首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To face summer drought and wildfire in Mediterranean-type ecosystems, plants adopt different strategies that involve considerable rearrangements of biomass allocation and physiological activity. This paper analyses morphological and physiological traits in seedlings of three oak species (Quercus ilex, Quercus trojana and Quercus virgiliana) co-occurring under natural conditions. The aim of this study was to evaluate species-specific characteristics and the response of these oak seedlings to drought stress and fire treatment. Seedlings were kept in a growth chamber that mimicked natural environmental conditions. All three species showed a good degree of tolerance to drought and fire treatments. Differences in specific biomass allocation patterns and physiological traits resulted in phenotypic differences between species. In Q. ilex, drought tolerance depended upon adjustment of the allocation pattern. Q. trojana seedlings undergoing mild to severe drought presented a higher photosystem II (PSII) efficiency than control seedlings. Moreover, Q. trojana showed a very large root system, which corresponded to higher soil area exploitation, and bigger leaf midrib vascular bundles than the other two species. Morphological and physiological performances indicated Q. trojana as the most tolerant to drought and fire. These characteristics contribute to a high recruitment potential of Q. trojana seedlings, which might be the reason for the dominance of this species under natural conditions. Drought increase as a result of climate change is expected to favour Q. trojana, leading to an increase in its spatial distribution.  相似文献   

2.
The plasticity response of Quercus variabilis and Quercus mongolica seedlings to combined nitrogen (N) deposition and drought stress was evaluated, and their performance in natural niche overlaps was predicted. Seedlings in a greenhouse were exposed to four N deposition levels (0, 4, 8, and 20 g N m?2 year?1) and two water levels (80 and 50 % field-water capacity). Plant traits associated with growth, biomass production, leaf physiology, and morphology were determined. Results showed that drought stress inhibited seedling performance, altered leaf morphology, and decreased fluorescence parameters in both species. By contrast increased N supply had beneficial effects on the nutritional status and activity of the PSII complex. The two species showed similar responses to drought stress. Contrary to the effects in Q. mongolica, N deposition promoted leaf N concentration, PSII activity, leaf chlorophyll contents, and final growth of Q. variabilis under well-watered conditions. Thus, Q. variabilis was more sensitive to N deposition than Q. mongolica. However, excessive N supply (20 g N m?2 year?1) did not exert any positive effects on the two species. Among the observed plasticity of the plant traits, plant growth was the most plastic, and leaf morphology was the least plastic. Therefore, drought stress played a primary role at the whole-plant level, but N supply significantly alleviated the adverse effects of drought stress on plant physiology. A critical N deposition load around 20 g N m?2 year?1 may exist for oak seedlings, which may more adversely affect Q. variabilis than Q. mongolica.  相似文献   

3.
The Quercus species serve as a powerful model for studying introgression in relation to species boundaries and adaptive processes. Coexistence of distant relatives, or lack of coexistence of closely relative oak species, introgression may play a role. In the current study, four closely related oak species were found in Zijinshan, China. We generated a comprehensive genome size (GS) database for 120 individuals of four species using flow cytometry‐based approaches. We examined GS variability within and among the species and hybridization events among the four species. The mean GSs of Q. acutissima, Q. variabilis, Q. fabri, and Q. serrata var. brevipetiolata were estimated to be 1.87, 1.92, 1.97, and 1.97 pg, respectively. The intraspecific and interspecific variations of GS observed among the four oak species indicated adaptation to the environment. Hybridization occurred both within and between the sections. A hybrid offspring was produced from Q. fabri and Q. variabilis, which belonged to different sections. The GS evolutionary pattern for hybrid species was expansion. Hybridization between the sections may be affected by habitat disturbance. This study increases our understanding of the evolution of GS in Quercus and will help establish guidelines for the ecological protection of oak trees.  相似文献   

