首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the context of pandemic influenza, the prompt and effective implementation of control measures is of great concern for public health officials around the world. In particular, the role of vaccination should be considered as part of any pandemic preparedness plan. The timely production and efficient distribution of pandemic influenza vaccines are important factors to consider in mitigating the morbidity and mortality impact of an influenza pandemic, particularly for those individuals at highest risk of developing severe disease. In this paper, we use a mathematical model that incorporates age-structured transmission dynamics of influenza to evaluate optimal vaccination strategies in the epidemiological context of the Spring 2009 A (H1N1) pandemic in Mexico. We extend previous work on age-specific vaccination strategies to time-dependent optimal vaccination policies by solving an optimal control problem with the aim of minimizing the number of infected individuals over the course of a single pandemic wave. Optimal vaccination policies are computed and analyzed under different vaccination coverages (21%–77%) and different transmissibility levels (R0\mathcal{R}_{0} in the range of 1.8–3). The results suggest that the optimal vaccination can be achieved by allocating most vaccines to young adults (20–39 yr) followed by school age children (6–12 yr) when the vaccination coverage does not exceed 30%. For higher R0\mathcal{R}_{0} levels ($\mathcal{R}_{0}>=2.4$\mathcal{R}_{0}>=2.4), or a time delay in the implementation of vaccination (>90 days), a quick and substantial decrease in the pool of susceptibles would require the implementation of an intensive vaccination protocol within a shorter period of time. Our results indicate that optimal age-specific vaccination rates are significantly associated with R0\mathcal{R}_{0}, the amount of vaccines available and the timing of vaccination.  相似文献   

2.

Background

Managing emerging vaccine safety signals during an influenza pandemic is challenging. Federal regulators must balance vaccine risks against benefits while maintaining public confidence in the public health system.

Methods

We developed a multi-criteria decision analysis model to explore regulatory decision-making in the context of emerging vaccine safety signals during a pandemic. We simulated vaccine safety surveillance system capabilities and used an age-structured compartmental model to develop potential pandemic scenarios. We used an expert-derived multi-attribute utility function to evaluate potential regulatory responses by combining four outcome measures into a single measure of interest: 1) expected vaccination benefit from averted influenza; 2) expected vaccination risk from vaccine-associated febrile seizures; 3) expected vaccination risk from vaccine-associated Guillain-Barre Syndrome; and 4) expected change in vaccine-seeking behavior in future influenza seasons.

Results

Over multiple scenarios, risk communication, with or without suspension of vaccination of high-risk persons, were the consistently preferred regulatory responses over no action or general suspension when safety signals were detected during a pandemic influenza. On average, the expert panel valued near-term vaccine-related outcomes relative to long-term projected outcomes by 3∶1. However, when decision-makers had minimal ability to influence near-term outcomes, the response was selected primarily by projected impacts on future vaccine-seeking behavior.

Conclusions

The selected regulatory response depends on how quickly a vaccine safety signal is identified relative to the peak of the pandemic and the initiation of vaccination. Our analysis suggested two areas for future investment: efforts to improve the size and timeliness of the surveillance system and behavioral research to understand changes in vaccine-seeking behavior.  相似文献   

3.
4.
Seasonal and pandemic strains of influenza have widespread implications for the global economy and global health. This has been highlighted recently as the epidemiologic characteristics for hospitalization and mortality for pandemic influenza H1N1 2009 are now emerging. While treatment with neuraminidase inhibitors are effective for seasonal and pandemic influenza, prevention of morbidity and mortality through effective vaccines requires a rigorous process of research and development. Vulnerable populations such as older adults (i.e., > age 65 years) suffer the greatest impact from seasonal influenza yet do not have a consistent seroprotective response to seasonal influenza vaccines due to a combination of factors. This short narrative review will highlight the emerging epidemiologic characteristics of pandemic H1N1 2009 and focus on immunosenescence, innate immune system responses to influenza virus infection and vaccination, and influenza vaccine responsiveness as it relates to seasonal and H1N1 pandemic influenza vaccines.  相似文献   

