首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Telomere length, a biomarker of aging and age-related diseases, exhibits wide variation between individuals. Common genetic variation may explain some of the individual differences in telomere length. To date, however, only a few genetic variants have been identified in the previous genome-wide association studies. As emerging data suggest epigenetic regulation of telomere length, we investigated 72 single nucleotide polymorphisms (SNPs) in 46 genes that involve DNA and histone methylation as well as telomerase and telomere-binding proteins and DNA damage response. Genotyping and quantification of telomere length were performed in blood samples from 989 non-Hispanic white participants of the Sister Study, a prospective cohort of women aged 35–74 years. The association of each SNP with logarithmically-transformed relative telomere length was estimated using multivariate linear regression. Six SNPs were associated with relative telomere length in blood cells with p-values<0.05 (uncorrected for multiple comparisons). The minor alleles of BHMT rs3733890 G>A (p = 0.041), MTRR rs2966952 C>T (p = 0.002) and EHMT2 rs558702 G>A (p = 0.008) were associated with shorter telomeres, while minor alleles of ATM rs1801516 G>A (p = 0.031), MTR rs1805087 A>G (p = 0.038) and PRMT8 rs12299470 G>A (p = 0.019) were associated with longer telomeres. Five of these SNPs are located in genes coding for proteins involved in DNA and histone methylation. Our results are consistent with recent findings that chromatin structure is epigenetically regulated and may influence the genomic integrity of telomeric region and telomere length maintenance. Larger studies with greater coverage of the genes implicated in DNA methylation and histone modifications are warranted to replicate these findings.  相似文献   

4.
Genetic variation in nicotinic acetylcholine receptor subunit genes (nAChRs) is associated with lung function level and chronic obstructive pulmonary disease (COPD). It is unknown whether these variants also predispose to an accelerated lung function decline. We investigated the association of nAChR susceptibility variants with lung function decline and COPD severity. The rs1051730 and rs8034191 variants were genotyped in a population-based cohort of 1,226 heavy smokers (COPACETIC) and in an independent cohort of 883 heavy smokers, of which 653 with COPD of varying severity (LEUVEN). Participants underwent pulmonary function tests at baseline. Lung function decline was assessed over a median follow-up of 3 years in COPACETIC. Current smokers homozygous for the rs1051730 A-allele or rs8034191 G-allele had significantly greater FEV1/FVC decline than homozygous carriers of wild-type alleles (3.3% and 4.3%, p = 0.026 and p = 0.009, respectively). In the LEUVEN cohort, rs1051730 AA-carriers and rs8034191 GG-carriers had a two-fold increased risk to suffer from COPD GOLD IV (OR 2.29, 95% confidence interval [CI] = 1.11–4.75; p = 0.025 and OR = 2.42, 95% [CI] = 1.18–4.95; p = 0.016, respectively). The same risk alleles conferred, respectively, a five- and four-fold increased risk to be referred for lung transplantation because of end-stage COPD (OR = 5.0, 95% [CI] = 1.68–14.89; p = 0.004 and OR = 4.06, 95% [CI] = 1.39–11.88; p = 0.010). In Europeans, variants in nAChRs associate with an accelerated lung function decline in current smokers and with clinically relevant COPD.  相似文献   

5.

Purpose

Transforming growth factor (TGF) -β1 signaling is involved in cancer-cell metastasis. We investigated whether single nucleotide polymorphisms (SNPs) at TGFβ1 were associated with overall survival (OS) and distant metastasis-free survival (DMFS) in patients with non-small cell lung cancer (NSCLC) treated with definitive radiotherapy, with or without chemotherapy.

Methods

We genotyped TGFβ1 SNPs at rs1800469 (C–509T), rs1800471 (G915C), and rs1982073 (T+29C) by polymerase chain reaction-restriction fragment length polymorphism in blood samples from 205 NSCLC patients who had had definitive radiotherapy at one institution in November 1998–January 2005. We also tested whether the TGF-β1 rs1982073 (T+29C) SNP affected the migration and invasion of A549 and PC9 lung cancer cells.