4.
Differences in morphology, biomass allocations and physiological responses were investigated in seedlings of Mastic tree (Pistacia lentiscus L.) and Cork oak (Quercus suber L.) submitted to contrasting fertilization and light regimes during early growth. These species are two evergreen sclerophyllous Mediterranean species frequently used in Mediterranean reforestation programmes. Fertilization was the treatment that affected most of the morphological and physiological variables evaluated in P. lentiscus and Q. suber seedlings. Leaf area and specific leaf area (SLA) were affected by shading treatment in both species, showing higher values in seedlings grown under shade. P. lentiscus seedlings showed a high capacity to modify root morphological variables and root hydraulic conductance (KR) with the fertilization treatment. In contrast, Q. suber showed low to moderate root system changes with the treatments applied, although the fertilization level affected biomass allocation (i.e., root to shoot ratio) in both species. Under high water demand, P. lentiscus seedlings with high KR allowed transpiration (E) to increase without increasing the water potential gradient between soil and leaves. In Q. suber, high fertilization induced significant increases in photosynthesis (A), as well as a tendency to increase E with significantly lower leaf water potential (ψL).  相似文献   

5.
Phenotypic plasticity may be advantageous for plants to be able to rapidly cope with new and changing environments associated with climate change or during biological invasions. This is especially true for perennial plants, as they may need a longer period to respond genetically to selective pressures than annuals, and also because they are more likely to experience environmental changes during their lifespan. However, few studies have explored the plasticity of the reproductive life history traits of woody perennial species. This study focuses on a woody shrub, Ulex europaeus (common gorse), and on the response of its reproductive traits to one important environmental factor, shading. The study was performed on clones originating from western France (within the native range of this invasive species) and grown for seven years. We compared traits of plants grown in a shade treatment (with two successive shade levels) vs. full natural light. The traits monitored included flowering onset, pod production and seed predation. All traits studied responded to shading, exhibiting various levels of plasticity. In particular, dense shade induced a radical but reversible decrease in flower and pod production, while moderate shade had little effect on reproductive traits. The magnitude of the response to dense shade depended on the genotype, showing a genetically based polymorphism of plasticity. The level of plasticity also showed substantial variations between years, and the effect of environmental variations was cumulative over time. This suggests that plasticity can influence the lifetime fitness of U. Europaeus and is involved in the capacity of the species to grow under contrasting environmental conditions.  相似文献   

6.
The biogeographical relationships between far-separated populations, in particular, those in the mainland and islands, remain unclear for widespread species in eastern Asia where the current distribution of plants was greatly influenced by the Quaternary climate. Deciduous Oriental oak (Quercus variabilis) is one of the most widely distributed species in eastern Asia. In this study, leaf material of 528 Q. variabilis trees from 50 populations across the whole distribution (Mainland China, Korea Peninsular as well as Japan, Zhoushan and Taiwan Islands) was collected, and three cpDNA intergenic spacer fragments were sequenced using universal primers. A total of 26 haplotypes were detected, and it showed a weak phylogeographical structure in eastern Asia populations at species level, however, in the central-eastern region of Mainland China, the populations had more haplotypes than those in other regions, with a significant phylogeographical structure (N ST = 0.751> G ST = 0.690, P<0.05). Q. variabilis displayed high interpopulation and low intrapopulation genetic diversity across the distribution range. Both unimodal mismatch distribution and significant negative Fu’s FS indicated a demographic expansion of Q. variabilis populations in East Asia. A fossil calibrated phylogenetic tree showed a rapid speciation during Pleistocene, with a population augment occurred in Middle Pleistocene. Both diversity patterns and ecological niche modelling indicated there could be multiple glacial refugia and possible bottleneck or founder effects occurred in the southern Japan. We dated major spatial expansion of Q. variabilis population in eastern Asia to the last glacial cycle(s), a period with sea-level fluctuations and land bridges in East China Sea as possible dispersal corridors. This study showed that geographical heterogeneity combined with climate and sea-level changes have shaped the genetic structure of this wide-ranging tree species in East Asia.  相似文献   

