selection based on lifetime total fitness. Contrary to the prediction above, there was no strong evidence for selection on floral morphology through male fitness differences in any of the three years of the study, but there was strong selection for increased flower size through female fitness differences in one year. The main determinant of both male and female fitness in all years was flower number; this lead to moderately positive correlations between male and female fitness in all three years.  相似文献   

11.
Nearly forty years ago R. L. Berg proposed that plants with specialized pollination ecology evolve genetic and developmental systems that decouple floral morphology from phenotypic variation in vegetative traits. These species evolve separate floral and vegetative trait clusters, or as she termed them, "correlation pleiades." The predictions of this hypothesis have been generally supported, but only a small sample of temperate-zone herb and grass species has been tested. To further evaluate this hypothesis, especially its applicability to plants of other growth forms, we examined the patterns of phenotypic variation and covariation of floral and vegetative traits in nine species of Neotropical plants. We recognized seven specific predictions of Berg's hypothesis. Our results supported some predictions but not others. Species with specialized pollination systems usually had floral traits decoupled (weak correlation; Canna and Eichornia) or buffered (relationship with shallow proportional slope; Calathea and Canna) from variation in vegetative traits. However, the same trend was also observed in three species with unspecialized pollination systems (Echinodorus, Muntingia, and Wedelia). One species with unspecialized pollination (Croton) and one wind-pollinated species (Cyperus) showed no decoupling or buffering, as predicted. While species with specialized pollination usually showed lower coefficients of variation for floral traits than vegetative traits (as predicted), the same was also true of species with unspecialized or wind pollination (unlike our prediction). Species with specialized pollination showed less variation in floral traits than did species with unspecialized or wind pollination, as predicted. However, the same was true of the corresponding vegetative traits, which was unexpected. Also in contrast to our prediction, plants with specialized pollination systems did not exhibit tighter phenotypic integration of floral characters than did species with generalized pollination systems. We conclude that the patterns of morphological integration among floral traits and between floral and vegetative traits tend to be species specific, not easily predicted from pollination ecology, and generally more complicated than R. L. Berg envisaged.  相似文献   

12.
Pollinator-mediated selection plays a major role in floral evolution and speciation. Floral traits that influence animal pollinator behavior are the target of pollinator-mediated selection, but can only evolve if floral phenotypes have underlying genetic variation. Thus, understanding the genetic basis of a floral trait is a crucial step in studying pollinator-mediated selection. In this study I tested the effect of quantitative trait loci (QTL) underlying floral traits on pollinator behavior in recombinant inbred lines (RILs) in the common sunflower, Helianthus annuus L. and its crop relative. The indirect effects of QTL on pollinator behavior, mediated by floral phenotypes, were analyzed for six insect visitor types using structural equation modeling (SEM) and path analysis. For three of the six visitor types (large and small bees and non-bee insects) valid models were revealed when all three levels (QTL, floral traits, and pollinator behavior) were incorporated. Nested model without genetics were validated for five of the six visitor types. The results suggest that insect behavior as a reaction to floral phenotypes is affected by the genetic architecture of floral traits. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: Heikki Hokkanen  相似文献   

13.
Gong YB  Huang SQ 《Oecologia》2011,166(3):671-680
A traditional view of diverse floral traits is that they reflect differences in foraging preferences of pollinators. The role of pollinators in the evolution of floral traits has been questioned recently by broad community surveys, especially studies concerning variation in pollinator assemblages and visitation frequency, which suggest a diminished role of pollinators in floral evolution. Here, we investigate the relationships between six categories of floral traits of 29 species and 10 pollinator functional groups in an alpine meadow in the Hengduan Mountains of China, over three consecutive years. Simpson’s diversity index was used to estimate the level of pollinator generalization of each plant species by considering both pollinator groups and their relative visitation frequencies. Multivariate analyses indicated that eight of the ten pollinator groups showed constant preferences for at least two floral traits, leading to a relatively stable level of ecological generalization for most floral traits (two out of three categories), despite the fact that the level of generalization of the entire community varied across years. Shape preferences of butterflies, honeybees and beeflies varied such that open flowers exhibited a lower level of ecological generalization in 2007 than closed flowers, in contrast with the other 2 years. These results suggest that temporally stabilized preferences of diverse pollinators may contribute to the evolution of specialized versus generalized floral traits; however, their role may be moderated by variation in community structure, including both the composition and abundance of plants and pollinators.  相似文献   