5.
In the influenza H5N1 virus incident in Hong Kong in 1997, viruses that are closely related to H5N1 viruses initially isolated in a severe outbreak of avian influenza in chickens were isolated from humans, signaling the possibility of an incipient pandemic. However, it was not possible to prepare a vaccine against the virus in the conventional embryonated egg system because of the lethality of the virus for chicken embryos and the high level of biosafety therefore required for vaccine production. Alternative approaches, including an avirulent H5N4 virus isolated from a migratory duck as a surrogate virus, H5N1 virus as a reassortant with avian virus H3N1 and an avirulent recombinant H5N1 virus generated by reverse genetics, have been explored. All vaccines were formalin inactivated. Intraperitoneal immunization of mice with each of vaccines elicited the production of hemagglutination-inhibiting and virus-neutralizing antibodies, while intranasal vaccination without adjuvant induced both mucosal and systemic antibody responses that protected the mice from lethal H5N1 virus challenge. Surveillance of birds and animals, particularly aquatic birds, for viruses to provide vaccine strains, especially surrogate viruses, for a future pandemic is stressed.  相似文献   

6.
Quantifying the Routes of Transmission for Pandemic Influenza   总被引:1,自引:0,他引:1  
Motivated by the desire to assess nonpharmaceutical interventions for pandemic influenza, we seek in this study to quantify the routes of transmission for this disease. We construct a mathematical model of aerosol (i.e., droplet-nuclei) and contact transmission of influenza within a household containing one infected. An analysis of this model in conjunction with influenza and rhinovirus data suggests that aerosol transmission is far more dominant than contact transmission for influenza. We also consider a separate model of a close expiratory event, and find that a close cough is unlikely (≈1% probability) to generate traditional droplet transmission (i.e., direct deposition on the mucous membranes), although a close, unprotected and horizontally-directed sneeze is potent enough to cause droplet transmission. There are insufficient data on the frequency of close expiratory events to assess the relative importance of aerosol transmission and droplet transmission, and it is prudent to leave open the possibility that droplet transmission is important until proven otherwise. However, the rarity of close, unprotected and horizontally-directed sneezes—coupled with the evidence of significant aerosol and contact transmission for rhinovirus and our comparison of hazard rates for rhinovirus and influenza—leads us to suspect that aerosol transmission is the dominant mode of transmission for influenza.  相似文献   

7.
8.
9.

Background

The 2009 influenza pandemic and shortages in vaccine supplies worldwide underscore the need for new approaches to develop more effective vaccines.

Methodology/Principal Findings

We generated influenza virus-like particles (VLPs) containing proteins derived from the A/California/04/2009 virus, and tested their efficacy as a vaccine in mice. A single intramuscular vaccination with VLPs provided complete protection against lethal challenge with the A/California/04/2009 virus and partial protection against A/PR/8/1934 virus, an antigenically distant human isolate. VLP vaccination induced predominant IgG2a antibody responses, high hemagglutination inhibition (HAI) titers, and recall IgG and IgA antibody responses. HAI titers after VLP vaccination were equivalent to those observed after live virus infection. VLP immune sera also showed HAI responses against diverse geographic pandemic isolates. Notably, a low dose of VLPs could provide protection against lethal infection.

Conclusion/Significance

This study demonstrates that VLP vaccination provides highly effective protection against the 2009 pandemic influenza virus. The results indicate that VLPs can be developed into an effective vaccine, which can be rapidly produced and avoid the need to isolate high growth reassortants for egg-based production.  相似文献   

10.
Safe and effective immunologic adjuvants are often essential for vaccines. However, the choice of adjuvant for licensed vaccines is limited, especially for those that are administered intradermally. We show that non-tissue damaging, near-infrared (NIR) laser light given in short exposures to small areas of skin, without the use of additional chemical or biological agents, significantly increases immune responses to intradermal influenza vaccination without augmenting IgE. The NIR laser-adjuvanted vaccine confers increased protection in a murine influenza lethal challenge model as compared to unadjuvanted vaccine. We show that NIR laser treatment induces the expression of specific chemokines in the skin resulting in recruitment and activation of dendritic cells and is safe to use in both mice and humans. The NIR laser adjuvant technology provides a novel, safe, low-cost, simple-to-use, potentially broadly applicable and clinically feasible approach to enhancing vaccine efficacy as an alternative to chemical and biological adjuvants.  相似文献   