Results

Median follow-up time for all patients was 17 months (range, 1–97 months; 39 months for patients alive at the time of analysis). Multivariate analysis showed that the TGFβ1 rs1800469 CT/CC genotype was associated with poor OS (hazard ratio [HR] = 1.463 [95% confidence interval {CI} = 1.012–2.114], P = 0.043) and shorter DMFS (HR = 1.601 [95% CI = 1.042–2.459], P = 0.032) and that the TGFβ1 rs1982073 CT/CC genotype predicted poor DMFS (HR = 1.589 [95% CI = 1.009–2.502], P = 0.046) and poor brain MFS (HR = 2.567 [95% CI = 1.155–5.702], P = 0.021) after adjustment for age, sex, race, performance status, smoking status, tumor histology and volume, stage, receipt of concurrent radiochemotherapy, number of chemotherapy cycles, and radiation dose. Transfection with TGFβ1+29C (vs. +29T) stimulated the migration and invasion of A549 and PC9 cells, suggesting that TGFβ1+29C may be linked with increased metastatic potential.

Conclusions

TGFβ1 genotypes at rs1800469 and rs1982073 could be useful for predicting DMFS among patients with NSCLC treated with definitive radiation therapy. These findings require validation in larger prospective trials and thorough mechanistic studies.  相似文献   

6.
Several variations in the nicotinic receptor genes have been identified to be associated with both lung cancer risk and smoking in the genome-wide association (GWA) studies. However, the relationships among these three factors (genetic variants, nicotine dependence, and lung cancer) remain unclear. In an attempt to elucidate these relationships, we applied mediation analysis to quantify the impact of nicotine dependence on the association between the nicotinic receptor genetic variants and lung adenocarcinoma risk. We evaluated 23 single nucleotide polymorphisms (SNPs) in the five nicotinic receptor related genes (CHRNB3, CHRNA6, and CHRNA5/A3/B4) previously reported to be associated with lung cancer risk and smoking behavior and 14 SNPs in the four ‘control’ genes (TERT, CLPTM1L, CYP1A1, and TP53), which were not reported in the smoking GWA studies. A total of 661 lung adenocarcinoma cases and 1,347 controls with a smoking history, obtained from the Environment and Genetics in Lung Cancer Etiology case-control study, were included in the study. Results show that nicotine dependence is a mediator of the association between lung adenocarcinoma and gene variations in the regions of CHRNA5/A3/B4 and accounts for approximately 15% of this relationship. The top two CHRNA3 SNPs associated with the risk for lung adenocarcinoma were rs1051730 and rs12914385 (p-value = 1.9×10−10 and 1.1×10−10, respectively). Also, these two SNPs had significant indirect effects on lung adenocarcinoma risk through nicotine dependence (p = 0.003 and 0.007). Gene variations rs2736100 and rs2853676 in TERT and rs401681 and rs31489 in CLPTM1L had significant direct associations on lung adenocarcinoma without indirect effects through nicotine dependence. Our findings suggest that nicotine dependence plays an important role between genetic variants in the CHRNA5/A3/B4 region, especially CHRNA3, and lung adenocarcinoma. This may provide valuable information for understanding the pathogenesis of lung adenocarcinoma and for conducting personalized smoking cessation interventions.  相似文献   

7.

Introduction

Recent evidence suggests a link between constitutional telomere length (TL) and cancer risk. Previous studies have suggested that longer telomeres were associated with an increased risk of melanoma and larger size and number of nevi. The goal of this study was to examine whether TL modified the risk of melanoma in melanoma-prone families with and without CDKN2A germline mutations.

Materials and Methods

We measured TL in blood DNA in 119 cutaneous malignant melanoma (CMM) cases and 208 unaffected individuals. We also genotyped 13 tagging SNPs in TERT.

Results

We found that longer telomeres were associated with an increased risk of CMM (adjusted OR = 2.81, 95% CI = 1.02–7.72, P = 0.04). The association of longer TL with CMM risk was seen in CDKN2A- cases but not in CDKN2A+ cases. Among CMM cases, the presence of solar injury was associated with shorter telomeres (P = 0.002). One SNP in TERT, rs2735940, was significantly associated with TL (P = 0.002) after Bonferroni correction.

Discussion

Our findings suggest that TL regulation could be variable by CDKN2A mutation status, sun exposure, and pigmentation phenotype. Therefore, TL measurement alone may not be a good marker for predicting CMM risk.  相似文献   

8.

Objectives

Bcl-2 is a critical apoptosis inhibitor with established carcinogenic potential, and can confer cancer cell resistance to therapeutic treatments by activating anti-apoptotic cellular defense. We hypothesized that genetic variants of BCL2 gene may be associated with lung cancer susceptibility and prognosis.

