首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Fibroblast growth factor 8 (FGF-8) is expressed in a large proportion of breast cancers, whereas its level in normal mammary gland epithelium is low. Previous studies have shown that FGF-8b stimulates breast cancer cell growth in vitro and in vivo. To explore the mechanisms by which FGF-8b promotes growth, we studied its effects on cell cycle regulatory proteins and signalling pathways in mouse S115 and human MCF-7 breast cancer cells. We also studied the effect of FGF-8b on cell survival. FGF-8b induced cell cycle progression and up-regulated particularly cyclin D1 mRNA and protein in S115 cells. Silencing cyclin D1 with siRNA inhibited most but not all FGF-8b-induced proliferation. Inhibition of the FGF-8b-activated ERK/MAPK pathway decreased FGF-8b-stimulated proliferation. Blocking the constitutively active PI3K/Akt and p38 MAPK pathways also lowered FGF-8b-induced cyclin D1 expression and proliferation. Corresponding results were obtained in MCF-7 cells. In S115 and MCF-7 mouse tumours, FGF-8b increased cyclin D1 and Ki67 levels. Moreover, FGF-8b opposed staurosporine-induced S115 cell death which effect was blocked by inhibiting the PI3K/Akt pathway but not the ERK/MAPK pathway. In conclusion, our results suggest that FGF-8b increases breast cancer cell growth both by stimulating cell cycle progression and by protecting against cell death.  相似文献   

4.
5.
6.
Formononetin is one of the main components of red clover plants, and is considered as a typical phytoestrogen. This study further investigated that formononetin inactivated IGF1/IGF1R-PI3K/Akt pathways and decreased cyclin D1 mRNA and protein expression in human breast cancer cells in vitro and in vivo. MCF-7 cells were treated with different concentrations of formononetin. The proliferation of the cells treated with formononetin was tested by MTT assay. The cell cycle in the treated cells was examined by flow cytometry. The levels of p-IGF-1?R, p-Akt, and cyclin D1 protein expression and cyclin D1?mRNA expression in the treated cells were determined by Western blot and RT-PCR, respectively. In addition, the antitumor activity of formononetin was evaluated in nude mice bearing orthotopic tumor implants. Compared with the control, formononetin inhibited the proliferation of MCF-7 cells and effectively induced cell cycle arrest. The levels of p-IGF-1?R, p-Akt, cyclin D1 protein expression, and cyclin D1?mRNA expression were also downregulated. On the other hand, formononetin also prevented the tumor growth of human breast cancer cells in nude mouse xenografts. These results show that formononetin causes cell cycle arrest at the G0/G1 phase by inactivating IGF1/IGF1R-PI3K/Akt pathways and decreasing cyclin D1?mRNA and protein expression, indicating the use of formononetin in the prevention of breast cancer carcinogenesis.  相似文献   

7.
Head and neck squamous cell carcinoma (HNSCC) exhibits increased expression of cyclin D1 (CCND1). Previous studies have shown a correlation between poor prognosis of HNSCC and cyclin D1 overexpression. tRNase ZL-utilizing efficacious gene silencing (TRUE gene silencing) is one of the RNA-mediated gene expression control technologies that have therapeutic potential. This technology is based on a unique enzymatic property of mammalian tRNase ZL, which is that it can cleave any target RNA at any desired site by recognizing a pre-tRNA-like complex formed between the target RNA and an artificial small guide RNA (sgRNA). In this study, we designed several sgRNAs targeting human cyclin D1 mRNA to examine growth inhibition of HNSCC cells. Transfection of certain sgRNAs decreased levels of cyclin D1 mRNA and protein in HSC-2 and HSC-3 cells, and also inhibited their proliferation. The combination of these sgRNAs and cisplatin showed more than additive inhibition of cancer cell growth. These findings demonstrate that TRUE gene silencing of cyclin D1 leads to inhibition of the growth of HNSCC cells and suggest that these sgRNAs alone or combined with cisplatin may be a useful new therapy for HNSCCs.  相似文献   

