首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anthrax is a disease caused by the bacterium Bacillus anthracis, which results in high mortality in animals and humans. Although some of the mechanisms are already known such as asphyxia, extensive knowledge of molecular pathogenesis of this disease is deficient and remains to be further investigated. Lethal toxin (LT) is a major virulence factor of B. anthracis and a specific inhibitor/protease of mitogen-activated protein kinase kinases (MAPKKs). Anthrax LT causes lethality and induces certain anthrax-like symptoms, such as anemia and hypoxia, in experimental mice. Mitogen-activated protein kinases (MAPKs) are the downstream pathways of MAPKKs, and are important for erythropoiesis. This prompted us to hypothesize that anemia and hypoxia may in part be exacerbated by erythropoietic dysfunction. As revealed by colony-forming cell assays in this study, LT challenges significantly reduced mouse erythroid progenitor cells. In addition, in a proteolytic activity-dependent manner, LT suppressed cell survival and differentiation of cord blood CD34+-derived erythroblasts in vitro. Suppression of cell numbers and the percentage of erythroblasts in the bone marrow were detected in LT-challenged C57BL/6J mice. In contrast, erythropoiesis was provoked through treatments of erythropoietin, significantly ameliorating the anemia and reducing the mortality of LT-treated mice. These data suggested that suppressed erythropoiesis is part of the pathophysiology of LT-mediated intoxication. Because specific treatments to overcome LT-mediated pathogenesis are still lacking, these efforts may help the development of effective treatments against anthrax.  相似文献   

2.
Thrombocytopenia is frequently associated with dengue virus infection in humans. Although antiplatelet immunopathogenic processes have been implicated in the origin of dengue-associated thrombocytopenia, the effect of dengue viruses on megakaryocyte differentiation remains incompletely understood. In this study, we examined the effect of human dengue 2 virus isolates on the in vitro growth and differentiation of thrombopoietin-induced megakaryopoiesis of cord blood CD34+ cells. Dengue 2 viruses, but not Japanese encephalitis virus, showed a dose-dependent inhibition of CFU-Mk. Viral antigens could be detected by an immunohistochemical technique in 3-5% of the early megakaryocytic progenitors by the 5th postexposure day in liquid cultures with cell loss, increased annexin V binding and active caspase-3 expression. In summary, dengue 2 viruses can inhibit in vitro megakaryopoiesis, as well as infect and induce apoptotic cell death in a subpopulation of early megakaryocytic progenitors. These events might contribute towards the origin of thrombocytopenia in dengue disease.  相似文献   

3.
Thrombopoiesis following severe bone marrow injury frequently is delayed, thereby resulting in life-threatening thrombocytopenia for which there are limited treatment options. The reasons for these delays in recovery are not well understood. Protein kinase C (PKC) agonists promote megakaryocyte differentiation in leukemia cell lines and primary cells. However, little is known about the megakaryopoietic effects of PKC agonists on primary CD34+ cells grown in culture or in vivo. Here we present evidence that the novel PKC isoform-selective agonist 3,20 ingenol dibenzoate (IDB) potently stimulates early megakaryopoiesis of human CD34+ cells. In contrast, broad spectrum PKC agonists failed to do so. In vivo, a single intraperitoneal injection of IDB selectively increased platelets in mice without affecting hemoglobin or white counts. Finally, IDB strongly mitigated radiation-induced thrombocytopenia, even when administered 24 hours after irradiation. Our data demonstrate that novel PKC isoform agonists such as IDB may represent a unique therapeutic strategy for accelerating the recovery of platelet counts following severe marrow injury.  相似文献   