Methods

Three selected tagSNPs of BCL2 (rs2279115, rs1801018, and rs1564483) were genotyped in 1017 paired male Chinese lung cancer cases and controls by TaqMan assay. The associations of these variants with risk of lung cancer and overall survival of 242 male advanced non-small-cell lung cancer (NSCLC) patients were separately investigated.

Results

Compared with the BCL2 3′UTR rs1564483GG genotype, the rs1564483GA, AA, and GA+AA genotypes were associated with significantly decreased susceptibilities of lung cancer in male Chinese (adjusted OR = 0.78, 0.73, and 0.76, P = 0.016, 0.038, and 0.007, respectively), while rs1564483A allele has a inverse dose-response relationship with lung cancer risk (P trend = 0.010). These effects were more evident in the elders, smokers, and subjects without family history of cancer (P trend = 0.017, 0.043 and 0.005, respectively). Furthermore, advanced NSCLC males carrying BCL2 rs1564483 GA+AA genotypes had significantly longer median survival time (Long-rank P = 0.036) and decreased death risk (adjusted HR = 0.69, P = 0.027) than patients with rs1564483GG genotype. These effects were more obvious in patients with smoking, stage IIIA, and in patients without surgery but underwent chemotherapy or radiotherapy (adjusted HR = 0.68, 0.49, 0.67, 0.69, 0.50, respectively, all P<0.05).

Conclusion

The BCL2 3′UTR rs1564483A allele was associated with a decreased lung cancer risk and better survival for advanced NSCLC in male Chinese, which may offer a novel biomarker for identifying high-risk population and predicting clinical outcomes.  相似文献   

9.
10.

Background

The mTOR gene regulates cell growth by controlling mRNA translation, ribosome biogenesis, autophagy, and metabolism. Abnormally increased expression of mTOR was associated with carcinogenesis, and its functional single nucleotide polymorphisms (SNPs) may regulate the expression of mTOR and thus contribute to cancer risk.

Methodology/Principal Findings

In a hospital-based case-control study of 1004 prostate cancer (PCa) cases and 1051 cancer-free controls, we genotyped six potentially functional SNPs of mTOR (rs2536 T>C, rs1883965 G>A, rs1034528 G>C, rs17036508 T>C, rs3806317 A>G, and rs2295080 T>G) and assessed their associations with risk of PCa by using logistic regression analysis.

Conclusions/Significances

In the single-locus analysis, we found a significantly increased risk of PCa associated with mTOR rs2536 CT/CC and rs1034528 CG/CC genotypes [adjusted OR = 1.42 (1.13–1.78), P = 0.003 and 1.29 (1.07–1.55), P = 0.007), respectively], compared with their common homozygous genotypes, whereas mTOR rs2295080 GT/GG genotypes were associated with a decreased risk of PCa [adjusted OR = 0.76 (0.64–0.92), P = 0.003], compared with wild-type TT genotypes. In the combined analysis of the six SNPs, we found that individuals carrying two or more adverse genotypes had an increased risk of PCa [adjusted OR = 1.24 (1.04–1.47), P = 0.016], compared with individuals carrying less than two adverse genotypes. In the multiple dimension reduction analysis, body mass index (BMI) was the best one-factor model with the highest CVC (100%) and the lowest prediction error (42.7%) among all seven factors. The model including an interaction among BMI, rs17036508, and rs2536 was the best three-factor model with the highest CVC (100%) and the lowest prediction error of 41.9%. These findings suggested that mTOR SNPs may contribute to the risk of PCa in Eastern Chinese men, but the effect was weak and needs further validation by larger population-based studies.  相似文献   

11.

Background

Premature shortening of leukocyte telomere length has been proposed as a novel mechanism by which depression may confer increased risk of adverse cardiovascular events. Prior studies demonstrating associations of depression and depressive symptoms with shorter leukocyte telomere length were small, included selected psychiatric outpatients, were based on convenience samples, and/or adjusted for a limited number of possible confounding factors.

Methods and Findings

We examined the associations of depressive symptoms, probable depressive disorder, and specific depressive symptom clusters, as assessed by the Center for Epidemiological Studies—Depression (CES-D) scale, with leukocyte telomere length, measured by using a real-time PCR method, in 2,225 apparently healthy participants from the 1995 Nova Scotia Health Survey population-based study. The mean age was 48.2±18.9 years; 49.9% of participants were female; and the mean CES-D score was 7.4±7.9. The mean telomere length was 5,301±587 base pairs. In an unadjusted model, depressive symptoms were significantly associated with longer leukocyte telomere length (B = 27.6 base pairs per standard deviation increase in CES-D, 95% confidence interval [CI] = 3.1–52.1, p = 0.027). This association was no longer significant after adjustment for age and sex (B = 9.5, 95% CI = −14.6–33.6, p = 0.44) or after further adjustment for body mass index, Framingham risk score and previous history of ischemic heart disease (all p''s≥0.37). Neither probable depressive disorder nor specific depressive symptom clusters were independently associated with leukocyte telomere length.