7.
不同生境栓皮栎天然更新幼苗植冠构型分析   总被引:2,自引:0,他引:2  
栓皮栎存在于秦岭南坡的多种林分中,生活在不同生境中的个体往往形成不同的树冠形态和构型特征。为了说明不同生境条件下栓皮栎幼苗的植冠构型变化,采用典型抽样法,对秦岭南坡3种生境中(林冠下、林隙、林缘)的栓皮栎天然更新幼苗的侧枝、叶片特征及其空间分布进行了调查分析,结果表明:3种不同生境中栓皮栎幼苗植冠形态发生了明显的可塑性变化,(1)林冠下的幼苗明显为开阔型树冠,林隙和林缘处的幼苗树冠相对紧密;(2)幼苗的1级侧枝密度与分枝角度在3种生境下均差异显著(P0.05);从Ⅰ到Ⅳ层,林冠下幼苗的分枝角度在冠层内变化幅度不到5°,而林缘处幼苗的分枝角度变化高达40°;发生5个以上1级侧枝的概率以林冠下最大,为0.6;(3)从林缘、林隙到林冠下,幼苗的叶长、叶宽、单叶面积、叶面积指数逐渐降低,数量叶密度和比叶面积则逐渐增大,与其它两种生境相比,林冠下幼苗的叶片逐渐向树冠上层集中,且以更高序的侧枝为主要着生枝条;(4)林隙中栓皮栎幼苗的树高、地径明显优于林缘和林冠下,缩短了苗木进入主林层的时间,林隙对栓皮栎种群更新有利。在今后栓皮栎林的经营中,可以通过适当间伐来增加林隙数量,为森林更新和结构的优化的提供有利条件。  相似文献   

8.
Higher temperatures and reduced rainfalls that are expected with the advance of climate change can impair the emergence and establishment of tree seedlings in forest ecosystems. These climatic changes can also decrease the availability of soil resources and reduce the performance of seedlings. We evaluated these effects in a temperate forest from Mexico with two native oak species (Quercus crassifolia and Quercus eduardii). As recently emerged oak seedlings are highly sensitive to changing environmental conditions, our field experiment was conducted across the season in which seedling emergence occurs (October–February). In the field, we used open-top chambers to increase temperature and rainout shelters to reduce rainfall, while controls were exposed to the current climate. Experimental plots of both treatments were established beneath the forest canopy because most oaks recruit in understory habitats. In these plots, we sowed acorns of both species in October 2015 and recorded seedling emergence and survival until February 2016, also monitoring temperature, precipitation and contents of water and nitrogen in the soil. On seedlings that survived until the end of the experiment we measured their growth, photosynthetic efficiency and foliar contents of water, carbon and nitrogen. Both the emergence and survival of Q. crassifolia seedlings were lower in climate change plots than in controls, but no differences were found for Q. eduardii. However, seedlings of both species had lower growth rates, photosynthetic efficiencies and contents of water, nitrogen and carbon in climate change simulation plots. These results indicate that climate change can impair tree seedling establishment in oak forest, also suggesting that their development will be constrained by reduced water and nitrogen availability.  相似文献   

9.
气候变化下栓皮栎潜在地理分布格局及其主导气候因子   总被引:2,自引:0,他引:2  
高文强  王小菲  江泽平  刘建锋 《生态学报》2016,36(14):4475-4484
栓皮栎(Quercus variabilis)是东亚天然分布最广泛的树种之一。利用最大熵(Maxent)模型对现实气候条件下栓皮栎在东亚地区的潜在分布及其分布的主导气候因子进行分析,同时结合全新世中期(6000年前)和未来气候(2050年)来模拟和预测气候变化背景下栓皮栎潜在分布格局的变化。结果表明:现实气候条件下东亚栓皮栎适生区(适宜生境和低适宜生境)面积占总研究区面积的21.88%,主要集中在东亚南部区域,在我国北起陕西中部、山西和河北南部边缘、山东,西起甘肃东部边缘、四川中东部、云南、西藏东部边缘,一直到东部沿海区域,同时在朝鲜半岛南部和日本中南部也有分布,其中适宜生境面积占研究区总面积的5.69%,主要集中在秦岭山脉、大巴山脉、伏牛山、云南的云贵高原、罗霄山脉、南岭山脉、武夷山和台湾岛;气候变化情景下,栓皮栎的适生区分布面积变化较小,但其适宜生境的分布范围却发生了较大的变化,随着全球气候的波动性变化,适宜生境分布范围逐渐向西部秦岭山脉、大巴山脉、四川、重庆和云贵高原等区域集中,并使该分布中心的适宜生境面积逐渐扩大;影响栓皮栎分布的主要气候因子为最冷月的最低气温(Bio6)、最冷季平均气温(Bio11)和年降水量(Bio12),三者的贡献率分别为48.6%、21.4%和14.2%。  相似文献   