4.
Recombinant human interleukin 11 (rhIL-11) has previously been shown to ameliorate thrombocytopenia in several animal models. To elucidate the mechanisms involved in rhIL-11-induced hematopoiesis, a kinetic analysis of megakaryopoiesis was performed in mitomycin C (MMC)-induced myelosuppressive mice. Mice intravenously injected with MMC (2 mg/kg) for two consecutive days from day -1 developed severe thrombocytopenia with a nadir of platelet counts at 24x10(4)/microl on day 12 and neutropenia. Treatment with rhIL-11 (500 microg/kg/day) from day 1 to 21 significantly ameliorated the degree and duration of thrombocytopenia and enhanced the platelet recovery, and also enhanced the recovery from neutropenia. In MMC-treated mice, the decreases in bone marrow megakaryocyte progenitors and megakaryocyte counts preceded the decrease in platelet counts by MMC treatment. RhIL-11 induced an increase in the number of megakaryocyte progenitors from day 4 to 14, followed by an increase in the megakaryocytes by day 20. There was a ploidy shift in megakaryocytes towards lower ploidy cells by day 9 in myelosuppressed mice. RhIL-11 caused a shift towards a higher ploidy with 32 and 64N on day 4, and 32N on day 14. These results suggest that rhIL-11 ameliorates the thrombocytopenia via the stimulation of both the maturation and commitment followed by the proliferation of megakaryocytic cells.  相似文献   

5.
Anti-apoptotic Bcl-2 family proteins, which inhibit the mitochondrial pathway of apoptosis, are involved in the survival of various hematopoietic lineages and are often dysregulated in hematopoietic malignancies. However, their involvement in the megakaryocytic lineage is not well understood. In the present paper, we describe the crucial anti-apoptotic role of Mcl-1 and Bcl-xL in this lineage at multistages. The megakaryocytic lineage-specific deletion of both, in sharp contrast to only one of them, caused apoptotic loss of mature megakaryocytes in the fetal liver and systemic hemorrhage, leading to embryonic lethality. ABT-737, a Bcl-xL/Bcl-2/Bcl-w inhibitor, only caused thrombocytopenia in adult wild-type mice, but further induced massive mature megakaryocyte apoptosis in the Mcl-1 knockout mice, leading to severe hemorrhagic anemia. All these phenotypes were fully restored if Bak and Bax, downstream apoptosis executioners, were also deficient. In-vitro study revealed that the Jak pathway maintained Mcl-1 and Bcl-xL expression levels, preventing megakaryoblastic cell apoptosis. Similarly, both were involved in reticulated platelet survival, whereas platelet survival was dependent on Bcl-xL due to rapid proteasomal degradation of Mcl-1. In conclusion, Mcl-1 and Bcl-xL regulate the survival of the megakaryocytic lineage, which is critically important for preventing lethal or severe hemorrhage in both developing and adult mice.  相似文献   

6.
7.
8.
9.
10.
Platelets modulate vascular system integrity, and their loss is critical in haematological pathologies and after chemotherapy. Therefore, identification of molecules enhancing platelet production would be useful to counteract thrombocytopenia. We have previously shown that 2-arachidonoylglycerol (2-AG) acts as a true agonist of platelets, as well as it commits erythroid precursors toward the megakaryocytic lineage. Against this background, we sought to further interrogate the role of 2-AG in megakaryocyte/platelet physiology by investigating terminal differentiation, and subsequent thrombopoiesis. To this end, we used MEG-01 cells, a human megakaryoblastic cell line able to produce in vitro platelet-like particles.

2-AG increased the number of cells showing ruffled surface and enhanced surface expression of specific megakaryocyte/platelet surface antigens, typical hallmarks of terminal megakaryocytic differentiation and platelet production. Changes in cytoskeleton modeling also occurred in differentiated megakaryocytes and blebbing platelets. 2-AG acted by binding to CB1 and CB2 receptors, because specific antagonists reverted its effect. Platelets were split off from megakaryocytes and were functional: they contained the platelet-specific surface markers CD61 and CD49, whose levels increased following stimulation with a natural agonist like collagen. Given the importance of 2-AG for driving megakaryopoiesis and thrombopoiesis, not surprisingly we found that its hydrolytic enzymes were tightly controlled by classical inducers of megakaryocyte differentiation.

In conclusion 2-AG, by triggering megakaryocyte maturation and platelet release, may have clinical efficacy to counteract thrombocytopenia-related diseases.  相似文献   


11.