Conclusions

Concurrent depressive symptoms were not associated with leukocyte telomere length in a large, representative, population-based study.  相似文献   

12.

Background

Telomeres at the ends of eukaryotic chromosomes play a critical role in maintaining the integrity and stability of the genome and participate in the initiation of DNA damage/repair responses.

Methods

We performed a case-control study to evaluate the role of three SNPs (TERT-07, TERT-54 and POT1-03) in telomere maintenance genes previously found to be significantly associated with breast cancer risk. We used sister-sets obtained from the New York site of the Breast Cancer Family Registry (BCFR). Among the 313 sister-sets, there were 333 breast cancer cases and 409 unaffected sisters who were evaluated in the current study. We separately applied conditional logistic regression and generalized estimating equations (GEE) models to evaluate associations between the three SNPs and breast cancer risk within sister-sets. We examined the associations between genotype, covariates and telomere length among unaffected sisters using a GEE model.

Results

We found no significant associations between the three SNPs in telomere maintenance genes and breast cancer risk by both conditional logistic regression and GEE models, nor were these SNPs significantly related to telomere length. Among unaffected sisters, shortened telomeres were statistically significantly correlated with never hormone replacement therapy (HRT) use. Increased duration of HRT use was significantly associated with reduced telomere length. The means of telomere length were 0.77 (SD = 0.35) for never HRT use, 0.67 (SD = 0.29) for HRT use <5yrs and 0.59 (SD = 0.24) for HRT use ≥5yrs after adjusting for age of blood donation and race and ethnicity.

Conclusions

We found that exogenous hormonal exposure was inversely associated with telomere length. No significant associations between genetic variants and telomere length or breast cancer risk were observed. These findings provide initial evidence to understand hormonal exposure in the regulation of telomere length and breast cancer risk but need replication in prospective studies.  相似文献   

13.
Mediator of DNA damage checkpoint protein 1 (MDC1) plays an early and core role in Double-Strand Break Repair (DDR) and ataxia telangiectasia-mutated (ATM) mediated response to DNA double-strand breaks (DSBs), and thus involves the pathogenesis of several DNA damage-related diseases such as cancer. We hypothesized that the single nucleotide polymorphisms (SNPs) of MDC1 which have potencies on affecting MDC1 expression or function were associated with risk of lung cancer. In a two-stage case-control study, we tested the association between 5 putatively functional SNPs of MDC1 and lung cancer risk in a southern Chinese population, and validated the promising association in an eastern Chinese population. We found the SNP rs4713354A>C that is located in the 5′-untranslated region of MDC1 was significantly associated with lung cancer risk in both populations (P = 0.024), with an odds ratio as 1.23(95% confidence interval  = 1.35–1.26) for the rs4713354C (CA+CC) genotypes compared to the rs4713354AA genotype. However, no significant association was observed between other SNPs and lung cancer risk. The gene-based analysis rested with these SNPs suggested the MDC1 as a susceptible gene for lung cancer (P = 0.009). Moreover, by querying the gene expression database, we further found that the rs4713354C genotypes confer a significantly lower mRNA expression of MDC1 than the rs4713354AA genotype in 260 cases of lymphoblastoid cells (P = 0.002). Our data suggested that the SNP rs4713354A>C of MDC1 may be a functional genetic biomarker for susceptibility to lung cancer in Chinese.  相似文献   

14.
Oxidative stress is involved in the pathogenesis of airway obstruction in α1-antitrypsin deficient patients. This may result in a shortening of telomere length, resulting in cellular senescence. To test whether telomere length differs in α1-antitrypsin deficient patients compared with controls, we measured telomere length in DNA from peripheral blood cells of 217 α1-antitrypsin deficient patients and 217 control COPD patients. We also tested for differences in telomere length between DNA from blood and DNA from lung tissue in a subset of 51 controls. We found that telomere length in the blood was significantly longer in α1-antitrypsin deficient COPD patients compared with control COPD patients (p = 1×10−29). Telomere length was not related to lung function in α1-antitrypsin deficient patients (p = 0.3122) or in COPD controls (p = 0.1430). Although mean telomere length was significantly shorter in the blood when compared with the lungs (p = 0.0078), telomere length was correlated between the two tissue types (p = 0.0122). Our results indicate that telomere length is better preserved in α1-antitrypsin deficient COPD patients than in non-deficient patients. In addition, measurement of telomere length in the blood may be a suitable surrogate for measurement in the lung.  相似文献   

