首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Coral reefs are found within a limited range of environmental conditions or tolerance limits. Estimating these limits is a critical prerequisite for understanding the impacts of climate change on the biogeography of coral reefs. Here we used the diagnostic model ReefHab to determine the current environmental tolerance limits for coral reefs and the global distribution of potential coral reef habitats as a function of six factors: temperature, salinity, nitrate, phosphate, aragonite saturation state, and light. To determine these tolerance limits, we extracted maximum and minimum values of all environmental variables in corresponding locations where coral reefs are present. We found that the global, annually averaged tolerance limits for coral reefs are 21.7—29.6 °C for temperature, 28.7—40.4 psu for salinity, 4.51 μmol L-1 for nitrate, 0.63 μmol L-1 for phosphate, and 2.82 for aragonite saturation state. The averaged minimum light intensity in coral reefs is 450 μmol photons m-2 s-1. The global area of potential reef habitats calculated by the model is 330.5 × 103 km2. Compared with previous studies, the tolerance limits for temperature, salinity, and nutrients have not changed much, whereas the minimum value of aragonite saturation in coral reef waters has decreased from 3.28 to 2.82. The potential reef habitat area calculated with ReefHab is about 121×103 km2 larger than the area estimated from the charted reefs, suggesting that the growth potential of coral reefs is higher than currently observed.  相似文献   

2.
The disastrous effects of the intense 1982–83 El Niño-SouthernOscillation (ENSO) bring new insight into the long-term developmentof eastern Pacific coral reefs. The 1988–83 ENSO sea surfacewarming event caused extensive reef coral bleaching (loss ofsymbiotic zooxanthellae), resulting in up to 70–95% coralmortality on reefs in Costa Rica, Panama, Colombia and Ecuador.In the Galapagos Islands (Ecuador), most coral reefs experienced>95% coral mortality. Also, several coral species experiencedextreme reductions in population size, and local and regionalextinctions. The El Niño event spawned secondary disturbances,such as increased predation and bioerosion, that continue toimpact reef-building corals. The death of Pocillopora colonieswith their crustacean guards eliminated coral barriers now allowingthe corallivore Acanthaster planci access to formerly protectedcoral prey. Sea urchins and other organisms eroded disturbedcorals at rates that exceed carbonate production, potentiallyresulting in the elimination of existing reef buildups. In otherreefbuilding regions following extensive, catastrophic coralmortality, rapid recovery often occurs through the growth ofsurviving corals, recruitment of new corals from nearby sourcepopulations, and survival of consolidated reef surfaces. Inthe eastern Pacific, however, the return of upwelling conditionsand the survival of coral predators and bioeroders hamper coralreef recovery by reducing recruitment success and eroding coralreef substrates. Thus, coral reef growth that occurs betweendisturbance events is not conserved. Repeated El Niñodisturbances, which have occurred throughout the recent geologichistory of the eastern Pacific, prevent coral communities fromincreasing in diversity and limit the development and persistenceof significant reef features. The poor development of easternPacific coral reefs throughout Holocene and perhaps much ofPleistocene time may result from recurrent thermal disturbancesof the intensity of the 1982–83 El Niño event.  相似文献   