11.
Vero 细胞流感疫苗应用前景   总被引:4,自引:0,他引:4  
流行性感冒(简称流感)是由流感病毒引起的急性呼吸道传染病,其病毒基因组为单股负链分节段的RNA,外有包膜。根据病毒核壳蛋白(NP)和膜蛋白(MP)抗原特性及其基因特性的不同,分为甲(A)、乙(B)、丙(C)三型,甲型根据其表面(HA、NA)结构及其基因特性的不同又分为许多亚型,乙和丙型没  相似文献   

12.
Influenza pandemics can spread quickly and cost millions of lives; the 2009 H1N1 pandemic highlighted the shortfall in the current vaccine strategy and the need for an improved global response in terms of shortening the time required to manufacture the vaccine and increasing production capacity. Here we describe the pre-clinical assessment of a novel 2009 H1N1 pandemic influenza vaccine based on the E. coli-produced HA globular head domain covalently linked to virus-like particles derived from the bacteriophage Qβ. When formulated with alum adjuvant and used to immunize mice, dose finding studies found that a 10 µg dose of this vaccine (3.7 µg globular HA content) induced antibody titers comparable to a 1.5 µg dose (0.7 µg globular HA content) of the licensed 2009 H1N1 pandemic vaccine Panvax, and significantly reduced viral titers in the lung following challenge with 2009 H1N1 pandemic influenza A/California/07/2009 virus. While Panvax failed to induce marked T cell responses, the novel vaccine stimulated substantial antigen-specific interferon-γ production in splenocytes from immunized mice, alongside enhanced IgG2a antibody production. In ferrets the vaccine elicited neutralizing antibodies, and following challenge with influenza A/California/07/2009 virus reduced morbidity and lowered viral titers in nasal lavages.  相似文献   

13.

Background

The Canadian National Antiviral Stockpile (NAS) contains treatment for 17.5% of Canadians. This assumes no concurrent intervention strategies and no wastage due to non-influenza respiratory infections. A dynamic model can provide a mechanism to consider complex scenarios to support decisions regarding the optimal NAS size under uncertainty.

Methods

We developed a dynamic model for pandemic influenza in Canada that is structured by age and risk to calculate the demand for antivirals to treat persons with pandemic influenza under a wide-range of scenarios that incorporated transmission dynamics, disease severity, and intervention strategies. The anticipated per capita number of acute respiratory infections due to viruses other than influenza was estimated for the full pandemic period from surveys based on criteria to identify potential respiratory infections.

Results

Our results demonstrate that up to two thirds of the population could develop respiratory symptoms as a result of infection with a pandemic strain. In the case of perfect antiviral allocation, up to 39.8% of the population could request antiviral treatment. As transmission dynamics, severity and timing of the emergence of a novel influenza strain are unknown, the sensitivity analysis produced considerable variation in potential demand (median: 11%, IQR: 2–21%). If the next pandemic strain emerges in late spring or summer and a vaccine is available before the anticipated fall wave, the median prediction was reduced to 6% and IQR to 0.7–14%. Under the strategy of offering empirical treatment to all patients with influenza like symptoms who present for care, demand could increase to between 65 and 144%.

Conclusions

The demand for antivirals during a pandemic is uncertain. Unless an accurate, timely and cost-effective test is available to identify influenza cases, demand for antivirals from persons infected with other respiratory viruses will be substantial and have a significant impact on the NAS.  相似文献   

14.

Background

As Pandemic (H1N1) 2009 influenza spreads around the globe, it strikes school-age children more often than adults. Although there is some evidence of pre-existing immunity among older adults, this alone may not explain the significant gap in age-specific infection rates.

Methods and Findings

Based on a retrospective analysis of pandemic strains of influenza from the last century, we show that school-age children typically experience the highest attack rates in primarily naive populations, with the burden shifting to adults during the subsequent season. Using a parsimonious network-based mathematical model which incorporates the changing distribution of contacts in the susceptible population, we demonstrate that new pandemic strains of influenza are expected to shift the epidemiological landscape in exactly this way.