10.
A standard conservation strategy for plant genetic resources integrates in situ (on-farm or wild) and ex situ (gene or field bank) approaches. Gene bank managers collect ex situ accessions that represent a comprehensive snap shot of the genetic diversity of in situ populations at a given time and place. Although simple in theory, achieving complementary in situ and ex situ holdings is challenging. Using Trifolium thompsonii as a model insect-pollinated herbaceous perennial species, we used AFLP markers to compare genetic diversity and structure of ex situ accessions collected at two time periods (1995, 2004) from four locations, with their corresponding in situ populations sampled in 2009. Our goal was to assess the complementarity of the two approaches. We examined how gene flow, selection and genetic drift contributed to population change. Across locations, we found no difference in diversity between ex situ and in situ samples. One population showed a decline in genetic diversity over the 15 years studied. Population genetic differentiation among the four locations was significant, but weak. Association tests suggested infrequent, long distance gene flow. Selection and drift occurred, but differences due to spatial effects were three times as strong as differences attributed to temporal effects, and suggested recollection efforts could occur at intervals greater than fifteen years. An effective collecting strategy for insect pollinated herbaceous perennial species was to sample >150 plants, equalize maternal contribution, and sample along random transects with sufficient space between plants to minimize intrafamilial sampling. Quantifying genetic change between ex situ and in situ accessions allows genetic resource managers to validate ex situ collecting and maintenance protocols, develop appropriate recollection intervals, and provide an early detection mechanism for identifying problematic conditions that can be addressed to prevent further decline in vulnerable in situ populations.  相似文献   

11.
马闯  杨竟艺  高云昌  龙鸿  于玮玮 《广西植物》2021,41(8):1306-1314
为探究八仙山保护区不同类型森林群落的更新潜力、多样性程度以及稳定性水平,阐明三者间的关系,该文以保护区内油松林、蒙古栎林和油松-栓皮栎混交林(松栎混交林) 3种不同类型天然次生林为对象,调查建群种径级结构和更新潜力,计算不同层次群落多样性,测定M. Godron稳定性,并采用主成分法建立评价模型。结果表明:(1)油松种群径级结构近似正态分布,处于成熟期,但幼苗较少;栓皮栎、蒙古栎以及阔叶杂木的幼苗、幼树较多,更新潜力较大。(2)松栎混交林的乔木层多样性较高,而灌木层多样性最低,油松林的草本层多样性最低;松栎混交林群落总体物种丰富度最低而均匀度最高。(3) M. Godron稳定性表明,蒙古栎林距离稳定点较近,而油松林偏离较远。(4) PCA双序图表明,M. Godron稳定性与种群更新潜力、Alatalo均匀度呈较强正相关,综合排序依次为松栎混交林、蒙古栎林和油松林。综上结果表明,建群种更新潜力和物种均匀度对群落稳定性影响较大,林地管理应注重对幼苗幼树的保护。  相似文献   

12.
Future climate change has been predicted to affect the potential distribution of plant species. However, only few studies have addressed how invasive species may respond to future climate change despite the known effects of plant species invasion on nutrient cycles, ecosystem functions, and agricultural yields. In this study, we predicted the potential distributions of two invasive species, Rumex crispus and Typha latifolia, under current and future (2050) climatic conditions. Future climate scenarios considered in our study include A1B, A2, A2A, B1, and B2A. We found that these two species will lose their habitat under the A1B, A2, A2A, and B1 scenarios. Their distributions will be maintained under future climatic conditions related to B2A scenarios, but the total area will be less than 10% of that under the current climatic condition. We also investigated variations of the most influential climatic variables that are likely to cause habitat loss of the two species. Our results demonstrate that rising mean annual temperature, variations of the coldest quarter, and precipitation of the coldest quarter are the main factors contributing to habitat loss of R. crispus. For T. latifolia, the main factors are rising mean annual temperature, variations in temperature of the coldest quarter, mean annual precipitation, and precipitation of the coldest quarter. These results demonstrate that the warmer and wetter climatic conditions of the coldest season (or month) will be mainly responsible for habitat loss of R. crispus and T. latifolia in the future. We also discuss uncertainties related to our study (and similar studies) and suggest that particular attention should be directed toward the manner in which invasive species cope with rapid climate changes because evolutionary change can be rapid for species that invade new areas.  相似文献   