14.
The variation of floral morphology and its effect on the flower visitors of Polygala vayredae Costa (Polygalaceae), a narrow endemic species from the Oriental pre-Pyrenees, were examined. First, to account for the main floral reward (i.e., nectar), the relationship between the dimensions of the nectar gland and nectar production was investigated. Second, floral traits variation was assessed within and between the three most representative populations of the species. Finally, the role of several floral traits in the female fitness was evaluated. Furthermore, as nectar robbing was highly frequent, preferences of robbers for specific floral traits and their impact on legitimate pollinations were also evaluated. The flowers of this species are characterized by significant variations in floral characteristics and nectar rewards. A significant and positive correlation between the nectar gland dimensions and nectar production per flower was observed, with the gland dimensions being a good measure to infer the rewards offered by the flowers of P. vayredae. In general, corolla traits were significant and positively correlated with each other. Nectar was revealed to be an important trait in flower–visitor interactions, with legitimate pollinations being primarily influenced by this floral reward. Negative correlations between robbing frequency and legitimate pollinations were observed in two of the studied populations, and positive correlations between flower size and robbing frequency were observed in one population. An indirect negative selection over phenotypic floral traits mediated by nectar robbers is proposed.  相似文献   

15.
Theory predicts that tighter correlation between floral traits and weaker relationship between floral and vegetative traits more likely occur in specialized flowers than generalized flowers,favoring by precise fit with pollinators.However,traits and trait correlations frequently vary under different environments.Through detecting spatiotemporal variation in phenotypic traits (floral organ size and vegetative size) and trait correlations in four Ranunculaceae species,we examined four predictions.Overall,our results supported these predictions to a certain degree.The mean coefficient of variation (CV) of floral traits in two specialized species (Delphinium kamaonense and Aconitum gymnandrum) was marginally significantly lower than that of another two generalized species (Trollius ranunculoides and Anemone obtusiloba).The two specialized species also showed marginally significantly smaller CV in floral traits than vegetative size across the two species.The absolute mean correlation between floral and vegetative traits,or that between floral traits in species with specialized flowers was not significantly lower,or higher than that in generalized plants,weakly supporting the predictions.Furthermore,we documented a large variation in trait correlations of four species among different seasons and populations.Study of covariance of floral and vegetative traits will benefit from the contrast of results obtained from generalized and specialized pollination systems.  相似文献   

16.
海拔对全缘叶绿绒蒿植株性状和花特征的表型选择分析   总被引:1,自引:0,他引:1  
为了研究海拔差异对植株性状、花特征表型选择的影响,以青藏高原高寒草甸的全缘叶绿绒蒿(Meconopsis integrifolia)为研究材料,于盛花期内,测定不同海拔(4 452、4 081和3 681 m)种群中个体植株性状、花特征、单果结实数并进行统计分析,采用线性回归模型估计不同海拔种群间植株性状、花特征所受的表型选择(选择差与选择梯度)。结果表明:(1)随着海拔升高,全缘叶绿绒蒿植株性状、花特征及单果结实数显著降低,海拔越高的种群中株高越矮、叶面积越小、花数越少、花越小、单果结实数越低。(2)不同海拔种群中各性状的表型选择存在差异,较低海拔(3 681 m)种群中花数、花大小具有显著的选择差和选择梯度,表现为花越多、花越大的个体雌性适合度越高;海拔较高(4 081 m)的种群中株高、叶面积及花数更容易受到选择,表现为植株越高、叶面积越大、花越多的个体雌性适合度越高;海拔最高(4 452 m)的种群中叶面积与花数的选择梯度接近显著。(3)植物性状分化伴随着海拔的变化而呈现出差异,较低海拔种群中花特征容易受到选择,而较高海拔种群中可能由于传粉者稀少、资源限制等因素使得株高、叶面积更容易受到选择。  相似文献   

