首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
JP Dai  WZ Li  XF Zhao  GF Wang  JC Yang  L Zhang  XX Chen  YX Xu  KS Li 《PloS one》2012,7(8):e42706
In this research, we have established a drug screening method based on the autophagy signal pathway using the bimolecular fluorescence complementation - fluorescence resonance energy transfer (BiFC-FRET) technique to develop novel anti-influenza A virus (IAV) drugs. We selected Evodia rutaecarpa Benth out of 83 examples of traditional Chinese medicine and explored the mechanisms of evodiamine, the major active component of Evodia rutaecarpa Benth, on anti-IAV activity. Our results showed that evodiamine could significantly inhibit IAV replication, as determined by a plaque inhibition assay, an IAV vRNA promoter luciferase reporter assay and the Sulforhodamine B method using cytopathic effect (CPE) reduction. Additionally, evodiamine could significantly inhibit the accumulation of LC3-II and p62, and the dot-like aggregation of EGFP-LC3. This compound also inhibited the formation of the Atg5-Atg12/Atg16 heterotrimer, the expressions of Atg5, Atg7 and Atg12, and the cytokine release of TNF-α, IL-1β, IL-6 and IL-8 after IAV infection. Evodiamine inhibited IAV-induced autophagy was also dependent on its action on the AMPK/TSC2/mTOR signal pathway. In conclusion, we have established a new drug screening method, and selected evodiamine as a promising anti-IAV compound.  相似文献   

3.
Eugenol is an essential oil mainly found in the buds and leaves of clove (Syzygium aromaticum (L.) Merrill and Perry), which has been reported to have activity on inhibition of cell proliferation and apoptosis induction in human MCF-7 breast cancer cells. This biological activity is correlated to its activity as an estrogen receptor antagonist. In this article, we present the construction and validation of structure-based virtual screening (SBVS) protocols to identify the potent estrogen receptor α (ER) antagonists. The selected protocol, which gave acceptable enrichment factors as a virtual screening protocol, subsequently used to virtually screen eugenol, its analogs and their dimers. Based on the virtual screening results, dimer eugenol of 4-[4-hydroxy-3-(prop-2-en-1- yl)phenyl]-2-(prop-2-en-1-yl)phenol is recommended to be developed further in order to discover novel and potent ER antagonists.  相似文献   

4.
5.
The IκB kinase (IKK) complex is the signal integration hub for NF-κB activation. Composed of two serine-threonine kinases (IKKα and IKKβ) and the regulatory subunit NEMO (also known as IKKγ), the IKK complex integrates signals from all NF-κB activating stimuli to catalyze the phosphorylation of various IκB and NF-κB proteins, as well as of other substrates. Since the discovery of the IKK complex components about 15 years ago, tremendous progress has been made in the understanding of the IKK architecture and its integration into signaling networks. In addition to the control of NF-κB, IKK subunits mediate the crosstalk with other pathways, thereby extending the complexity of their biological function. This review summarizes recent advances in IKK biology and focuses on emerging aspects of IKK structure, regulation and function.  相似文献   

6.
7.
8.
NF-κB and inflammasomes both play central roles in orchestrating anti-pathogen responses by rapidly inducing a variety of early-response cytokines and chemokines following infection. Myxoma virus (MYXV), a pathogenic poxvirus of rabbits, encodes a member of the cellular pyrin domain (PYD) superfamily, called M013. The viral M013 protein was previously shown to bind host ASC-1 protein and inhibit the cellular inflammasome complex that regulates the activation and secretion of caspase 1-regulated cytokines such as IL-1β and IL-18. Here, we report that human THP-1 monocytic cells infected with a MYXV construct deleted for the M013L gene (vMyxM013-KO), in stark contrast to the parental MYXV, rapidly induce high levels of secreted pro-inflammatory cytokines like TNF, IL-6, and MCP-1, all of which are regulated by NF-κB. The induction of these NF-κB regulated cytokines following infection with vMyxM013-KO was also confirmed in vivo using THP-1 derived xenografts in NOD-SCID mice. vMyxM013-KO virus infection specifically induced the rapid phosphorylation of IKK and degradation of IκBα, which was followed by nuclear translocation of NF-κB/p65. Even in the absence of virus infection, transiently expressed M013 protein alone inhibited cellular NF-κB-mediated reporter gene expression and nuclear translocation of NF-κB/p65. Using protein/protein interaction analysis, we show that M013 protein also binds directly with cellular NF-κB1, suggesting a direct physical and functional linkage between NF-κB1 and ASC-1. We further demonstrate that inhibition of the inflammasome with a caspase-1 inhibitor did not prevent the induction of NF-κB regulated cytokines following infection with vMyxM013-KO virus, but did block the activation of IL-1β. Thus, the poxviral M013 inhibitor exerts a dual immuno-subversive role in the simultaneous co-regulation of both the cellular inflammasome complex and NF-κB-mediated pro-inflammatory responses.  相似文献   