3.
Dinitrogen-fixing organisms in cyanobacterial mats were studied in two shallow coral reef ecosystems: La Reunion Island, southwestern Indian Ocean, Sesoko (Okinawa) Island, and northwestern Pacific Ocean. Rapidly expanding benthic miniblooms, frequently dominated by a single cyanobacterial taxon, were identified by microscopy and molecular tools. In addition, nitrogenase activity by these blooms was measured in situ. Dinitrogen fixation and its contribution to mat primary production were calculated using 15N2 and 13C methods. Dinitrogen-fixing cyanobacteria from mats in La Reunion and Sesoko showed few differences in taxonomic composition. Anabaena sp. among heterocystous and Hydrocoleum majus and Symploca hydnoides among nonheterocystous cyanobacteria occurred in microbial mats of both sites. Oscillatoria bonnemaisonii and Leptolyngbya spp. occurred only in La Reunion, whereas Hydrocoleum coccineum dominated in Sesoko. Other mats dominated by Hydrocoleum lyngbyaceum, Phormidium laysanense, and Trichocoleus tenerrimus occurred at lower frequencies. The 24-h nitrogenase activity, as measured by acetylene reduction, varied between 11 and 324 nmoles C2H2 reduced μg−1 Chl a. The highest values were achieved by heterocystous Anabaena sp. performed mostly during the day. Highest values for nonheterocystous cyanobacteria were achieved by H. coccineum mostly during the night. Daily nitrogen fixation varied from nine (Leptolyngbya) to 238 nmoles N2 μg−1 Chl day−1 (H. coccineum). Primary production rates ranged from 1,321 (S. hydnoides) to 9,933 nmoles C μg−1 Chl day−1 (H. coccineum). Dinitrogen fixation satisfied between 5% and 21% of the nitrogen required for primary production.  相似文献   

4.
Ecosystem modelling is increasingly used to explore ecosystem-level effects of changing environmental conditions and management actions. For coral reefs there has been increasing interest in recent decades in the use of ecosystem models for evaluating the effects of fishing and the efficacy of marine protected areas. However, ecosystem models that integrate physical forcings, biogeochemical and ecological dynamics, and human induced perturbations are still underdeveloped. We applied an ecosystem model (Atlantis) to the coral reef ecosystem of Guam using a suite of management scenarios prioritized in consultation with local resource managers to review the effects of each scenario on performance measures related to the ecosystem, the reef-fish fishery (e.g., fish landings) and coral habitat. Comparing tradeoffs across the selected scenarios showed that each scenario performed best for at least one of the selected performance indicators. The integrated ‘full regulation’ scenario outperformed other scenarios with four out of the six performance metrics at the cost of reef-fish landings. This model application quantifies the socio-ecological costs and benefits of alternative management scenarios. When the effects of climate change were taken into account, several scenarios performed equally well, but none prevented a collapse in coral biomass over the next few decades assuming a business-as-usual greenhouse gas emissions scenario.  相似文献   

5.
Current velocity in aquatic environments has major implications for the diversity, abundance and ecology of aquatic organisms, but quantifying these currents has proven difficult. This study utilises a simple and inexpensive instrument (<$150) to provide a detailed current velocity profile of the coral-reef system around Lizard Island (Great Barrier Reef, Australia) at a spatial and temporal scale relevant to the ecology of individual benthos and fish. The instrument uses load-cell sensors to provide a correlation between sensor output and ambient current velocity of 99%. Each instrument is able to continuously record current velocities to >500 cms−1 and wave frequency to >100 Hz over several weeks. Sensor data are registered and processed at 16 MHz and 10 bit resolution, with a measuring precision of 0.06±0.04%, and accuracy of 0.51±0.65% (mean ±S.D.). Each instrument is also pressure rated to 120 m and shear stresses ≤20 kNm−2 allowing deployment in harsh environments.The instrument was deployed across 27 coral reef sites covering the crest (3 m), mid-slope (6 m) and deep-slope (9 m depth) of habitats directly exposed, oblique or sheltered from prevailing winds. Measurements demonstrate that currents over the reef slope and crest varies immensely depending on depth and exposure: Currents differ up to 9-fold within habitats only separated by 3 m depth and 15-fold between exposed, oblique and sheltered habitats. Comparisons to ambient weather conditions reveal that currents around Lizard Island are largely wind driven. Zero to 22.5 knot winds correspond directly to currents of 0 to >82 cms−1, while tidal currents rarely exceed 5.5 cms−1. Rather, current velocity increases exponentially as a function of wave height (0 to 1.6 m) and frequency (0.54 to 0.20 Hz), emphasizing the enormous effect of wind and waves on organisms in these shallow coral reef habitats.  相似文献   