15.
The interleukin-23 (IL-23) and its receptor (IL-23R) mediate the direct antitumor activities in human hematologic malignancies including pediatric acute leukemia. Two potentially functional genetic variants (IL-23R rs1884444 T>G and rs6682925 T>C) have been found to contribute to solid cancer susceptibility. In this study, we conducted a case-control study including 545 acute myeloid leukemia (AML) patients and 1,146 cancer-free controls in a Chinese population to assess the association between these two SNPs and the risk of AML. We found that IL-23R rs1884444 TG/GG and rs6682925 TC/CC variant genotypes were associated with significantly increased risk of AML [rs1884444: adjusted odds ratio (OR) = 1.28, 95% confidence interval (CI) = 1.01–1.62; rs6682925: adjusted OR = 1.30, 95%CI = 1.01–1.67], compared to their corresponding wild-type homozygotes, respectively. These findings indicated that genetic variants in IL-23R may contribute to AML risk in our Chinese population.  相似文献   

16.
Common PCSK1 variants (notably rs6232 and rs6235) have been shown to be associated with obesity in European, Asian and Mexican populations. To determine whether common PCSK1 variants contribute to obesity in American population, we conducted association analyses in 8,359 subjects using two multi-ethnic American studies: the Coronary Artery Risk Development in Young Adults (CARDIA) study and the Multi-Ethnic Study of Atherosclerosis (MESA). By evaluating the contribution of rs6232 and rs6235 in each ethnic group, we found that in European-American subjects from CARDIA, only rs6232 was associated with BMI (P = 0.006) and obesity (P = 0.018) but also increased the obesity incidence during the 20 years of follow-up (HR = 1.53 [1.07–2.19], P = 0.019). Alternatively, in African-American subjects from CARDIA, rs6235 was associated with BMI (P = 0.028) and obesity (P = 0.018). Further, by combining the two case-control ethnic groups from the CARDIA study in a meta-analysis, association between rs6235 and obesity risk remained significant (OR = 1.23 [1.05–1.45], P = 9.5×10−3). However, neither rs6232 nor rs6235 was associated with BMI or obesity in the MESA study. Interestingly, rs6232 was associated with BMI (P = 4.2×10−3) and obesity (P = 3.4×10−3) in the younger European-American group combining samples from the both studies [less than median age (53 years)], but not among the older age group (P = 0.756 and P = 0.935 for BMI and obesity, respectively). By combining all the case-control ethnic groups from CARDIA and MESA in a meta-analysis, we found no significant association for the both variants and obesity risk. Finally, by exploring the full PCSK1 locus, we observed that no variant remained significant after correction for multiple testing. These results indicate that common PCSK1 variants (notably rs6232 and rs6235) contribute modestly to obesity in multi-ethnic American population. Further, these results suggest that the association of rs6232 with obesity may be age-dependent in European-Americans. However, multiple replication studies in multi-ethnic American population are needed to confirm our findings.  相似文献   

17.
18.

Background

Arsenic in drinking water was associated with increased risk of all-cause, cancer, and cardiovascular death in adults. However, the extent to which exposure is related to all-cause and deaths from cancer and cardiovascular condition in young age is unknown. Therefore, we prospectively assessed whether long-term and recent arsenic exposures are associated with all-cause and cancer and cardiovascular mortalities in Bangladeshi childhood population.