9.
Inhibition of cathepsin D (Cat D) sensitizes cancer cells to anticancer drugs via RNF183-mediated downregulation of Bcl-xL expression. Although NF-κB activation is involved in the upregulation of RNF183 expression, the molecular mechanism of NF-κB activation by Cat D inhibition is unknown. We conducted this study to investigate the molecular mechanism underlying Cat D-mediated NF-κB activation. Interestingly, Cat D inhibition-induced IκB degradation in an autophagy-dependent manner. Knockdown of autophagy-related genes (ATG7 and Beclin1) and lysosome inhibitors (chloroquine and bafilomycin A1) blocked IκB degradation via Cat D inhibition. Itch induced K63-linked ubiquitination of IκB and then modulated the protein stability of IκB by Cat D inhibition. Inhibition of Cat D-mediated Itch activation was modulated by the JNK signaling pathway, and phosphorylated Itch could bind to IκB, resulting in polyubiquitination of IκB. Additionally, inhibition of Cat D increased autophagy flux via activation of the LKB1-AMPK-ULK1 pathway. Therefore, our results suggested that Cat D inhibition activated NF-κB signaling via degradation of autophagy-dependent IκB, which is associated with the upregulation of RNF183, an E3 ligase of Bcl-xL. Cat D inhibition enhances TRAIL-induced apoptosis through Bcl-xL degradation via upregulation of RNF183.Subject terms: Chemotherapy, Ubiquitylation, Autophagy  相似文献   

10.
11.
The present work evaluates the anti-Giardia activity of Syzygium aromaticum and its major compound eugenol. The effects were evaluated on parasite growth, adherence, viability and ultrastructure. S. aromaticum essential oil (IC50 = 134 μg/ml) and eugenol (IC50 = 101 μg/ml) inhibited the growth of G. lamblia. The essential oil inhibited trophozoites adherence since the first hour of incubation and was able to kill almost 50% of the parasites population in a time dependent manner. The eugenol inhibited G. lamblia trophozoites adherence since the third hour and not induce cell lyses. The main morphological alterations were modifications on the cell shape, presence of precipitates in the cytoplasm, autophagic vesicles, internalization of flagella and ventral disc, membrane blebs, and intracellular and nuclear clearing. Taken together, our findings lead us to propose that eugenol was responsible for the anti-giardial activity of the S. aromaticum essential oil and both have potential for use as therapeutic agents against giardiasis.  相似文献   

12.

Background

Tetracycline exerts neuroprotection via suppressing the local inflammation induced by cerebral ischemia. However, the underlying mechanism is not completely clear.

Methodology/Principal Findings

The mRNA and protein expressions of tumor necrosis factor α and interleukin 6 and the number of activated microglia were measured to detect the inflammatory process in the ischemic hemisphere. The key proteins of nuclear factor kappa B pathway and the binding activity of nuclear factor kappa B were also measured. Two key components of autophagy, Beclin 1 and LC3, were detected by western blotting. Pretreatment with tetracycline inhibited the mRNA and protein expressions of tumor necrosis factor α and interleukin 6 and decreased the numbers of activated and phagocytotic microglia. Tetracycline down regulated the total and phosphorylated expressions of IKK, IκB and p65 (P<0.05). The autophagy inhibitor, 3-methyladenine, inhibited inflammation and activation of nuclear factor kappa B pathway. The levels of Beclin 1 and LC3 were decreased by 3-methyladenine and tetracycline.