13.
14.
The high cost and restricted availability of black truffle spore inoculum for controlled mycorrhiza formation of host trees produced for truffle orchards worldwide encourage the search for more efficient and sustainable inoculation methods that can be applied globally. In this study, we evaluated the potential of the nurse plant method for the controlled inoculation of Quercus cerris and Quercus robur with Tuber melanosporum by mycorrhizal networks in pot cultures. Pine bark compost, adjusted to pH?7.8 by liming, was used as substrate for all assays. Initially, Q. robur seedlings were inoculated with truffle spores and cultured for 12 months. After this period, the plants presenting 74 % mycorrhizal fine roots were transferred to larger containers. Nurse plants were used for two treatments of two different nursling species: five sterilized acorns or five 45-day-old, axenically grown Q. robur or Q. cerris seedlings, planted in containers around the nurse plant. After 6 months, colonized nursling plant root tips showed that mycorrhiza formation by T. melanosporum was higher than 45 % in the seedlings tested, with the most successful nursling combination being Q. cerris seedlings, reaching 81 % colonization. Bulk identification of T. melanosporum mycorrhizae was based on morphological and anatomical features and confirmed by sequencing of the internal transcribed spacer region of the ribosomal DNA of selected root tips. Our results show that the nurse plant method yields attractive rates of mycorrhiza formation by the Périgord black truffle and suggest that establishing and maintaining common mycorrhizal networks in pot cultures enables sustained use of the initial spore inoculum.  相似文献   

15.
The genetic differentiation of teak meta-population in India was investigated in relation to geographical and climatic variations employing dominant ISSR markers followed by Bayesian statistical analysis to understand adaptability of the species. The analysis based on 290 teak genotypes representing 29 locations of its natural distribution and 43 ISSR loci exhibited an insignificant structure and low 2.76% LD (≥?0.1 R2 values, p?<?0.001) in teak meta-population. The genetic and geographical variables despite acting independently with each other resulted in three sub-population clusters in the meta-population. The geographical barrier played a significant role in direction/restriction of gene flow. The integration of spatial/climatic variables altered the clustering pattern of the teak meta-population with signature of the adaptation to the temperature and longitudinal gradients that was also verified by the similar adaptation pattern of meta-population towards predicted global climate modeling for year 2050. The findings can help tackle the sustainable management and conservation of the species and its survival quotient in threat of changing climatic conditions.  相似文献   

16.
17.

Key message

A drought event during spring produces a stronger and long lasting decrease in growth of ponderosa pine seedlings than a summer drought event. However, survival is not differentially affected.

Abstract

Although there is certainty about the increasing frequency of extreme climatic events, the consequences of changing patterns of drought events within the growing season on the growth and survival of different species are much less certain. In particular, little knowledge is available on the differential effect on tree seedlings of a drought event at different times within the growing season. The objective of this study was to quantify the effect of a drought event imposed at different times over the growing season on the growth, survival and some related morphological and physiological variables of Pinus ponderosa seedlings from two seed sources. Four treatments were applied: control conditions; spring drought; summer drought and spring plus summer drought (SpSuD). A drought event in spring reduced stem growth and biomass accumulation in ponderosa pine seedlings during the occurrence of the drought and afterwards, even when plant water status had recovered. The lack of growth recovery could not be associated with loss of stem hydraulic conductivity or reduction in stomatal conductance after drought. However, the spring drought did not differentially affect plant survival, as was the case with prolonged drought in the SpSuD treatment. The summer drought event had a significant but much smaller impact on plant growth. Our results suggest different consequences of a drought event in spring or in summer in ponderosa pine seedlings. This knowledge may be relevant to understand and predict tree seedlings responses to changing patterns of drought events within the growing season in the framework of climatic change.  相似文献   