17.
The availability of both pollen and resources can influence natural selection on floral traits, but their relative importance in shaping floral evolution is unclear. We experimentally manipulated pollinator and resource (fertilizer and water) availability in the perennial wildflower Asclepias syriaca L. Nine floral traits, one male fitness component (number of pollinia removed), and two female fitness components (number of pollinia inserted and number of fruits initiated) were measured for plants in each of three treatments (unmanipulated control, decreased pollinator access, and resource supplementation). Although decreasing pollinators’ access to flowers did result in fewer pollinia inserted and removed, fruit set and phenotypic selection on floral traits via female and male fitness did not differ from the control. In contrast, resource supplementation increased fruit set, and phenotypic selection on seven out of nine floral traits was stronger via female than male fitness, consistent with the prediction that selection via female fitness would be greater when reproduction was less resource-limited. Our results support the hypothesis that abiotic resource availability can influence floral evolution by altering gender-specific selection.  相似文献   

18.
Many species, both plants and animals, are simultaneously engaged in interactions with multiple mutualists. However, the extent to which separate traits that attract different mutualist guilds display negative or positive relationships remains largely unstudied. We asked whether correlations exist among extrafloral nectary traits to attract arthropod bodyguards and floral traits to attract pollinator mutualists. For 37 species in the cotton genus (Gossypium), we evaluated correlations among six extrafloral nectary traits and four floral traits in a common greenhouse environment, with and without correction for phylogenetic non-independence. Across Gossypium species, greater investment in extrafloral nectary traits was positively correlated with greater investment in floral traits. Positive correlations remained after accounting for the evolutionary history of the clade. Our results demonstrate that traits to maintain multiple mutualist guilds can be positively correlated across related species and build a more general understanding of the constraints on trait evolution in plants.  相似文献   

19.
Developmental instability of floral traits is examined in four populations of Clarkia tembloriensis (Onagraceae) with different natural outcrossing rates. Developmental instability is estimated using fluctuating asymmetry (FA) and within plant variance. The results are coupled with those from a previous study of leaf traits. In the first experiment, flowers were collected from the same growth chamber-grown plants that had been previously used to estimate leaf developmental stability in two C. tembloriensis populations. These populations differed in FA for only one floral trait, long filament length. After adjusting for organ size differences, we found floral FA values were about half those of leaves. These are the first quantitative data indicating that flowers are more developmentally stable than leaves. In a second experiment, greenhouse grown plants from two other C. tembloriensis populations (one highly outcrossing and one predominantly self-pollinating) did not differ significantly in floral FA or in within-plant variance of floral traits, though earlier studies of the same populations revealed significant differences in FA of leaf traits. In both experiments, FA values of different floral traits were uncorrelated. We attribute the lack of significant differences in floral stability between populations to the greater canalization of floral organs and to the magnification of measurement error that occurs when calculating FA. We also found that the shorter styles of selfers are the greatest difference in flower form between predominantly self-pollinating and predominantly outcrossing populations of C. tembloriensis.  相似文献   

20.
The reproductive‐assurance hypothesis predicts that mating‐system traits will evolve towards increased autonomous self‐pollination in plant populations experiencing unreliable pollinator service. We tested this long‐standing hypothesis by assessing geographic covariation among pollinator reliability, outcrossing rates, heterozygosity and relevant floral traits across populations of Dalechampia scandens in Costa Rica. Mean outcrossing rates ranged from 0.16 to 0.49 across four populations, and covaried with the average rates of pollen arrival on stigmas, a measure of pollinator reliability. Across populations, genetically based differences in herkogamy (anther–stigma distance) were associated with variation in stigmatic pollen loads, outcrossing rates and heterozygosity. These observations are consistent with the hypothesis that, when pollinators are unreliable, floral traits promoting autonomous selfing evolve as a mechanism of reproductive assurance. Extensive covariation between floral traits and mating system among closely related populations further suggests that floral traits influencing mating systems track variation in adaptive optima generated by variation in pollinator reliability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号