6.
Coral reef ecosystems are under dual threat from climate change. Increasing sea surface temperatures and thermal stress create environmental limits at low latitudes, and decreasing aragonite saturation state creates environmental limits at high latitudes. This study examines the response of unique coral reef habitats to climate change in the remote Pacific, using the National Center for Atmospheric Research Community Earth System Model version 1 alongside the species distribution algorithm Maxent. Narrow ranges of physico-chemical variables are used to define unique coral habitats and their performance is tested in future climate scenarios. General loss of coral reef habitat is expected in future climate scenarios and has been shown in previous studies. This study found exactly that for most of the predominant physico-chemical environments. However, certain coral reef habitats considered marginal today at high latitude, along the equator and in the eastern tropical Pacific were found to be quite robust in climate change scenarios. Furthermore, an environmental coral reef refuge previously identified in the central south Pacific near French Polynesia was further reinforced. Studying the response of specific habitats showed that the prevailing conditions of this refuge during the 20th century shift to a new set of conditions, more characteristic of higher latitude coral reefs in the 20th century, in future climate scenarios projected to 2100.  相似文献   

7.
Coral reefs around US- and US-affiliated Pacific islands and atolls span wide oceanographic gradients and levels of human impact. Here we examine the relative influence of these factors on coral reef fish biomass, using data from a consistent large-scale ecosystem monitoring program conducted by scientific divers over the course of >2,000 hours of underwater observation at 1,934 sites, across ~40 islands and atolls. Consistent with previous smaller-scale studies, our results show sharp declines in reef fish biomass at relatively low human population density, followed by more gradual declines as human population density increased further. Adjusting for other factors, the highest levels of oceanic productivity among our study locations were associated with more than double the biomass of reef fishes (including ~4 times the biomass of planktivores and piscivores) compared to islands with lowest oceanic productivity. Our results emphasize that coral reef areas do not all have equal ability to sustain large reef fish stocks, and that what is natural varies significantly amongst locations. Comparisons of biomass estimates derived from visual surveys with predicted biomass in the absence of humans indicated that total reef fish biomass was depleted by 61% to 69% at populated islands in the Mariana Archipelago; by 20% to 78% in the Main Hawaiian islands; and by 21% to 56% in American Samoa.  相似文献   

8.
Hatcher  Bruce G.  Hatcher  Gordon H. 《EcoHealth》2004,1(3):229-235
Coral reefs are the worlds most celebrated indicators of ocean health. While the global trajectory of coral reef degradation is now well documented, and the accompanying loss of economic benefits increasingly demonstrated, the consequences in terms of human health have been largely ignored. Reefs provide a wide array of benefits to humans, contributing most directly to the health of subsistence fishing communities located on adjacent coasts and islands. Interactions between human and marine ecosystem health are complex, bidirectional and nonlinear. We draw on a broad range of data and experience to identify key links in the ecological chain from the coral polyp to the human society. Our conclusions are that humans are components of coral reef ecosystems, few studies of reef health incorporate human health, few data are available to quantify the health services reefs provide to people, and human health security is essential to the preservation of coral reef ecosystems.  相似文献   

9.
Recreational and other human activities degrade coral reefs worldwide to a point where efficient restoration techniques are needed. Here we tested several strategies for gardening denuded reefs. The gardening concept consists of in situ or ex situ mariculture of coral recruits, followed by their transplantation into degraded reef sites. In situ nurseries were established in Eilat's (Northern Red Sea) shallow waters, sheltering three types of coral materials taken from the branching species Stylophora pistillata (small colonies, branch fragments, and spat) that were monitored for up to two years. Pruning more than 10% of donor colonies' branches increased mortality, and surviving colonies displayed reduced reproductive activity. Maricultured isolated branches, however, exceeded donor colony life span and reproductive activity and added 0.5–45% skeletal mass per year. Forty‐four percent of the small colonies survived after 1.5‐year mariculture, revealing average yearly growth of 75 ± 32%. Three months ex situ maintenance of coral spat (sexual recruits) prior to the in situ nursery phase increased survivorship. Within the next 1.5 years, they developed into colonies of 3–4 cm diameter. Nursery periods of 2 years, 4–5 years, and more than> 5 years have been estimated for small colonies, spat, and isolated branches, respectively. These and other results, including the possible use of nubbins (minute fragments the size of a single or few polyps), are discussed, revealing benefits and drawbacks for each material. In situ coral mariculture is an improved practice to the common but potentially harmful protocol of direct coral transplantation. It is suggested that reef gardening may be used as a key management tool in conservation and restoration of denuded reef areas. The gardening concept may be applicable for coral reefs worldwide through site‐specific considerations and the use of different local coral species.  相似文献   