Conclusions/Significance

Our data suggested that pretreatment of tetracycline may inhibit autophagy in the ischemic stroke brain and then suppress the inflammatory process via inhibiting the activation of nuclear factor kappa B pathway.  相似文献   

13.
The cattle tick, Rhipicephalus microplus (Canestrini, 1888) (Ixodida: Ixodidae), is the most important ectoparasite in cattle‐breeding areas and is responsible for severe economic losses. Synthetic acaricides have been used to control this parasite. However, the need for safer products has stimulated the search for new acaricides, such as those to be obtained from medicinal plants. The essential oil of Syzygium aromaticum (clove) has many biological properties and shows great potential for use in veterinary applications. In the context of the need for new agents, this study investigated the in vitro properties of the hydrolate, essential oil and the main constituent of S. aromaticum, eugenol, in formulated and free applications against larvae and females of R. microplus. Eugenol and the essential oil caused 100% mortality in larvae at starting applications of 2.5 mg/mL and 5.0 mg/mL, respectively. The hydrolate showed no activity. Both eugenol and essential oil had good efficacy in adult immersion tests at 50 mg/mL and achieved 100% efficacy at a concentration of 100 mg/mL. The results of these tests reaffirm the important potential of clove essential oil and eugenol.  相似文献   

14.
Cytoplasmic presence of Hsp60, which is principally a nuclear gene-encoded mitochondrial chaperonin, has frequently been stated, but its role in intracellular signaling is largely unknown. In this study, we demonstrate that the cytosolic Hsp60 promotes the TNF-α-mediated activation of the IKK/NF-κB survival pathway via direct interaction with IKKα/β in the cytoplasm. Selective loss or blockade of cytosolic Hsp60 by specific antisense oligonucleotide or neutralizing antibody diminished the IKK/NF-κB activation and the expression of NF-κB target genes, such as Bfl-1/A1 and MnSOD, which thus augmented intracellular ROS production and ASK1-dependent cell death, in response to TNF-α. Conversely, the ectopic expression of cytosol-targeted Hsp60 enhanced IKK/NF-κB activation. Mechanistically, the cytosolic Hsp60 enhanced IKK activation via upregulating the activation-dependent serine phosphorylation in a chaperone-independent manner. Furthermore, transgenic mouse study showed that the cytosolic Hsp60 suppressed hepatic cell death induced by diethylnitrosamine in vivo. The cytosolic Hsp60 is likely to be a regulatory component of IKK complex and it implicates the first mitochondrial factor that regulates cell survival via NF-κB pathway.  相似文献   

15.
Aberrant Nuclear Factor-κappaB (NF-κB) activation due to rapid IκBα turnover and high basal IκBα kinase (IKK) activity has been frequently observed in prostate cancer. Apigenin, a naturally occurring plant flavone, exhibits anti-proliferative, anti-inflammatory and anti-carcinogenic activities by inhibiting NF-κB pathway, through a mechanism not fully understood. We found that apigenin feeding in microgram doses (bioavailable in humans) inhibited prostate tumorigenesis in TRAMP mice by interfering with NF-κB signaling. Apigenin feeding to TRAMP mice (20 and 50 μg/mouse/day, 6 days/week for 20 weeks) exhibited significant decrease in tumor volumes of the prostate and completely abolished metastasis, which correlated with inhibition of NF-κB activation and binding to the DNA. Apigenin intake blocked phosphorylation and degradation of IκBα by inhibiting IKK activation, which in turn led to suppression of NF-κB activation. The expression of NF-κB-regulated gene products involved in proliferation (cyclin D1, and COX-2), anti-apoptosis (Bcl-2 and Bcl-xL), and angiogenesis (vascular endothelial growth factor) were also downregulated after apigenin feeding. These events correlated with the induction of apoptosis in tumor cells, as evident by increased cleaved caspase-3 labeling index in the dorsolateral prostate. Our results provide convincing evidence that apigenin inhibits IKK activation and restores the expression of IκBα, preventing it’s phosphorylation in a fashion similar to that elicited by IKK and proteasomal inhibitors through suppression of NF-κB signaling pathway.  相似文献   