Background

Megakaryopoiesis allows platelet formation, which is necessary for coagulation, also playing an important role in different pathologies. However, this process remains to be fully characterized. C3G, an activator of Rap1 GTPases, is involved in platelet activation and regulates several differentiation processes.

Methods

We evaluated C3G function in megakaryopoiesis using transgenic mouse models where C3G and C3GΔCat (mutant lacking the GEF domain) transgenes are expressed exclusively in megakaryocytes and platelets. In addition, we used different clones of K562, HEL and DAMI cell lines with overexpression or silencing of C3G or GATA-1.

Results

We found that C3G participates in the differentiation of immature hematopoietic cells to megakaryocytes. Accordingly, bone marrow cells from transgenic C3G, but not those from transgenic C3GΔCat mice, showed increased expression of the differentiation markers CD41 and CD61, upon thrombopoietin treatment. Furthermore, C3G overexpression increased the number of CD41+ megakaryocytes with high DNA content. These results are supported by data obtained in the different models of megakaryocytic cell lines. In addition, it was uncovered GATA-1 as a positive regulator of C3G expression. Moreover, C3G transgenic megakaryocytes from fresh bone marrow explants showed increased migration from the osteoblastic to the vascular niche and an enhanced ability to form proplatelets. Although the transgenic expression of C3G in platelets did not alter basal platelet counts, it did increase slightly those induced by TPO injection in vivo. Moreover, platelet C3G induced adipogenesis in the bone marrow under pathological conditions.

Conclusions

All these data indicate that C3G plays a significant role in different steps of megakaryopoiesis, acting through a mechanism dependent on its GEF activity.
  相似文献   

12.
The tyrosine kinase Tie-2 and its ligands Angiopoietins (Angs) transduce critical signals for angiogenesis in endothelial cells. This receptor and Ang-1 are coexpressed in hematopoietic stem cells and in a subset of megakaryocytes, though a possible role of angiopoietins in megakaryocytic differentiation/proliferation remains to be demonstrated. To investigate a possible effect of Ang-1/Ang-2 on megakaryocytic proliferation/differentiation we have used both normal CD34(+) cells induced to megakaryocytic differentiation and the UT7 cells engineered to express the thrombopoietin receptor (TPOR, also known as c-mpl, UT7/mpl). Our results indicate that Ang-1/Ang-2 may have a role in megakaryopoiesis. Particularly, Ang-2 is predominantly produced and released by immature normal megakaryocytic cells and by undifferentiated UT7/mpl cells and slightly stimulated TPO-induced cell proliferation. Ang-1 production is markedly induced during megakaryocytic differentiation/maturation and potentiated TPO-driven megakaryocytic differentiation. Blocking endogenously released angiopoietins partially inhibited megakaryocytic differentiation, particularly for that concerns the process of polyploidization. According to these data it is suggested that an autocrine angiopoietin/Tie-2 loop controls megakaryocytic proliferation and differentiation.  相似文献   

13.
14.
15.
RGS18 is a myeloerythroid lineage-specific regulator of G-protein signaling, highly expressed in megakaryocytes (MKs) and platelets. In the present study, we describe the first generation of a RGS18 knockout mouse model (RGS18-/-). Interesting phenotypic differences between RGS18-/- and wild-type (WT) mice were identified, and show that RGS18 plays a significant role in both platelet generation and function. RGS18 deficiency produced a gain of function phenotype in platelets. In resting platelets, the level of CD62P expression was increased in RGS18-/- mice. This increase correlated with a higher level of plasmatic serotonin concentration. RGS18-/- platelets displayed a higher sensitivity to activation in vitro. RGS18 deficiency markedly increased thrombus formation in vivo. In addition, RGS18-/- mice presented a mild thrombocytopenia, accompanied with a marked deficit in MK number in the bone marrow. Analysis of MK maturation in vitro and in vivo revealed a defective megakaryopoiesis in RGS18-/- mice, with a lower bone marrow content of only the most committed MK precursors. Finally, RGS18 deficiency was correlated to a defect of platelet recovery in vivo under acute conditions of thrombocytopenia. Thus, we highlight a role for RGS18 in platelet generation and function, and provide additional insights into the physiology of RGS18.  相似文献   