10.
Laboratory studies on the ecological physiology of a coral pathogen were carried out to investigate growth potential in terms of environmental factors that may control coral diseases on reefs. The disease chosen for this study, white plague type II, is considered to be one of the major diseases of Caribbean scleractinian corals, affecting a wide range of coral hosts and causing rapid and widespread tissue loss. It is caused by a single pathogen, the bacterium Aurantimonas coralicida. A series of laboratory experiments using a pure culture of the pathogen was carried out to examine the roles of temperature, pH, and O2 concentration on growth rate. Results revealed optimal growth between 30 and 35°C, and between pH values of 6 and 8. There was a distinctive synergistic relationship between pH and temperature. Increasing temperature from 25 to 35°C expanded the range of pH tolerance from a minimum of 6.0 down to 5.0. O2 concentration directly affected growth rate, which increased with increasing O2. The combined effects of increasing O2 and increasing temperature resulted in a synergistic effect of more rapid growth. These laboratory results are discussed in terms of the coral host and the range of the environmental factors that occur on coral reefs. We conclude that changing environmental conditions in the reef environment, in particular observed increases in water temperature, may be promoting coral diseases by allowing coral pathogens to expand their ecological niches. In the case of the white plague type II pathogen, elevated temperature would allow A. coralicida to colonize the low pH environment of the coral surface mucopolysaccharide layer as an initial stage of infection. The synergistic effect between temperature and oxygen concentration appeared to be less environmentally relevant for this coral pathogen.  相似文献   

11.
Sex, Symbiosis and Coral Reef Communities   总被引:2,自引:0,他引:2  
SYNOPSIS. Questions about how today's corals and coral reefswill fare in a future that holds not only increasing directanthropogenic impacts, but also global change, cannot be satisfactorilyanswered if we do not understand the relations of corals andreef systems to today's environmental conditions. This paperdiscusses four aspects of modern reef biology: coral reproduction,coral population biology, the coral-zooxanthella symbiosis,and reef community ecology. Conclusions of this survey of currentknowledge are that complexities of cnidarian reproductive biology,and our rudimentary knowledge of reproductive patterns in reefcnidarians, make forecasting based on current knowledge uncertainat best; new discoveries about the coral algal symbiotic systemsuggest a possible mode of adjustment to environmental changethat warrants a strong research effort; coral communities ofthe future may well be unlike what we are familiar with today;and these new assemblages will be shaped by the interactionof novel environmental conditions and the characteristics ofindividual reef species.  相似文献   

12.
13.
If we are to ensure the persistence of species in an increasingly warm world, of interest is the identification of drivers that affect the ability of an organism to resist thermal stress. Underpinning any organism's capacity for resistance is a complex interplay between biological and physical factors occurring over multiple scales. Tropical coral reefs are a unique system, in that their function is dependent upon the maintenance of a coral–algal symbiosis that is directly disrupted by increases in water temperature. A number of physical factors have been identified as affecting the biological responses of the coral organism under broadscale thermal anomalies. One such factor is water flow, which is capable of modulating both organismal metabolic functioning and thermal environments. Understanding the physiological and hydrodynamic drivers of organism response to thermal stress improves predictive capabilities and informs targeted management responses, thereby increasing the resilience of reefs into the future.  相似文献   

14.
Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 – 6.6°C) and lowest diel ranges (0.9 – 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 – 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems.  相似文献   