16.
17.
Canonical NF-κB signaling through the inhibitor of κB kinase (IKK) complex requires induction of IKK2/IKKβ subunit catalytic activity via specific phosphorylation within its activation loop. This process is known to be dependent upon the accessory ubiquitin (Ub)-binding subunit NF-κB essential modulator (NEMO)/IKKγ as well as poly-Ub chains. However, the mechanism through which poly-Ub binding serves to promote IKK catalytic activity is unclear. Here, we show that binding of NEMO/IKKγ to linear poly-Ub promotes a second interaction between NEMO/IKKγ and IKK2/IKKβ, distinct from the well-characterized interaction of the NEMO/IKKγ N terminus to the “NEMO-binding domain” at the C terminus of IKK2/IKKβ. We mapped the location of this second interaction to a stretch of roughly six amino acids immediately N-terminal to the zinc finger domain in human NEMO/IKKγ. We also showed that amino acid residues within this region of NEMO/IKKγ are necessary for binding to IKK2/IKKβ through this secondary interaction in vitro and for full activation of IKK2/IKKβ in cultured cells. Furthermore, we identified a docking site for this segment of NEMO/IKKγ on IKK2/IKKβ within its scaffold-dimerization domain proximal to the kinase domain–Ub-like domain. Finally, we showed that a peptide derived from this region of NEMO/IKKγ is capable of interfering specifically with canonical NF-κB signaling in transfected cells. These in vitro biochemical and cell culture–based experiments suggest that, as a consequence of its association with linear poly-Ub, NEMO/IKKγ plays a direct role in priming IKK2/IKKβ for phosphorylation and that this process can be inhibited to specifically disrupt canonical NF-κB signaling.  相似文献   

18.

Introduction

We have previously reported that bacterial toxins, especially endotoxins such as lipopolysaccharides (LPS), might be important causative agents in the pathogenesis of rheumatoid arthritis (RA) in an in vitro model that simulates the potential effects of residing in damp buildings. Since numerous inflammatory processes are linked with the nuclear factor-κB (NF-κB), we investigated in detail the effects of LPS on the NF-κB pathway and the postulated formation of procollagen-endotoxin complexes.

Methods

An in vitro model of human chondrocytes was used to investigate LPS-mediated inflammatory signaling.

Results

Immunoelectron microscopy revealed that LPS physically interact with collagen type II in the extracellular matrix (ECM) and anti-collagen type II significantly reduced this interaction. BMS-345541 (a specific inhibitor of IκB kinase (IKK)) or wortmannin (a specific inhibitor of phosphatidylinositol 3-kinase (PI-3K)) inhibited the LPS-induced degradation of the ECM and apoptosis in chondrocytes. This effect was completely inhibited by combining BMS-345541 and wortmannin. Furthermore, BMS-345541 and/or wortmannin suppressed the LPS-induced upregulation of catabolic enzymes that mediate ECM degradation (matrix metalloproteinases-9, -13), cyclooxygenase-2 and apoptosis (activated caspase-3). These proteins are regulated by NF-κB, suggesting that the NF-κB and PI-3K pathways are involved in LPS-induced cartilage degradation. The induction of NF-κB correlated with activation of IκBα kinase, IκBα phosphorylation, IκBα degradation, p65 phosphorylation and p65 nuclear translocation. Further upstream, LPS induced the expression of Toll-like receptor 4 (TLR4) and bound with TLR4, indicating that LPS acts through TLR4.

Conclusion

These results suggest that molecular associations between LPS/TLR4/collagen type II in chondrocytes upregulate the NF-κB and PI-3K signaling pathways and activate proinflammatory activity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号