16.
Thrombopoietin (TPO) is an important haematopoietic factor in megakaryocytic activities as well as in platelet production. Interleukin 6 (IL-6) can co-stimulate TPO-dependent formation of colony forming unit of megakaryocyte (CFU-Meg) growth which could be responsible for residual platelet formation in TPO-deficient or c-mpl-deficient animals. In this report, we demonstrated the development of a high-level expression system to produce a 78-kDa human fusion protein IL-6/TPO (named ZH646). This was achieved by constructing the expression vector pPICZalpha-A-IL-6-linker-TPO, and obtained the recombinant yeast GS115, which then efficiently secreted into a medium with a yield of 30 mg/l from the supernatant of the yeast culture in flask. ZH646 was then purified using two steps via DEAE-Sephacel chromatography and Mono Q columns. Activity assay showed that ZH646 could significantly stimulate the formation of CFU-Meg and the proliferation of Dami cells in vitro in a dose-dependent manner. In addition, ZH646 also showed thrombopoietic effect in normal mice, and the ability to enhance recovery of normal platelet counts after myelosuppression mice. These results suggested that ZH646 is a novel protein, and its activities are much stronger than that of TPO or IL-6 alone. ZH646 therefore has a broad spectrum of megakaryopoiesis activity associated with platelet production.  相似文献   

17.
Previously, we reported that ZNF300 might play a role in leukemogenesis. In this study, we further investigated the function of ZNF300 in K562 cells undergoing differentiation. We found that ZNF300 upregulation in K562 cells coincided with megakaryocytic differentiation induced by phorbol-12-myristate-13-acetate (PMA) or erythrocytic differentiation induced by cytosine arabinoside (Ara-C), respectively. To further test whether ZNF300 upregulation promoted differentiation, we knocked down ZNF300 and found that ZNF300 knockdown effectively abolished PMA-induced megakaryocytic differentiation, evidenced by decreased CD61 expression. Furthermore, Ara-C-induced erythrocytic differentiation was also suppressed in ZNF300 knockdown cells with decreased γ-globin expression and CD235a expression. These observations suggest that ZNF300 may be a critical factor controlling distinct aspects of K562 cells. Indeed, ZNF300 knockdown led to increased cell proliferation. Consistently, ZNF300 knockdown cells exhibited an increased percentage of cells at S phase accompanied by decreased percentage of cells at G0/G1 and G2/M phase. Increased cell proliferation was further supported by the increased expression of cell proliferation marker PCNA and the decreased expression of cell cycle regulator p15 and p27. In addition, MAPK/ERK signaling was significantly suppressed by ZNF300 knockdown. These findings suggest a potential mechanism by which ZNF300 knockdown may impair megakaryocytic and erythrocytic differentiation.  相似文献   

18.
Abexinostat is a pan histone deacetylase inhibitor (HDACi) that demonstrates efficacy in malignancy treatment. Like other HDACi, this drug induces a profound thrombocytopenia whose mechanism is only partially understood. We have analyzed its effect at doses reached in patient plasma on in vitro megakaryopoiesis derived from human CD34+ cells. When added at day 0 in culture, abexinostat inhibited CFU-MK growth, megakaryocyte (MK) proliferation and differentiation. These effects required only a short incubation period. Decreased proliferation was due to induction of apoptosis and was not related to a defect in TPO/MPL/JAK2/STAT signaling. When added later (day 8), the compound induced a dose-dependent decrease (up to 10-fold) in proplatelet (PPT) formation. Gene profiling from MK revealed a silencing in the expression of DNA repair genes with a marked RAD51 decrease at protein level. DNA double-strand breaks were increased as attested by elevated γH2AX phosphorylation level. Moreover, ATM was phosphorylated leading to p53 stabilization and increased BAX and p21 expression. The use of a p53 shRNA rescued apoptosis, and only partially the defect in PPT formation. These results suggest that HDACi induces a thrombocytopenia by a p53-dependent mechanism along MK differentiation and a p53-dependent and -independent mechanism for PPT formation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号