15.
A diverse group of coral reef organisms, representing several phyla, possess fluorescent pigments. We investigated the potential of using the characteristic fluorescence emission spectra of these pigments to enable unsupervised, optical classification of coral reef habitats. We compiled a library of characteristic fluorescence spectra through in situ and laboratory measurements from a variety of specimens throughout the Caribbean. Because fluorescent pigments are not species-specific, the spectral library is organized in terms of 15 functional groups. We investigated the spectral separability of the functional groups in terms of the number of wavebands required to distinguish between them, using the similarity measures Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), SID-SAM mixed measure, and Mahalanobis distance. This set of measures represents geometric, stochastic, joint geometric-stochastic, and statistical approaches to classifying spectra. Our hyperspectral fluorescence data were used to generate sets of 4-, 6-, and 8-waveband spectra, including random variations in relative signal amplitude, spectral peak shifts, and water-column attenuation. Each set consisted of 2 different band definitions: ‘optimally-picked’ and ‘evenly-spaced.’ The optimally-picked wavebands were chosen to coincide with as many peaks as possible in the functional group spectra. Reference libraries were formed from half of the spectra in each set and used for training purposes. Average classification accuracies ranged from 76.3% for SAM with 4 evenly-spaced wavebands to 93.8% for Mahalanobis distance with 8 evenly-spaced wavebands. The Mahalanobis distance consistently outperformed the other measures. In a second test, empirically-measured spectra were classified using the same reference libraries and the Mahalanobis distance for just the 8 evenly-spaced waveband case. Average classification accuracies were 84% and 87%, corresponding to the extremes in modeled water-column attenuation. The classification results from both tests indicate that a high degree of separability among the 15 fluorescent-spectra functional groups is possible using only a modest number of spectral bands.  相似文献   

16.
This is a statement of the problem, along with a summary of the method adopted for solving the problem, the major results and conclusions, and an explanation regarding the importance of the research. The Abstract should not include phrases such as the results will be discussed....The organising committee for the 7th International Coral Reef Symposium, to be held in Guam from 22–26 June 1992, have adopted the Coral Reefs format for all papers that are to be published in the conference proceedings. Following are some suggestions for writing and structuring papers. These tips may prove helpful to the less-experienced author.  相似文献   

17.
Sponges are dominant components of coral reef ecosystems, often exceeding reef-building corals in abundance. Large sponges, often more than 1 m in diameter, may be hundreds to thousands of years old. When damaged or dislodged, large sponges usually die because they are unable to reattach to the reef substratum. Because suitable methods for reattaching dislodged sponges are lacking, they are typically excluded from coral reef restoration efforts. Here we present a novel technique for the reattachment of large sponges that was tested using the Caribbean Giant barrel sponge, Xestospongia muta . Transplants of X. muta were conducted at 15- and 30-m depth off Key Largo, Florida. Despite the active hurricane season of 2005, 90% of deep and 35% of shallow transplants survived, with nearly 80% reattaching to the substratum and growing after 2.3–3 years. This technique may be generally adapted for securing large sponges in coral reef restoration efforts.  相似文献   

18.
19.
Thresholds and Multiple Stable States in Coral Reef Community Dynamics   总被引:11,自引:0,他引:11  
Multiple stable states occur when more than one type of communitycan stably persist in a single environmental regime. Simpletheoretical analyses predict multiple stable states for (1)single species dynamics via the Allee effect, (2) two-speciescompetitive interactions characterized by unstable coexistence,(3) some predator-prey interactions, and (4) some systems combiningpredation and competition. Potential examples of transitionsbetween stable states on reefs include the failure of Diademaantillarum and Acropora cervicornis to recover following catastrophicmortality, and the replacement of microalgal turf by unpalatablemacroalgae after rapid increase in the amount of substratumavailable for colonization by algae. Subtidal marine ecosystemsin general, and reefs in particular, have several attributeswhich favor the existence of multiple stable states. Studiesof transitions between states often need to rely upon poorlycontrolled, unreplicated natural "experiments," as transitionstypically require pulses of disturbance over very large spatialscales. The stability of a state must often be inferred fromanalyses of the dynamics of participants at that state, as generationtimes and the potential for further extrinsic disturbance precludethe use of persistence as an indicator of stability. The potentialfor multiple stable states strongly influences our interpretationof variability in space and time and our ability to predictreef responses to natural and man-made environmental change.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号