18.
Evaluation of photosynthetic efficiency is critical for studies on plant responses to environmental conditions as well as for genotype selection; however, there is a lack of reliable and functional protocols for such assessments of plants cultured in vitro. In this study, we aimed to adapt the conventional methodology for measuring gas exchange of plants grown in vitro to analyze the effects of irradiance, flow rate, and air humidity on the photosynthetic rate in cultured plantlets of two ‘Cerrado’ species, namely Hyptis marrubioides and Hancornia speciosa plantlets. Chlorophyll (chl) a fluorescence and chloroplastidic pigment content were also assessed. The highest photosynthetic rates were observed at a photon flux density of 600 μmol m?2 s?1, with tube inlet airflow rates between 100 and 300 mL min?1 and 80 % relative humidity in the inlet air. The electron transport rate curve, by means of chl a fluorescence, was similar to the photosynthetic rate response curve obtained with the infrared gas analyzer. These results demonstrate that both H. marrubioides and H. speciosa seedlings grown in vitro have a functional photosynthetic apparatus and respond to variations in measurement conditions, exhibiting substantial rates of CO2 assimilation under saturating irradiance conditions. The methodology proposed here can be adapted and applied to other species growing in vitro.  相似文献   

19.
气孔是植物与外界环境进行水分和气体交换的主要通道,调节植物碳同化和水分散失的平衡关系,在一定程度上反映植物对外界环境变化的适应。沿太白山北坡1100—2300 m海拔,测定4种栎属树种的气孔性状,分析气孔性状沿海拔的变化规律和其对环境因子的响应。结果表明:(1)气孔密度与气孔长度间的负相关在4个树种间均显著存在(P0.05);除栓皮栎(Quercus variabilis)外,气孔密度与潜在气孔导度指数的正相关关系均达显著水平;而气孔宽度与气孔长度之间只在栓皮栎和锐齿栎(Q. aliena var. acuteserrata)达到显著水平。(2)栓皮栎和槲栎(Q. aliena)的气孔长度和宽度随海拔升高而下降,气孔密度、潜在气孔导度指数增加,辽东栎(Q. wutaishansea)变化形式则相反;锐齿栎气孔宽度减小,其余性状沿海拔呈单峰变化,在约1600 m处气孔长度达到最小值,气孔密度和潜在气孔导度指数达到最大值。(3)与土壤因子相比,气孔性状主要受气候因素的影响。潜在气孔导度指数与大气温度、空气湿度成极显著正相关(P0.01),与降水量显著负相关(P0.05)。其中,空气相对湿度是影响潜在气孔导度指数的主要因素,能够解释气孔变异的22.9%。本研究结果对于深入认识秦岭太白山地区栎属树种对环境变化的响应和适应提供理论证据。  相似文献   

20.
The growth and net photosynthetic properties of seedlings of Pinus silvestris L. and Betula verrucosa Ehrh., grown under identical conditions in a controlled environment chamber, were compared. The relative growth rate of birch was about twice that of pine. The rates of in situ net photosynthesis were 1.50 and 2.30 micromoles CO2 meter−2 second−1 and the photosynthetic quantum yields under light-limiting conditions were 0.022 and 0.032 for pine and birch, respectively. The total leaf surface areas were used for calculating the CO2 flux densities. The difference in the rates of in situ net photosynthesis depended equally on morphological and metabolic factors. It was assumed that a pronounced mutual shading and an unfavorable leaf inclination made the pine seedlings less efficient in absorbing the unidirectional light of the climate chamber than the broadleaved seedlings of birch. Both pine and birch were adapted to the growth conditions so the flux densities of absorbed quanta were rate-limiting for in situ net photosynthesis. It was concluded that the difference in the photosynthetic quantum yields (i.e. the linear slope of the photosynthetic light curve) of the two species defined the metabolically controlled part of the difference in the rate of in situ net photosynthesis. The quantum yield of pine was lower than that of birch and was partly explained by pine having a higher rate of photorespiration than birch. The remaining difference was most likely controlled by the properties of the chloroplast thylakoids, e.g. energy transfer efficiency between pigments, photosynthetic electron transport, or coupling between electron transport and photophosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号