8.
9.
Pancreatic cancer is the third leading cause of cancer-related mortalities and is characterized by rapid disease progression. Identification of novel therapeutic targets for this devastating disease is important. Phosphoenolpyruvate carboxykinase 1 (PCK1) is the rate-limiting enzyme of gluconeogenesis. The current study tested the expression and potential functions of PCK1 in pancreatic cancer. We show that PCK1 mRNA and protein levels are significantly elevated in human pancreatic cancer tissues and cells. In established and primary pancreatic cancer cells, PCK1 silencing (by shRNA) or CRISPR/Cas9-induced PCK1 knockout potently inhibited cell growth, proliferation, migration and invasion, and induced robust apoptosis activation. Conversely, ectopic overexpression of PCK1 in pancreatic cancer cells accelerated cell proliferation and migration. RNA-seq analyzing of differentially expressed genes (DEGs) in PCK1-silenced pancreatic cancer cells implied that DEGs were enriched in the PI3K-Akt-mTOR cascade. In pancreatic cancer cells, Akt-mTOR activation was largely inhibited by PCK1 shRNA, but was augmented after ectopic PCK1 overexpression. In vivo, the growth of PCK1 shRNA-bearing PANC-1 xenografts was largely inhibited in nude mice. Akt-mTOR activation was suppressed in PCK1 shRNA-expressing PANC-1 xenograft tissues. Collectively, PCK1 is a potential therapeutic target for pancreatic cancer.Subject terms: Pancreatic cancer, Oncogenes  相似文献   

10.
Zinc protoporphyrin IX (ZnPP), an endogenous heme analogue that inhibits heme oxygenase (HO) activity, represses tumor growth. It can also translocate into the nucleus and up-regulate heme oxygenase 1 (HMOX1) gene expression. Here, we demonstrate that tumor cell proliferation was inhibited by ZnPP, whereas tin protoporphyrin (SnPP), another equally potent HO-1 inhibitor, had no effect. Microarray analysis on 128 tumorigenesis related genes showed that ZnPP suppressed genes involved in cell proliferation and angiogenesis. Among these genes, CYCLIN D1 (CCND1) was specifically inhibited as were its mRNA and protein levels. Additionally, ZnPP inhibited CCND1 promoter activity through an Sp1 and Egr1 overlapping binding site (S/E). We confirmed that ZnPP modulated the S/E site, at least partially by associating with Sp1 and Egr1 proteins rather than direct binding to DNA targets. Furthermore, administration of ZnPP significantly inhibited cyclin D1 expression and progression of a B-cell leukemia/lymphoma 1 tumor in mice by preferentially targeting tumor cells. These observations show HO independent effects of ZnPP on cyclin D1 expression and tumorigenesis.  相似文献   

11.
12.
Biallelic inactivation of LKB1, a serine/threonine kinase, has been detected in 30% of lung adenocarcinomas, and inhibition of breast tumor growth has been demonstrated. We have identified the tumor suppressor, Nischarin, as a novel binding partner of LKB1. Our mapping analysis shows that the N terminus of Nischarin interacts with amino acids 44–436 of LKB1. Time lapse microscopy and Transwell migration data show that the absence of both Nischarin and LKB1 from an invasive breast cancer cell line (MDA-MB-231) enhances migration as measured by increased distance and speed of migrating cells. Our data suggest that this is a result of elevated PAK1 and LIMK1 phosphorylation. Moreover, the absence of Nischarin and LKB1 increased tumor growth in vivo. Consistent with this, the percentage of S phase cells was increased, as demonstrated by flow cytometry and enhanced cyclin D1. The absence of Nischarin and LKB1 also led to a dramatic increase in the formation of lung metastases. Our studies, for the first time, demonstrate functional interaction between LKB1 and Nischarin to inhibit cell migration and breast tumor progression. Mechanistically, we show that these two proteins together regulate PAK-LIMK-Cofilin and cyclin D1/CDK4 pathways.  相似文献   