Methods and Findings

We assembled a cohort of 58406 children aged 5–18 years from the Health and Demographic Surveillance System of icddrb in Bangladesh and followed during 2003–2010. There were 185 non-accidental deaths registered in-about 0.4 million person-years of observation. We calculated hazard ratios for cause-specific death in relation to exposure at baseline (µg/L), time-weighted lifetime average (µg/L) and cumulative concentration (µg-years/L). After adjusting covariates, hazard ratios (HRs) for all-cause childhood deaths comparing lifetime average exposure 10–50.0, 50.1–150.0, 150.1–300.0 and ≥300.1µg/L were 1.37 (95% confidence interval [CI], 0.74–2.57), 1.44 (95% CI, 0.88–2.38), 1.22 (95% CI, 0.75–1.98) and 1.88 (95% CI, 1.14–3.10) respectively. Significant increased risk was also observed for baseline (P for trend = 0.023) and cumulative exposure categories (P for trend = 0.036). Girls had higher mortality risk compared to boys (HR for girls 1.79, 1.21, 1.64, 2.31; HR for boys 0.52, 0.53, 1.14, 0.99) in relation to baseline exposure. For all cancers and cardiovascular deaths combined, multivariable adjusted HRs amounted to 1.53 (95% CI 0.51–4.57); 1.29 (95% CI 0.43–3.87); 2.18 (95%CI 1.15–4.16) for 10.0–50.0, 50.1–150.0, and ≥150.1, comparing lowest exposure as reference (P for trend = 0.009). Adolescents had higher mortality risk compared to children (HRs = 1.53, 95% CI 1.03–2.28 vs. HRs = 1.30, 95% CI 0.78–2.17).

Conclusions

Arsenic exposure was associated with substantial increased risk of deaths at young age from all-cause, and cancers and cardiovascular conditions. Girls and adolescents (12–18 years) had higher risk compared to boys and child.  相似文献   

19.
Recent genome-wide meta-analyses identified 157 loci associated with cross-sectional lipid traits. Here we tested whether these loci associate (singly and in trait-specific genetic risk scores [GRS]) with longitudinal changes in total cholesterol (TC) and triglyceride (TG) levels in a population-based prospective cohort from Northern Sweden (the GLACIER Study). We sought replication in a southern Swedish cohort (the MDC Study; N = 2,943). GLACIER Study participants (N = 6,064) were genotyped with the MetaboChip array. Up to 3,495 participants had 10-yr follow-up data available in the GLACIER Study. The TC- and TG-specific GRSs were strongly associated with change in lipid levels (β = 0.02 mmol/l per effect allele per decade follow-up, P = 2.0×10−11 for TC; β = 0.02 mmol/l per effect allele per decade follow-up, P = 5.0×10−5 for TG). In individual SNP analysis, one TC locus, apolipoprotein E (APOE) rs4420638 (β = 0.12 mmol/l per effect allele per decade follow-up, P = 2.0×10−5), and two TG loci, tribbles pseudokinase 1 (TRIB1) rs2954029 (β = 0.09 mmol/l per effect allele per decade follow-up, P = 5.1×10−4) and apolipoprotein A-I (APOA1) rs6589564 (β = 0.31 mmol/l per effect allele per decade follow-up, P = 1.4×10−8), remained significantly associated with longitudinal changes for the respective traits after correction for multiple testing. An additional 12 loci were nominally associated with TC or TG changes. In replication analyses, the APOE rs4420638, TRIB1 rs2954029, and APOA1 rs6589564 associations were confirmed (P≤0.001). In summary, trait-specific GRSs are robustly associated with 10-yr changes in lipid levels and three individual SNPs were strongly associated with 10-yr changes in lipid levels.  相似文献   

20.
Genetic variants have been shown to affect length of survival in cancer patients. This study explored the association between lung cancer susceptibility loci tagged by single-nucleotide polymorphisms (SNPs) identified in the genome-wide association studies and length of survival in small-cell lung cancer (SCLC). Eighteen SNPs were genotyped among 874 SCLC patients and Cox proportional hazards regression was used to examine the effects of genotype on survival length under an additive model with age, sex, smoking status and clinical stage as covariates. We identified 3 loci, 20q13.2 (rs4809957G >A), 22q12.2 (rs36600C >T) and 5p15.33 (rs401681C >T), significantly associated with the survival time of SCLC patients. The adjusted hazard ratio (HR) for patients with the rs4809957 GA or AA genotype was 0.80 (95% CI, 0.66–0.96; P = 0.0187) and 0.73 (95% CI, 0.55–0.96; P = 0.0263) compared with the GG genotype. Using the dominant model, the adjusted HR for patients carrying at least one T allele at rs36600 or rs401681 was 0.78 (95% CI, 0.63–0.96; P = 0.0199) and 1.29 (95% CI, 1.08–1.55; P = 0.0047), respectively, compared with the CC genotype. Stratification analyses showed that the significant associations of these 3 loci were only seen in smokers and male patients. The rs4809957 SNP was only significantly associated with length of survival of patients with extensive-stage but not limited-stage tumor. These results suggest that some of the lung cancer susceptibility loci might also affect the prognosis of SCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号