Conclusions

Our analysis provides a simple demographic explanation for the age bias observed for H1N1/09 attack rates, and suggests that this bias may shift in coming months. These results have significant implications for the allocation of public health resources for H1N1/09 and future influenza pandemics.  相似文献   

15.
Just allocation of resources for control of infectious diseases can be profoundly influenced by the dynamics of those diseases. In this paper we discuss the use of antiviral drugs for treatment of pandemic influenza. While the primary effect of such drugs is to alleviate and shorten the duration of symptoms for treated individuals, they can have a secondary effect of reducing transmission in the community. However, existing stockpiles may be insufficient for all clinical cases. Here we use simple mathematical models to present scenarios where the optimum policies to minimise morbidity and mortality, with a limited drug stockpile, are not always the most intuitively obvious and may conflict with theories of justice. We discuss ethical implications of these findings.  相似文献   

16.
The 2009 H1N1 influenza pandemic provides a unique opportunity for detailed examination of the spatial dynamics of an emerging pathogen. In the US, the pandemic was characterized by substantial geographical heterogeneity: the 2009 spring wave was limited mainly to northeastern cities while the larger fall wave affected the whole country. Here we use finely resolved spatial and temporal influenza disease data based on electronic medical claims to explore the spread of the fall pandemic wave across 271 US cities and associated suburban areas. We document a clear spatial pattern in the timing of onset of the fall wave, starting in southeastern cities and spreading outwards over a period of three months. We use mechanistic models to tease apart the external factors associated with the timing of the fall wave arrival: differential seeding events linked to demographic factors, school opening dates, absolute humidity, prior immunity from the spring wave, spatial diffusion, and their interactions. Although the onset of the fall wave was correlated with school openings as previously reported, models including spatial spread alone resulted in better fit. The best model had a combination of the two. Absolute humidity or prior exposure during the spring wave did not improve the fit and population size only played a weak role. In conclusion, the protracted spread of pandemic influenza in fall 2009 in the US was dominated by short-distance spatial spread partially catalysed by school openings rather than long-distance transmission events. This is in contrast to the rapid hierarchical transmission patterns previously described for seasonal influenza. The findings underline the critical role that school-age children play in facilitating the geographic spread of pandemic influenza and highlight the need for further information on the movement and mixing patterns of this age group.  相似文献   

17.

Background

One pathway through which pandemic influenza strains might emerge is reassortment from coinfection of different influenza A viruses. Seasonal influenza vaccines are designed to target the circulating strains, which intuitively decreases the prevalence of coinfection and the chance of pandemic emergence due to reassortment. However, individual-based analyses on 2009 pandemic influenza show that the previous seasonal vaccination may increase the risk of pandemic A(H1N1) pdm09 infection. In view of pandemic influenza preparedness, it is essential to understand the overall effect of seasonal vaccination on pandemic emergence via reassortment.

Methods and Findings

In a previous study we applied a population dynamics approach to investigate the effect of infection-induced cross-immunity on reducing such a pandemic risk. Here the model was extended by incorporating vaccination for seasonal influenza to assess its potential role on the pandemic emergence via reassortment and its effect in protecting humans if a pandemic does emerge. The vaccination is assumed to protect against the target strains but only partially against other strains. We find that a universal seasonal vaccine that provides full-spectrum cross-immunity substantially reduces the opportunity of pandemic emergence. However, our results show that such effectiveness depends on the strength of infection-induced cross-immunity against any novel reassortant strain. If it is weak, the vaccine that induces cross-immunity strongly against non-target resident strains but weakly against novel reassortant strains, can further depress the pandemic emergence; if it is very strong, the same kind of vaccine increases the probability of pandemic emergence.

Conclusions

Two types of vaccines are available: inactivated and live attenuated, only live attenuated vaccines can induce heterosubtypic immunity. Current vaccines are effective in controlling circulating strains; they cannot always help restrain pandemic emergence because of the uncertainty of the oncoming reassortant strains, however. This urges the development of universal vaccines for prevention of pandemic influenza.  相似文献   

18.
19.
20.
流感是一种对人类危害极大的传染病,接种疫苗被认为是预防流感的最有效手段。目前所用的流感疫苗主要是根据现行流行株的减毒或灭活病毒疫苗及基于流感血凝素和神经氨酸酶设计的重组蛋白质疫苗。但流感病毒变异大,易逃逸机体免疫监视,有效的疫苗须不断分离新流行株和不断更新疫苗免疫原。为解决这一问题,很多科学家一直在研究基于病毒高度保守性蛋白质、能够预防所有流感病毒毒株、可诱导持久保护性免疫的通用流感疫苗。我们对基于基质蛋白M2、核蛋白等的通用流感疫苗做一简要综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号