13.
14.
Cardiomyocytes withdraw from cell cycle after terminal differentiation due in part to impaired nuclear import of cyclin D1. Thus, we have previously shown that expression of nuclear localization signal-tagged cyclin D1 (D1NLS) and cyclin-dependent kinase 4 promotes cardiomyocyte proliferation both in vitro and in vivo. Here we show that cyclin D2 fails to stimulate cell cycle in cardiomocytes through a mechanism distinct from that of cyclin D1. We demonstrate that cyclin D2 can express in the nucleus much more efficiently than cyclin D1. Cyclin D2, however, was much less effective in activating CDK2 and cell proliferation than cyclin D1 when expressed transiently in the nucleus of cardiomyocytes using nuclear localization signals. Consistent with such an observation, CDK inhibitors p21cip1 and p27kip1 remained bound to CDK2 in cells expressing cyclin D2, whereas p21 and p27 were sequestered to cyclin D1 in cells expressing D1NLS. These data suggest that cyclin D2 has weaker affinities to the CDK inhibitors and therefore is less efficient in activating cell cycle than cyclin D1. According to such a notion, double knockdown of p21 and p27 in cells expressing D2NLS induced activation of CDK2/CDC2 and BrdU incorporation to levels similar to those in cells expressing D1NLS. Taken together, our data suggest that distinct mechanisms keep cyclin D1 and cyclin D2 from activating cell cycle in terminally differentiated cardiomyocytes.  相似文献   

15.
1-Methyl-4-phenylpyridinium ion (MPP(+)), an active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, induces cell death and inhibition of cell proliferation in various cells. However, the mechanism whereby MPP(+) inhibits cell proliferation is still unclear. In this study, we found that MPP(+) suppressed the proliferation with accumulation in G(1) phase without inducing cell death in p53-deficient MG63 osteosarcoma cells. MPP(+) induced hypophosphorylation of retinoblastoma protein and rapidly down-regulated the protein but not mRNA levels of cyclin D1 in MG63 cells. The down-regulation of cyclin D1 protein was suppressed by a proteasome inhibitor, MG132. The cyclin D1 down-regulation by MPP(+) was also observed in p53-positive PC12, HeLa S3, and HeLa rho(0) cells, which are a subclone of HeLa S3 lacking mitochondrial DNA. Moreover, MPP(+) dephosphorylated Akt in PC12 cells, which was rescued by the pretreatment with nerve growth factor. In addition, the pretreatment with nerve growth factor or lithium chloride, a glycogen synthase kinase-3beta inhibitor, suppressed the cyclin D1 down-regulation caused by MPP(+). Our results demonstrate that MPP(+) induces cell cycle arrest independently of its mitochondrial toxicity or the p53 status of the target cells, but rather through the proteasome- and phosphatidylinositol 3-Akt-glycogen synthase kinase-3beta-dependent cyclin D1 degradation.  相似文献   

16.
研究小干扰RNA(small interfering RNA,siRNA)对乳腺癌MCF-7细胞株cyclin D1表达的抑制及对细胞增殖的影响。化学合成针对cyclin D1基因的siRNA,转染MCF-7细胞株;分别应用荧光定量PCR和免疫印迹测定cyclin D1 mRNA和蛋白的表达,CCK-8测定细胞的增殖活性,流式细胞仪检测细胞周期,软琼脂培养检测细胞克隆形成能力。在实验中,10、50、100 nmol/L siRNA-cyclin D1分别使MCF-7细胞cyclin D1 mRNA表达降低了57.85%、63.22%和68.02%,蛋白表达降低了51.13%、62.09%、77.68%。转染siRNA-cyclin D1后,细胞增殖受到抑制,细胞周期阻滞于G1期,软琼脂克隆形成率降低。结果提示siRNA可以有效抑制MCF-7细胞株中cyclin D1的表达,使细胞周期阻滞于G1期,从而抑制细胞增殖。  相似文献   

17.
Recently we demonstrated that the synovial sarcoma specific fusion gene SS18-SSX is crucial for cyclin D1 expression and is linked to cell proliferation. In this report we explore the role of SS18-SSX and IGF-1R for their potential functions in cellular proliferation and survival in cultured synovial sarcoma cells. We found that targeting of SS18-SSX mRNA by antisense oligonucleotide treatment drastically and rapidly decreased cell proliferation but caused only a slight increase of apoptosis. The synovial sarcoma cells were confirmed to express IGF-1R, and treatment with an IGF-1R inhibitor resulted in substantially reduced cell viability by inducing apoptosis in these cells. Conversely, inhibition of the IGF-1R resulted only in a slight to moderate decrease in DNA synthesis. In conclusion, SS18-SSX and IGF-1R seem to play important but different roles in maintaining malignant growth of synovial sarcoma cells. Whereas SS18-SSX maintains cyclin D1 and cell proliferation, IGF-1R protects from apoptosis.  相似文献   

18.
Chen C  Zhou Z  Li M  Qu M  Ma Q  Zhong M  Zhang Y  Yu Z 《Gene》2012,491(2):194-199
Pancreatic cancer is a malignant neoplasm of the pancreas that usually has a poor prognosis. The investigation of targets that effectively inhibit pancreatic cancer cell proliferation should provide a fundamental basis for the clinical application of gene therapy. Here, high expression levels of ABCC4 protein in thirty-six pancreatic cancer specimens were quantified using an immunohistochemical assay, and the potential of ABCC4 as a therapeutic target for pancreatic cancer was investigated. Inhibition of ABCC4 expression at the mRNA and protein levels was achieved in Panc-1 and BxPC-3 pancreatic cancer cells infected with a lentivirus expressing an ABCC4 short hairpin RNA (shRNA). The downregulation of ABCC4 expression in Panc-1 and BxPC-3 cells significantly inhibited their proliferation and colony formation in vitro, compared to cells infected with mock control (p < 0.05). Moreover, the specific downregulation of ABCC4 led to the accumulation of cells at the G1 phase of the cell cycle. Our findings reveal that the ABCC4 gene promotes pancreatic cancer cell growth and represents a promising target for gene therapy in pancreatic cancer.  相似文献   

19.
Glioma proliferation is a multistep process during which a sequence of genetic and epigenetic alterations randomly occur to affect the genes controlling cell proliferation, cell death and genetic stability. microRNAs are emerging as important epigenetic modulators of multiple target genes, leading to abnormal cellular signaling involving cellular proliferation in cancers.In the present study, we found that expression of miR-195 was markedly downregulated in glioma cell lines and human primary glioma tissues, compared to normal human astrocytes and matched non-tumor associated tissues. Upregulation of miR-195 dramatically reduced the proliferation of glioma cells. Flow cytometry analysis showed that ectopic expression of miR-195 significantly decreased the percentage of S phase cells and increased the percentage of G1/G0 phase cells. Overexpression of miR-195 dramatically reduced the anchorage-independent growth ability of glioma cells. Furthermore, overexpression of miR-195 downregulated the levels of phosphorylated retinoblastoma (pRb) and proliferating cell nuclear antigen (PCNA) in glioma cells. Conversely, inhibition of miR-195 promoted cell proliferation, increased the percentage of S phase cells, reduced the percentage of G1/G0 phase cells, enhanced anchorage-independent growth ability, upregulated the phosphorylation of pRb and PCNA in glioma cells. Moreover, we show that miR-195 inhibited glioma cell proliferation by downregulating expression of cyclin D1 and cyclin E1, via directly targeting the 3′-untranslated regions (3′-UTR) of cyclin D1 and cyclin E1 mRNA. Taken together, our results suggest that miR-195 plays an important role to inhibit the proliferation of glioma cells, and present a novel mechanism for direct miRNA-mediated suppression of cyclin D1 and cyclin E1 in glioma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号